
CHAPEL RELEASE NOTES,
1.25.1 / 1.26.0:
LANGUAGE IMPROVEMENTS

Chapel Team
December 9, 2021 / March 31, 2022

OUTLINE

• Command-line module init
• Improving ‘sync’/‘single’
• External type improvements
• Operators in ‘import’/‘use’
• Resizing arrays of non-nilable
• Anonymous assoc. domains
• Hash-related improvements
• Language stabilization
• Other improvements

INITIALIZING MODULES FROM
COMMAND-LINE FILES

Background

• Module initialization consists of running the top-level statements within a module
• For example, consider a ‘Hello World’ program:

module Hello {
writeln("Hello World"); // this module-level statement runs when initializing the module ‘Hello’

}

• Historically, naming a module on the ‘chpl’ command line was insufficient to cause it to be initialized:

• This behavior is surprising—intuitively, compiling ‘b.chpl’ should include it in the resulting program

4

INITIALIZING COMMAND-LINE MODULES

$ chpl a.chpl b.chpl
$./a
in a

does not print “in b” because module ‘a’ (the main module) does not refer to it

// a.chpl

proc main() {
writeln("in a");

}

// b.chpl

module b {
use a;
writeln("in b");

}

This Effort and Impact

This Effort: Adjusted the compiler to initialize top-level modules in files named on the command-line
• Improved the language specification to more clearly describe this and other facets of module initialization

Impact:
• Language design in this area is more intuitive
• Improved the behavior of the example program:

• Also enables a more straightforward implementation of Arkouda modularization…

5

INITIALIZING COMMAND-LINE MODULES

// a.chpl

proc main() {
writeln("in a");

}

// b.chpl

module b {
use a;
writeln("in b");

}
$ chpl a.chpl b.chpl
$./a
in b
in a

Impact

• Consider a program like Arkouda, in which multiple modules register commands with a server module:

• With this change, distinct sets of modules can be trivially mixed together, leveraging self-registration

• Previously, some piece of code would need to explicitly ‘use’/’import’/call each module for it to register itself

6

INITIALIZING COMMAND-LINE MODULES

// Server.chpl

var server: …;

proc main() {
var cmd: string;
while readline(string) do

server.process(cmd);
}

// M1.chpl
use Server;
const myCmds = …;
server.register(myCmds);
…

// M3.chpl
use Server;
const myCmds = …;
server.register(myCmds);
…

// M2.chpl
use Server;
const myCmds = …;
server.register(myCmds);
…

// M4.chpl
use Server;
const myCmds = …;
server.register(myCmds);
…

$ chpl Server.chpl M1.chpl M2.chpl M3.chpl M4.chpl # build a server with all modules
$ chpl Server.chpl M2.chpl M3.chpl # build a server with just M2, M3

IMPROVEMENTS TO ‘SYNC’
AND ‘SINGLE’

Background:
• ‘sync’ and ‘single’ are type modifiers that use full-empty semantics

– e.g., ‘mySync.readFE()’ means “read, blocking until the variable is full, leaving it empty”

• As of 1.25.0, they only supported these types:
– ‘nothing’, ‘bool’, ‘int’, ‘uint’, ‘real’, ‘imag’, ‘string’
– enumerated types
– ‘unmanaged’, ‘borrowed’, or ‘shared’ class types

• Notably, the following did not work with ‘sync’ or ‘single’:
– ‘owned’ or non-nilable class types, user-defined record types, ‘complex’

This Effort:
• Improved the generality of ‘sync’ and ‘single’ types to support all the types mentioned above
• For types that are not trivially copyable, ‘readXX’ on an empty sync now returns a default-initialized value

– Enables the more common ‘writeEF’ ‘readFE’ pattern to move a value in and then out rather than copying
– See example on the next slide

Impact:
• ‘sync’ and ‘single’ are significantly more capable as of 1.25.1

8

SYNC AND SINGLE: BACKGROUND, THIS EFFORT, IMPACT

• Trivially copyable example:
var x: sync int;
x.writeEF(1); // Sets ‘x’ to ‘full’ and stores ‘1’ in it

var y = x.readFE(); // ‘x’ is now ‘empty’, and we read ‘1’ out of it

var z = x.readXX(); // reads ‘1’ since it was the last value stored, and because ‘int’ is trivially copyable
// (so, reusing the old value does not represent a memory error)

