
CHAPEL 1.25 RELEASE NOTES:
HIGHLIGHTS

Chapel Team
September 23, 2021

HIGHLIGHTS OF CHAPEL 1.25

• Chapel 2.0 / Language and Library Highlights
• Performance Improvements and Studies
• Compiler Improvements
• Targeting GPUs with Chapel
• Summary

CHAPEL 2.0 /
LANGUAGE AND LIBRARY HIGHLIGHTS

Background:
• Over the past few years, we have been working toward a forthcoming Chapel 2.0 release
• Intent: stop making backward-breaking changes to core language and library features

– thereafter, use semantic versioning to reflect if/when such changes are made

This Release:
• Major language-related fixes have largely wound down
• Primary remaining effort is on stabilizing the standard libraries

4

CHAPEL 2.0

‘foreach’ loops: express parallel loops that should be implemented by the current task
• help indicate opportunities for vectorization or GPU execution when a ‘forall’ loop’s tasks would be overkill

foreach i in 1..n do // assert that this loop is order-independent
a[i] = b[p[i]];

‘manage’ statements: support Python-like context management
• prioritized to support resizable collections of non-nilable classes

operators: prototyped in 1.24, now ready for use
• address an otherwise vague namespace issue

operator R.+(x: R, y: R) { … }

‘ArgumentParser’ package module: in support of richer command-line options than ‘config’ supports
• developed in support of the ‘mason’ package manager

other improvements: progress with interfaces, refinements to ranges, etc.
• done in support of Chapel 2.0, user feedback and requests

5

LANGUAGE / LIBRARY IMPROVEMENTS

• This represents the lion’s share of the remaining work for Chapel 2.0

6

STANDARD LIBRARY STABILIZATION
Bu

ilt
in

s
Ch

ap
el

 E
nv

H
ea

p
Li

st
M

ap
Se

t
Co

m
m

D
ia

g.
M

em
or

y
Fi

le
Sy

st
em

IO Pa
th

R
ef

le
ct

io
n

T
yp

es
Bi

gI
nt

eg
er

Bi
tO

ps
G

M
P

M
at

h
R

an
do

m
Ba

rr
ie

rs
D

yn
am

ic
Ite

rs
V

ec
to

riz
in

gI
te

ra
to

r
CP

tr
/

Sy
sC

T
yp

es
Sp

aw
n

Sy
s

Sy
sB

as
ic

Sy
sE

rr
or

D
at

eT
im

e
H

el
p

R
eg

ex
p

T
im

e
V

er
si

on
St

rin
g

/
By

te
s

R
an

ge
s

/
D

om
ai

ns
/

A
rr

ay
s

Sh
ar

ed
 /

 O
w

ne
d

Er
ro

rs

1.24

1.25

Stable Progress Review Started Not 2.0

PERFORMANCE IMPROVEMENTS AND
STUDIES

Primarily motivated by…
…user code, especially Arkouda
…targeting new platforms

– InfiniBand-based systems
– high core-count chips like AMD Rome
– large-memory nodes

8

SO MANY PERFORMANCE IMPROVEMENTS

COMPILER IMPROVEMENTS

Background:
• Traditionally, Chapel has generated C code as its “portable assembly”

– LLVM-based back-end was also available as an option

In Chapel 1.25:
• Finally made good on a long-term intention to switch to our LLVM back-end by default

– C-based compilation is still available as an option

• Motivation:
– reduce burden of attempting to support all versions of all C compilers
– communicate Chapel semantics more directly to back-end than C permits
– leverage community investment in, and familiarity with, LLVM
– somewhat faster compilation times, on average
– attractive path for targeting GPUs

Status:
• A bit terrifying in the “what will users find in the field that we missed?” sense

– but so far, no major fires

10

LLVM-BY-DEFAULT

Background:
• The traditional Chapel compiler is…

…slow (seconds to minutes)
…often difficult to understand, in the presence of errors
…not terribly well-architected: inflexible, challenging for new contributors to get started

• These largely reflect its history as a scrappy research project, by a small team, moving fast
This Effort:

• This release, kicked off an effort to massively rework it and address these lacks:
– faster / more flexible compilation: separate compilation, incremental recompilation, dynamic evaluation of code
– better user experience
– easier to contribute to

Status:
• parsing ~3/4 of Chapel features into the new internal representation (IR)

– converting user code down to traditional compiler’s IR and executing it

• first draft of resolution for types and calls
• code structure documented online: https://chapel-lang.org/docs/main/developer/compiler-internals/index.html

11

COMPILER REWORK: OFF TO A STRONG START

https://chapel-lang.org/docs/main/developer/compiler-internals/index.html

TARGETING GPUS WITH CHAPEL

A Sample GPU Computation, notionally:

13

GPUS: NOTIONAL GOAL

on here.GPU {
var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

}

A Sample GPU Computation, as of Chapel 1.24:

14

GPUS: SIX MONTHS AGO

extern {
#define FATBIN_FILE "chpl__gpu.fatbin"
double createFunction(){
fatbinBuffer = <read FATBIN_FILE into buffer>
cuModuleLoadData(&cudaModule, fatbinBuffer);
cuModuleGetFunction(&function, cudaModule,

"add_nums");}

}

pragma "codegen for GPU"
export proc add_nums(A: c_ptr(real(64))){
A[0] = A[0]+5;

}

var funcPtr = createFunction();
var A = [1, 2, 3, 4, 5];
__primitive("gpu kernel launch", funcPtr,

<grid and block size>,…,
c_ptrTo(A), …);

writeln(A);

Read
fat binary
and create a
CUDA
function

A Sample GPU Computation, in Chapel 1.25:

15

GPUS: TODAY

on here.getChild(1) {
var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

}

on here.getChild(1) {
var A, B, C: [1..n] real;
const alpha = 2.0;

forall b in B do b = 1.0;
forall c in C do c = 2.0;

forall a, b, c in zip(A, B, C) do
a = b + alpha * c;

}

HPCC Stream: very few changes needed to our typical Stream code to target GPUs

16

GPUS: INITIAL PERFORMANCE STUDY

• Plenty of housecleaning, refactoring, streamlining, etc.
• Language design issues
• Support richer and more flexible styles of programming
• Support a richer model of memory and inter-device data transfers
• Support a wider variety of vendors
• Further performance analysis and optimization

17

GPUS: NEXT STEPS

HPE PROPRIETARY

SUMMARY

Great progress since Chapel 1.24:
• Performance and portability improvements
• Chapel 2.0 stabilization, especially w.r.t. libraries
• Massive strides in GPU support
• Strong start on compiler revamp
• User support and community activity, including CHIUW 2021

Near-term priorities:
• Continue with, and accelerate, library stabilization for Chapel 2.0
• Continue efforts to target GPUs and revamp the compiler
• Ongoing user support and outreach

19

SUMMARY

THANK YOU
https://chapel-lang.org
@ChapelLanguage

