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CHAPEL 2.0 / 
LANGUAGE AND LIBRARY HIGHLIGHTS



Background:
• Over the past few years, we have been working toward a forthcoming Chapel 2.0 release
• Intent: stop making backward-breaking changes to core language and library features

– thereafter, use semantic versioning to reflect if/when such changes are made

This Release:
• Major language-related fixes have largely wound down
• Primary remaining effort is on stabilizing the standard libraries
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CHAPEL 2.0



‘foreach’ loops: express parallel loops that should be implemented by the current task
• help indicate opportunities for vectorization or GPU execution when a ‘forall’ loop’s tasks would be overkill

foreach i in 1..n do // assert that this loop is order-independent
a[i] = b[p[i]];

‘manage’ statements: support Python-like context management
• prioritized to support resizable collections of non-nilable classes

operators: prototyped in 1.24, now ready for use
• address an otherwise vague namespace issue

operator R.+(x: R, y: R) { … }

‘ArgumentParser’ package module: in support of richer command-line options than ‘config’ supports
• developed in support of the ‘mason’ package manager

other improvements: progress with interfaces, refinements to ranges, etc.
• done in support of Chapel 2.0, user feedback and requests
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LANGUAGE / LIBRARY IMPROVEMENTS



• This represents the lion’s share of the remaining work for Chapel 2.0

6

STANDARD LIBRARY STABILIZATION
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Stable Progress Review Started Not 2.0



PERFORMANCE IMPROVEMENTS AND 
STUDIES



Primarily motivated by…
…user code, especially Arkouda
…targeting new platforms

– InfiniBand-based systems
– high core-count chips like AMD Rome
– large-memory nodes
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SO MANY PERFORMANCE IMPROVEMENTS



COMPILER IMPROVEMENTS



Background:
• Traditionally, Chapel has generated C code as its “portable assembly”

– LLVM-based back-end was also available as an option

In Chapel 1.25:
• Finally made good on a long-term intention to switch to our LLVM back-end by default

– C-based compilation is still available as an option

• Motivation:
– reduce burden of attempting to support all versions of all C compilers
– communicate Chapel semantics more directly to back-end than C permits
– leverage community investment in, and familiarity with, LLVM
– somewhat faster compilation times, on average
– attractive path for targeting GPUs

Status:
• A bit terrifying in the “what will users find in the field that we missed?” sense

– but so far, no major fires
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LLVM-BY-DEFAULT



Background:
• The traditional Chapel compiler is…

…slow (seconds to minutes)
…often difficult to understand, in the presence of errors
…not terribly well-architected: inflexible, challenging for new contributors to get started

• These largely reflect its history as a scrappy research project, by a small team, moving fast
This Effort:

• This release, kicked off an effort to massively rework it and address these lacks:
– faster / more flexible compilation: separate compilation, incremental recompilation, dynamic evaluation of code
– better user experience
– easier to contribute to

Status:
• parsing ~3/4 of Chapel features into the new internal representation (IR)

– converting user code down to traditional compiler’s IR and executing it

• first draft of resolution for types and calls
• code structure documented online:  https://chapel-lang.org/docs/main/developer/compiler-internals/index.html
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COMPILER REWORK: OFF TO A STRONG START

https://chapel-lang.org/docs/main/developer/compiler-internals/index.html


TARGETING GPUS WITH CHAPEL



A Sample GPU Computation, notionally:
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GPUS: NOTIONAL GOAL

on here.GPU {
var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

}



A Sample GPU Computation, as of Chapel 1.24:
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GPUS: SIX MONTHS AGO

extern {
#define FATBIN_FILE "chpl__gpu.fatbin"
double createFunction(){
fatbinBuffer = <read FATBIN_FILE into buffer>
cuModuleLoadData(&cudaModule, fatbinBuffer);
cuModuleGetFunction(&function, cudaModule,

"add_nums");}

}

pragma "codegen for GPU"
export proc add_nums(A: c_ptr(real(64))){
A[0] = A[0]+5;

}

var funcPtr = createFunction();
var A = [1, 2, 3, 4, 5];
__primitive("gpu kernel launch", funcPtr,      

<grid and block size>,…,
c_ptrTo(A), …);

writeln(A);

Read 
fat binary
and create a
CUDA 
function



A Sample GPU Computation, in Chapel 1.25:
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GPUS: TODAY

on here.getChild(1) {
var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

}



on here.getChild(1) {
var A, B, C: [1..n] real;
const alpha = 2.0;

forall b in B do b = 1.0;
forall c in C do c = 2.0;

forall a, b, c in zip(A, B, C) do
a = b + alpha * c;

}

HPCC Stream: very few changes needed to our typical Stream code to target GPUs
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GPUS: INITIAL PERFORMANCE STUDY



• Plenty of housecleaning, refactoring, streamlining, etc.
• Language design issues
• Support richer and more flexible styles of programming
• Support a richer model of memory and inter-device data transfers
• Support a wider variety of vendors
• Further performance analysis and optimization
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GPUS: NEXT STEPS

HPE PROPRIETARY



SUMMARY



Great progress since Chapel 1.24:
• Performance and portability improvements
• Chapel 2.0 stabilization, especially w.r.t. libraries
• Massive strides in GPU support
• Strong start on compiler revamp
• User support and community activity, including CHIUW 2021

Near-term priorities:
• Continue with, and accelerate, library stabilization for Chapel 2.0
• Continue efforts to target GPUs and revamp the compiler
• Ongoing user support and outreach
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SUMMARY



THANK YOU
https://chapel-lang.org
@ChapelLanguage