• Non-trivially copyable example
var a: sync string;
a.writeEF("hi"); // Sets ‘a’ to ‘full’ and stores “hi” in it

var b = a.readFE(); // ‘a’ is now ‘empty’ and we read “hi” out of it

var z = a.readXX(); // reads “” since ‘a’ was empty and ‘string’ is not trivially copyable
// (reusing the value also stored in ‘b’ might be a memory error if ‘b’ was deinitialized already)

9

SYNC AND SINGLE: EXAMPLES

ZERO-INITIALIZING VARIABLES
OF EXTERN TYPE

Background

• ‘extern’ types can refer to C types, for example:
// in C // in Chapel

typedef const void* syserr; extern type syserr;
typedef struct { int64_t i; } mystruct_t; extern record mystruct_t { var i: int; }

• Historically, inner-scope variables of extern types were not initialized and had undefined values:
{

var x: syserr; writeln(x: int); // causes segmentation fault

var y: mystruct_t; writeln(y.i); // outputs an arbitrary number, e.g., 7
}

• This is surprising since Chapel variables are normally default initialized
{

var z: int; writeln(z); // always outputs 0

}

• Note that module-level variables of extern types were already initialized to 0

11

ZERO-INITIALIZING EXTERNS

This Effort, Impact, and Status

This Effort: Variables of ‘extern’ type are now zero-initialized
• Next section describes how ‘init’ can be used to adjust default initialization for ‘extern’ records

Impact:
• Removed a source of bugs that has been coming up periodically for more than 5 years

Status:
• Included in 1.25.1

12

ZERO-INITIALIZING EXTERNS

DEFINING INITIALIZERS
FOR EXTERN RECORDS

Background

• Historically, a default ‘init’ defined for an extern record had no effect:
// suppose a ‘mystruct_t’ is defined in C

extern record mystruct_t { var i: int; }

// users might expect this ‘init’ to be called for default initialization

proc mystruct_t.init() {
writeln("in mystruct_t.init()");
this.i = 1;

}

{
var x: mystruct_t; // does not print ”in mystruct_t.init()”
writeln(x.i); // used to output an arbitrary number, e.g,. ‘8’; with the previous change, would output ‘0’, but not ‘1’

}

• It is surprising that this program compiles, yet that the ‘proc init’ had no effect

14

EXTERN RECORD INIT

This Effort, Impact, and Status

This Effort:
• A ‘proc init’ defined for an extern record is now called for default initialization
• If no ‘proc init’ is provided, the extern record will be zero-initialized

Impact:
• Extern records are more flexible now
• A surprising behavior has been removed
• Extern and non-extern records are now more consistent

Status:
• Included in 1.25.1

15

EXTERN RECORD INIT

RENAMING EXTERN TYPES

Background and This Effort

Background:
• Sometimes an external identifier will have a name that is illegal, already in use, or unattractive in Chapel:

int type; // ‘type’ is reserved in Chapel, so we can’t write ‘extern var type: c_int;’
struct mystruct { … } // the C name for this type is ‘struct mystruct’, but identifiers can’t have spaces in Chapel
int read(…) { … } // ‘read’ is already heavily overloaded in Chapel, so we may want to distinguish this case

typedef float imag; // ‘imag’ is reserved in Chapel (and defined differently), so we can’t write ‘extern type imag = float;’

• Most ‘extern’ declaration forms in Chapel support the ability to give the external symbol name as a string:
extern "type" var c_type: c_int; // C name is ‘type’, but Chapel name is ‘c_type’

extern "struct mystruct" record mystruct { … } // C name is ‘struct mystruct’, but Chapel name is ‘mystruct’
extern "read" proc c_read(…): c_int; // C name is ‘read’, but Chapel name is c_read

– However, extern ‘type’ declarations haven’t supported this feature

This Effort:
• Add similar support for renaming in ‘extern’ type declarations

17

RENAMING EXTERN TYPES

Status and Impact

Status:
• External type declarations now support renaming as well

– The following C declaration:

typedef float imag; // ‘imag’ is reserved in Chapel, so we can’t write ‘extern type imag = float;’

– Can now be written in Chapel as:
extern "imag" type c_imag = c_float; // C name is ‘imag’, but Chapel name is ‘c_imag’

