- CHAPE Mi?;fm EASE N
PERFORMANCE OPTIMIZAT

Chapel Team
September 23, 2021

Y

- s
x NN
™ S 4
. % %
SISy S
. R ¢
= .

InfiniBand Optimizations

Automatic Aggregation
Improvements*

Barrier Optimizations _ |
Bounded Cofo‘r'_é“ 7, N

Optimization Imgrovements S e TN
t, » p : .:., ,J‘\
¥ 1 % e
A 4

&

INFINIBAND
Background

e Memory must be registered with the network in order to do one-sided GETs/PUTs (RDMA)

« gasnet-ibv supports two registration modes:
— Static: All memory is registered at startup—fast communication, but hurts NUMA affinity and leads to long startup times
—Dynamic: Memory is registered at communication time—can add overhead, but good NUMA affinity and fast startup

e Chapel defaults to dynamic registration to get good NUMA affinity and fast startup times

e We believe this is the right choice for most users
- Have recommended static registration to some users with certain communication-heavy idioms

e Ideally, we just want to have one mode with no, or few, downsides
e The 1.24.1 release included significant InfiniBand performance improvements

e Many of these reduced the gap in communication performance between dynamic and static registration
« For this release, we wanted to further tune performance and hopefully work towards a single registration mode

— »

INFINIBAND OPTIMIZATIONS
Background and This Effort

Background: Discovered IB verbs completion queues (CQ) were being highly contended
e CQs are polled to track the completion of network operations
o Currently, multiple threads share a single CQ, which leads to concurrent polling and contention
e CQs are protected by an unaligned lock in the verbs API
« Unaligned lock led to false-sharing, which compounded performance penalty
- Bottleneck was identified with perf-c2c, a tool that helps identify cacheline contention

This Effort:
» Collaborated with GASNet team to serialize CQ polling with an aligned try-lock
- Try-lock skips polling if the lock is already held, reducing total number of polling calls and contention
— Alignment eliminates false-sharing

INFINIBAND OPTIMIZATIONS

Impact

e Significant performance improvements for applications with concurrent communication

700000

600000

500000

400000

300000

Mflops/s

200000

100000
0

NPB: FT Perf (Mflops/s) - size D

—_—

—_—_———— -

e ey .
=

25 Jul

01 Aug

08 Aug

15 Aug

22 Aug

29 Aug

05 Sep

12 Sep

-=- prim-comm ft MFlop/s (gn-ibv-fast)
— prim-comm ft MFlop/s (gn-ibv-large)
-~ ft MFlop/s (gn-ibv-fast)

— ft MFlop/s (gn-ibv-large)

INFINIBAND OPTIMIZATIONS
Impact

e Significant performance improvements for applications with concurrent communication

Bale: Indexgather Perf (MB/s per node) -- MB/s per node (ordered) (gn-ibv-fast)
-- MB/s per node (unordered) (gn-ibv-fast)

' . y -- MB/s per node (forall opt) (gn-ibv-fast)
3 P - — MB/s per node (forall opt) (gn-ibv-large)
static registration d ~~7 — MBIs per node (unordered) (gn-ibv-large)
25 — MB/s per node (ordered) (gn-ibv-large)

Performance (MB/s per node)

B ~25% improvement for
i dynamic registration
0.5
0

25 Jul 01 Aug 08 Aug 15 Aug 22 Aug 29 Aug 05 Sep 12 Sep

INFINIBAND OPTIMIZATIONS
Impact

e Significant performance improvements for Arkouda with dynamic registration

Arkouda Gather Performance Arkouda Scatter Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays HPE Apollo (HDR-100 IB) -- 8 GiB arrays
140
i 120 | eoiaar P 2T
0 ® 100
1) m 80
O] O]
60
40
20 L
1 2 4 8 13
Locales (x 112 cores / locale) Locales (x 112 cores / locale)

INFINIBAND OPTIMIZATIONS
Impact
e Significant reduction in variability on systems with Address Space Layout Randomization (ASLR)

e ASLR led to randomized CQ lock addresses, which made the impact of false-sharing variable from run-to-run
o Our fest systems run with ASLR disabled, but many sites have it enabled
— GASNet results show improved stability on systems with ASLR (L: linear-scale 64-core Intel, R: log-scale 128-core AMD)