Impact:
• Users can now rename external types for use in Chapel as needed / desired
• ‘extern’ type declarations are now more similar to other ‘extern’ declarations

18

RENAMING EXTERN TYPES

OPERATORS IN USE / IMPORT
STATEMENTS

Background

• Directly controlling the visibility of operators via 'use' and 'import' statements was unsupported
• Could potentially work around this in some cases, though imprecisely:

use Lib only +; // syntax error
use Lib except a; // work-around: would include '+', but also many other symbols

use Lib except -; // syntax error
use Lib only a, b, c, d; // work-around: excludes ‘–' but obnoxious to write if we want everything else in the module

import Lib.%; // syntax error

• No way to include some operators but not others

20

OPERATORS IN USE / IMPORT

This Effort and Next Steps

This Effort:
• Added support for listing operators in 'use' limitation clauses and 'import' statements

use Lib only +; // now works!
use Lib except -; // now works!
import Lib.%; // now works!

Next Steps:
• Enable support for operators in forwarding clauses

– Syntactically supported now, but has no effect

21

OPERATORS IN USE / IMPORT

RESIZING ARRAYS OF
NON-NILABLE CLASSES

Background and This Effort

Background: Resizing domains that govern arrays of non-nilable classes has triggered a halt
• Reason: No default value to use for any newly allocated elements

var D = {0..0};
var A: [D] shared C = [new shared C()];
D = {0..1}; // Halt: cannot resize domain

This Effort: Added an ‘.unsafeAssign’ method to the domain
• Can be used to resize such domains and initialize any non-nilable array elements

var D = {0..0};
var A: [D] shared C = [new shared C()];
manage D.unsafeAssign({0..1}, checks=true) as mgr do

for idx in mgr.newIndices() do // Loop over ‘1’, the new index of ‘D’
mgr.initialize(A, idx, new shared C(idx)); // Initialize new element of ‘A’

23

RESIZING ARRAYS OF NON-NILABLE

Impact, Status, and Next Steps

Impact: Can now use ‘.unsafeAssign’ to resize domains governing arrays of non-nilable classes
• Use ‘.initialize’ in the managed scope to manually initialize non-nilable array elements
• Manager provides ‘.isElementInitialized’, and ‘.newIndices’ as helper methods
• Optional runtime checking using ‘checks=true’ (defaults to ‘false’)

Status: The ‘.unsafeAssign’ method can resize rectangular domains with arrays of non-nilable

Next Steps:
• Support resizing for arrays of all non-default-initializable types, not just non-nilable classes

– requires a side data structure to track initializations since there’s no obvious in-place sentinel value like for classes

• Associate default value of ‘checks’ to one of the compiler’s ‘--no-*-checks` flags
• Finalize behavior of arrays of default-initializable types within ‘.unsafeAssign’
• Support ‘.unsafeAssign’ on associative domains and arrays
• Test lifetime checker support for the manager

24

RESIZING ARRAYS OF NON-NILABLE

CHANGES TO ARRAYS WITH
ANONYMOUS ASSOCIATIVE
DOMAINS

Background:
• Unlike most languages, Chapel supports distinct concepts for arrays and their index sets (domains)

const D = {1..10}; // represents the indices 1..10, inclusive
var A: [D] real; // creates an array of ‘real’ values over D’s indices

• For convenience/familiarity, a domain’s curly brackets can be omitted for arrays over anonymous domains
var B: [1..10] real, // no need to write ‘var B: [{1..10}] real;’

C: [1..3, 1..3] int; // ditto for multi-dimensional arrays

• This convenience was also supported for associative arrays, which could be confusing:
var D: [1, 3, 7] real; // is this a 3D array with a single element? No, it’s an associative array, indexed by integers 1, 3, 7

• This form was not used often in practice and felt less well-motivated
– since most languages don’t support associative arrays, the familiarity argument from the rectangular case doesn’t apply

This Effort:
• Deprecated the ability to omit curly brackets for arrays over anonymous associative domains

Next Steps:
• See if users are concerned about this change, and remove support if not

26

CHANGES TO ANONYMOUS ASSOCIATIVE DOMAINS

HASH-RELATED IMPROVEMENTS

Background and This Effort

Background:
• Chapel supports several hash-based data structures:

– associative domains and arrays in the language
– the ‘set’ and ‘map’ collections in the standard library

• Users have requested better performance and flexibility for these types
– including the ability to define their own hash functions

• Our k-nucleotide benchmark’s performance was much worse than other language implementations
– a benchmark that looks at DNA sequences and calculates the frequency of certain patterns
– overlap with user requests: wanted custom hash functions and better performance

This Effort:
• Made several changes to improve the flexibility, performance, and correctness of hash-related features

28

HASH IMPROVEMENTS

Background:
• Chapel previously generated hash functions for all records and classes with no ability to override the default

– Prevented users from supplying a hash function for improved performance or when the default hash didn’t work

This Effort:
• Added the ability for users to define a ‘.hash’ method to override the default hash function

– Called by the internal ‘chpl__hashtable’ type, used to implement Chapel’s hash-based collections
– Only supported on user-defined types—cannot override the ‘int’ hash method, for example

Impact:
• Added a ‘.hash’ method to ‘bigint’, allowing its use with maps, associative domains, etc.
• 26% performance improvement to serial k-nucleotide benchmark:

– Avoided a double hash that was otherwise required

Next Steps:
• Finalize choice of ‘.hash’ method name

– Should we use a different name to avoid potential clashes with user identifiers? (see “Ongoing Efforts” release notes)

29

USER-DEFINED HASH FUNCTIONS

Hash used Execution time

Chapel-generated hash 29.31 s

User-defined hash 21.63 s

Background:
• Chapel’s hash tables have traditionally used quadratic probing with a prime-number-sized table
• While investigating k-nucleotide, the prime-number-sized hash table was not performing well

– Required an expensive modulus operator to find a slot in the hash table
– Required resizing the hash table at half-capacity to guarantee finding an open slot

This Effort:
• Switched from prime-number-sized hash tables to using powers of 2 as the size

– Supports replacing the modulus operator with a bitmask, which is a much cheaper operation

• Switched to triangular probing, which is guaranteed to find an open slot if one exists, regardless of table’s size

Impact:
• 25% performance improvement to serial k-nucleotide benchmark:
• Allowed changes to the internal hash table resizing policies

30

HASH TABLE IMPROVEMENTS

Probing algorithm Execution time

Prime-number probing 21.63 s

Triangular probing 15.13 s

Background:
• ‘chpl__hashtable’ is the underlying data structure for Chapel’s ‘set’, ‘map’, and associative domain/array types
• The quadratic probing algorithm we used requires that the table not exceed half capacity

– The triangular probing algorithm we now use only requires a single open slot

This Effort:
• Added a ‘resizeThreshold’ to the hash table to control how full the table can be before resizing

– e.g., a hash table of size 8 with a ‘resizeThreshold’ of 0.75 will resize when the 7th element is inserted (it’s > 75% full)

• Added an ‘initialCapacity’ to the hash table to set the starting size
– Can avoid resizing altogether when the table size is known in advance

• These values also control how hash tables are reduced in size
– Table shrinks by half when occupancy drops below ‘resizeThreshold’/4
– Table never shrinks below ‘initialCapacity’

• Exposed both values through the initializers for ‘set’ and ‘map’

31

HASH TABLE RESIZING POLICY IMPROVEMENTS

Background:
• Traditionally, the compiler has generated a default hash function for every record

– Approach was to hash each field, combining those hashes

• However, this may not always be appropriate
– For example, imagine a record that represents a ‘bigint’ value using heap-allocated memory via a class or ‘c_ptr’
– Two records may represent the same ‘bigint’ value but using distinct classes/’c_ptr’s
– The compiler-generated hash would not work for these values since it can’t know they represent the same value

This Effort:
• Decided that the compiler could not generate hashes for records that support a custom ‘==’ or ‘!=’ operator

– Resolves cases like the ‘bigint’ example above since such types will need to support comparison operators to work
– Seems appropriate given the use of these comparisons in resolving hash conflicts

• Squashed compiler-generated hash functions in these cases

Impact:
• Reduced the chances that the compiler will introduce a meaningless hash function

32

LIMITING COMPILER-GENERATED HASH FUNCTIONS

Background:
• Chapel’s hash-based collections have traditionally issued errors for types “known” to be non-hashable

– e.g., ‘var DR: domain(range);’ historically generated an error because ranges didn’t support a hash function
– Rationale: gave users a better error message than “could not resolve ‘x.hash’” in an internal module