Testcontend A with equal active-/passive-end thread counts Testcontend A with equal active-/passive-end thread counts
Gomez: Intel Haswell-EX, 4socket*16core*2ht=128thr, EDR InfiniBand AMD Epyc 7742 (Rome), 2socket x 64core, EDR InfiniBand
Data points show mean of N runs. Error bars span MIN...MAX Data points show mean of 8 runs. Error bars span MIN...MAX
18 T T T T T 100000 T T T T T T
+—+— BEFORE +—+— BEFORE
16 + AFTER i AFTER
/ﬂ(H—«.-
14 | 10000 1 E
12 3 wll
- § 1000 |
L 10 F B
o 2
A 8 = — + %
" & 100} LylHrst]
6 £ 1]
'_ -
4r 10 F E
2r | S 3
O 1 1 ! 1 1 1 | 1 1 |
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Threads Threads

INFINIBAND OPTIMIZATIONS
Next Steps

e Further reduce CQ contention by using the GASNet-EX multi-endpoint API
« Creating an endpoint and CQ per thread can reduce contention

e Improve dynamic registration performance
e CQ polling optimizations widened the gap between dynamic and static registration performance

e Look at using On-Demand-Paging (ODP) as an alternative registration mechanism
o Hardware/firmware takes care of registration on demand rather than tracking in software

o Current prototype hangs
— Needs more investigation and collaboration with the GASNet team

e Gather performance comparisons between Chapel and reference MPI/SHMEM codes
« Use this to drive further optimizations

—

10

4

- » ~ . N -
\ w
’ ,'.\ 3 ™
-~ = ~
o s .
4 o <t
' \ " N N
\ — N
L V ™~ ,.__‘r\
e ‘.\ - N
: -

- X £~ 3 ~ -
Y » -~ \ -
* . e

\ P _ ~

AUTOMATIC AGGREGATION IMPROVEMENTS
Background and This Effort

Background:
e In Chapel 1.24, we added a compiler optimization to aggregate remote communication

forall i in A.domain do
A[i] = BlcomputeIndex (i)]; // accesses to B are aggregated

e The optimization is off-by-default and can be enabled with ‘--auto-aggregation’

This Effort:

e More comprehensive coverage for automatic aggregation
e Performance improvements

— .

AUTOMATIC AGGREGATION IMPROVEMENTS

Impact — Improved Coverage

e Local, non-distributed arrays are recognized as local

var A = newBlockArr (1..10, int);
. Access 1o a local array that’s declared on ‘here’
coforall 1 in Locales do on 1 {

var localArr: [1..10] int;
forall i in localArr.domain do

Communication will be aggregated

localArr[i] = Aflcomputelndex (i)];

AUTOMATIC AGGREGATION IMPROVEMENTS

Impact — Improved Coverage

e Local, non-distributed arrays are recognized as local

var A = newBlockArr (1..10, int);
. Access 1o a local array that’s declared on ‘here’
coforall 1 in Locales do on 1 {

var localArr: [1..10] int;

Communication will be aggregated
forall i in localArr.domain do

localArr[i] = Aflcomputelndex (i)];

e Explicit calls to ‘localAccess’ recognized as local

Left-hand side is local because of ‘localAccess’

var A = newBlockArr (1..10, int);

var B = newBlockArr(1l..10, int); Communication will be aggregated
forall i in A.domain do

A.localAccess[computeLocalIndex(i)] = B[computelIndex (1i)];

— -

AUTOMATIC AGGREGATION IMPROVEMENTS
Impact — Improved Performance

e Changes made to improving aggregation in Arkouda were incorporated in upstream Chapel

Bale: Aggregated Indexgather Perf (MB/s per node) — MB/s per node (auto-aggregated) (ugni)
1200 — MB/s per node (aggregated) (ugni)

1000 ’
800
600

400

Around 207 improvement for

200 automatic and manual aggregation

Performance (MB/s per node)