• However, this resulted in a maintenance issue
– e.g., ranges have supported a hash function for years, yet Chapel 1.25.0 still generated the error message above

This Effort:
• Replaced list of unsupported types with ‘Reflection’ calls to determine a type’s hashability

Impact:
• Enables hash-based types that should have been supported, yet were not

– e.g., ‘domain(range)’ now works, as it should have for some time

• Reduces the burden on the development team to maintain the list of hashable types
• Meshes well with the previous slide, since records are no longer guaranteed to have hash functions

33

REFLECTING ABOUT HASHABLE TYPES

Status and Next Steps

Status:
• Chapel’s hash-based data structures are far more flexible, performant, and correct than they had been

Next Steps:
• Decide on a naming convention for special methods and use it for the ‘hash’ method

34

HASH IMPROVEMENTS

STABILIZING RANGES, DOMAINS,
AND ARRAYS

Background and This Effort

Background:
• We are reviewing features of ranges, domains, and arrays as part of the Chapel 2.0 stabilization effort

– This is primarily happening as part of our standard library review, since these types are implemented in Chapel

• Review of these modules had started, but more work remained

This Effort:
• Continued working on improving methods and routines on ranges, domains, and arrays

36

STABILIZING RANGES, DOMAINS, AND ARRAYS

Background:
• In Chapel 1.25.0, we made some changes to the following features:

– Deprecated support for ‘.size’ and ‘.shape()’ returning ‘idxType’, providing an opt-in to have them return ‘int’ instead
– Deprecated ‘range.ident’ as a means of checking whether two ranges have identical (low, high, stride, alignment) tuples

Actions Taken:
• In Chapel 1.26.0:

– ‘.size’/‘.shape’ now always return ‘int’/’int’ tuples for ranges, domains, and arrays
– ‘range.ident’ is no longer available

Open Discussions:
• Potential changes to the range type itself:

– Should we change the types/symbols used to characterize range types? [#17126, #17131]
– Should the range type be generic, like ‘domain’? [#18215]

• Should ‘range.low’, ‘range.high’ be aligned by default? [#17130]

37

STABILIZING RANGES

https://github.com/chapel-lang/chapel/issues/17126
https://github.com/chapel-lang/chapel/issues/17131
https://github.com/chapel-lang/chapel/issues/18215
https://github.com/chapel-lang/chapel/issues/17130'

Actions Taken / Decisions Made:
• Replaced ‘domain.isSuper’ and ‘domain.isSubset’ with ‘domain.contains’
• ‘==’ and ‘!=’ between domains of different kinds, e.g., rectangular vs. associative, are now a compilation error
• Deprecated support for ‘|’, ‘&’, and ‘^’ on rectangular domains
• Improved error messages for unsupported operations on domains
• Changed standalone domain/array kind queries into methods

– e.g., ‘isRectangularDom(MyDomain)’ -> ‘MyDomain.isRectangular()’

• Sparse domains and arrays will be considered unstable in Chapel 2.0

Open Discussions:
• Can we eliminate the runtime types for domains and arrays? [#19292]
• Should ‘+’ and ‘–’ mean translate (shift) on rectangular domains or set operations on irregular domains or ...?

– And should ‘|’, ‘&’, and ‘^’ mean set operations or promoted integer ops or compilation error or ...? [#17101, #19254]

• Should (can?) ‘.hasSingleLocalSubdomain’ be ‘param’? [#11930]
• Better naming, terminology, and behavior of ‘dmapped’ keyword and ‘dist’ method [#17908]
• Is the difference between slicing with a domain vs. with a range too subtle? [#12936]

38

STABILIZING DOMAINS

https://github.com/chapel-lang/chapel/issues/19292
https://github.com/chapel-lang/chapel/issues/17101
https://github.com/chapel-lang/chapel/issues/19254
https://github.com/chapel-lang/chapel/issues/11930
https://github.com/chapel-lang/chapel/issues/17908
https://github.com/chapel-lang/chapel/issues/12936

Actions Taken:
• deprecated ‘.front()’/‘.back()’ on arrays, renaming them to ‘.first’/’.last’
• Changed behavior of ‘.indices’ query to distinguish it from ‘.domain’

– Rectangular arrays now return a local domain of indices; ‘.indices’ on an irregular array is now a local iterator

Decisions made:
• Plan to move ‘isArrayType’, ‘isArrayValue’, ‘isDmapType’, ‘isDmapValue’ functions to ‘Types’ module

– Since these are both auto-’use’d modules, from a user’s perspective, this primarily affects documentation

• Plan to remove ‘sorted’, ‘reverse’, ‘find’, and ‘count’ methods from the array type
– ‘sorted’ can be rewritten to copying to a temporary array and calling ‘sort’
– ‘reverse’ can be rewritten to a ‘forall’ loop without much difficulty
– ‘find’ and ‘count’ can be written inline as a reduction

Open Discussions:
• Should ‘idxType’ return a tuple for multi-dimensional arrays? [#19141]
• Should we get rid of ‘localSubdomain’ in favor of ‘localSubdomains’ iterator [#19178]
• Should ‘reshape’ be made a method on arrays? Should we rename it? Should we mark it unstable? [#19176]

39

STABILIZING ARRAYS

https://github.com/chapel-lang/chapel/issues/19141
https://github.com/chapel-lang/chapel/issues/19178
https://github.com/chapel-lang/chapel/issues/19176

Status and Next Steps

Status:
• Ranges, domains, and arrays continue to be more and more ready for Chapel 2.0

Next Steps:
• Continue to prioritize features on these types, given their centrality to the language

40

STABILIZING RANGES, DOMAINS, AND ARRAYS

OTHER LANGUAGE STABILIZATION
TOPICS

Background

Background:
• For the past several releases, we have generally been considering the core language ready for Chapel 2.0

– as a result, most of our recent stabilization effort has focused on the standard libraries

• However, language stability questions still come up as a result of user/developer experiences
– for example, the ‘dyno’ compiler revamp effort exposes issues as features are re-implemented

42

OTHER LANGUAGE STABILIZATION TOPICS

This Effort, Status, and Next Steps

This Effort:
• Wrestled with issues that seemed concerning with respect to language stabilization

– shadowing / disambiguation, particularly w.r.t. ‘public’/‘private’ ‘use’/‘import’
– see issues #19306, #19167 , #19198, #19160, #19219, #19312, #19352, #19367, and the “Ongoing Efforts” deck

– support for user-defined implicit conversions / array element accessor interface / ref intent overloading [#17999]
– ergonomics, details of using classes [#19120, #19613, #19474]

• Also with issues that make the core language features for parallelism seem incomplete:
– ‘foreach’ shadow variables, intents, and definition [#18500, #19153]
– task-private variables for ‘begin’, ‘cobegin’, ‘coforall’ statements [#14659 , #15706]

Status:
• Discussions and implementation efforts are underway for many of these issues
• Level of attention varies depending on degree of severity

Next Steps:
• Resolve as many as possible prior to Chapel 2.0, prioritizing based on severity

43

OTHER LANGUAGE STABILIZATION TOPICS

https://github.com/chapel-lang/chapel/pull/19306
https://github.com/chapel-lang/chapel/issues/19167
https://github.com/chapel-lang/chapel/issues/19198
https://github.com/chapel-lang/chapel/issues/19160
https://github.com/chapel-lang/chapel/issues/19219
https://github.com/chapel-lang/chapel/issues/19312
https://github.com/chapel-lang/chapel/issues/19352
https://github.com/chapel-lang/chapel/issues/19367
https://github.com/chapel-lang/chapel/issues/17999
https://github.com/chapel-lang/chapel/issues/19120
https://github.com/chapel-lang/chapel/issues/19613
https://github.com/chapel-lang/chapel/issues/19474
https://github.com/chapel-lang/chapel/issues/18500
https://github.com/chapel-lang/chapel/issues/19153
https://github.com/chapel-lang/chapel/issues/14659
https://github.com/chapel-lang/chapel/issues/15706

OTHER LANGUAGE IMPROVEMENTS

For a more complete list of language changes and improvements in the 1.25.1 and 1.26.0 releases,
refer to the following sections in the CHANGES.md file:

• ‘Syntactic / Naming Changes’
• ‘Semantic Changes / Changes to the Chapel Language’

• ‘New Features’
• ‘Feature Improvements’
• ‘Deprecated / Unstable / Removed Language Features’

45

OTHER LANGUAGE IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.26/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