Jul 2021 Aug 2021 Sep 2021

15

AUTOMATIC AGGREGATION IMPROVEMENTS
Next Steps

e Provide user-facing aggregation (#16963)

e Port more bale apps for testing aggregation
e Improve all-local aggregation performance
e Extend the coverage to promoted expressions

e Investigate multi-hop aggregators for better memory scalability

— .

https://github.com/chapel-lang/chapel/issues/16963

4

BARRIER OPTIMIZATIONS
Background and This Effort

Background: At CHIUW 2021, the CHAMPS team reported performance issues in synchronization code

« Synchronization is implemented with a variant of the ‘allLocalesBarrier’

» Discovered excessive communication on every ‘barrier()’ call
—Due to the implementation using a distributed array in a class, which is a known performance issue (#10160)

This Effort: Optimized ‘allLocalesBarrier’

« Moved distributed array out of the class to eliminate all communication beyond the inter-node barrier itself
—Workaround until performance issues around distributed array fields are resolved

18

https://github.com/chapel-lang/chapel/issues/10160

BARRIER OPTIMIZATIONS
Impact

e Significantly faster barrier, especially for configurations where concurrent communication is slow
e On 16 nodes of a Cray CS with InfiniBand, barrier is roughly 14x faster

16-node allLocalesBarrier (100,000 trials)

70
60
50
40
30

20

Time (seconds)

10

InfiniBand Aries

ml24 125

— .

BARRIER OPTIMIZATIONS
Impact

e Significantly faster barrier at scale, even for configurations where concurrent communication is fast
e On 512 nodes of a Cray XC with Aries, barrier is roughly 18x faster

512-node allLocalesBarrier (100,000 trials)

100
Q0
80
70
60
50
40
30

Time (seconds)

20
10

0
Aries

ml24 125

— .

4

N \ Q ~
\ -
p - . ™
-
o RATES ~
N 5 -
3 L
' X " N (Y
3 o e
£ o o ..__J‘\
«
v s > S
-

N \ - = -
v J - 4 -~
- ~

. A\ ' y N ~

BOUNDED COFORALL OPTIMIZATION IMPROVEMENTS
Background and This Effort

Background: Chapel 1.15 added a bounded coforall optimization

« Reduces task-tracking overhead for coforalls with a known frip-count (ranges, domains, arrays)
e During 1.25 we discovered this optimization did not fire for zippered coforalls
—|dentified while optimizing ‘Block’ array creation communication
- Used zippered iteration o reduce communication, but execution time suffered due to slower task-tracking

This Effort: Extended the bounded coforall optimization to include zippered iteration
« This enabled optimizing communication for BlockDist array creation

— .

BOUNDED COFORALL OPTIMIZATION IMPROVEMENTS

Impact

e Performance improvements for codes using bounded zippered coforalls

0.6

0.5

0.4

0.3

Time (seconds)

0.2

0.1

LLNL CoMD Time (sec) — total
— force
— redistribute
— velocity
— position
\

~157% faster force computation

01 Aug

02 Aug

03 Aug 04 Aug 05 Aug 06 Aug 07 Aug

23

BOUNDED COFORALL OPTIMIZATION IMPROVEMENTS

Impact

e Communication count reduction for BlockDist array creation

60

Creating distributed arrays

50

40

2x less communication

30

Count

20

10

0

01 Aug 02 Aug

03 Aug 04 Aug 05 Aug 06 Aug

— blockCycArrinit-GETS
— cyclicArrinit-GETS

— stencilArrinit-GETS
— blockArrinit-GETS

— blockArrinit-ONS

— cyclicArrinit-ONS

— blockCycArrinit-ONS
— stencilArrinit-ONS

— blockArrinit-PUTS

— cyclicArrinit-PUTS

— blockCycArrinit-PUTS
— stencilArrinit-PUTS

24

4

\
D -(|
) | :
4 ; 2 |
s { ‘ -
B F NN
A , |
: p
4

OTHER PERFORMANCE IMPROVEMENTS

For a more complete list of performance changes and improvements in the 1.25 release, refer to
the following section in the CHANGES.md file:

e ‘Performance Optimizations/Improvements’

— .

https://github.com/chapel-lang/chapel/blob/release/1.25/CHANGES.md

¥
A
A

