HIGHLI c

Chapel Team
September 23, 2021

» ‘ %

’.‘.- < =
“ . Yo 3 '\
ORI 3 S

e Chapel 2.0 / Language and Library Highlights

e Performance Improvements and Studies

o Compiler Imprévemen’rs
e Targeting GPUs with Chapel

e Summary; . 7~ SN

& 4
"ﬁ. :p: . 5'(»
7

- -

CHAPEL 2.
LANGUAG

&

- » ~ . N -
\ w
’ ,'.\ . ™
-~ = ~
o s .
4 o <t
' \ " N N
N ~ N
L V ™~ ,.__‘r\
e ‘.\ - N
: -

- X £~ 3 ~ -
Y » -~ \ -
* . e

\ P _ ~

CHAPEL 2.0

Background:

« Over the past few years, we have been working toward a forthcoming Chapel 2.0 release

« Infent: stop making backward-breaking changes to core language and library features
—thereafter, use semantic versioning to reflect if/when such changes are made

This Release:

« Major language-related fixes have largely wound down
« Primary remaining effort is on stabilizing the standard libraries

4

LANGUAGE / LIBRARY IMPROVEMENTS

‘foreach’ loops: express parallel loops that should be implemented by the current task
 help indicate opportunities for vectorization or GPU execution when a “forall’ loop’s tasks would be overkill

foreach i in 1..n do //assertthat thisloop is order-independent
ali] = blpli]];

‘manage’ statements: support Python-like context management
« prioritized to support resizable collections of non-nilable classes

operators: prototyped in 1.24, now ready for use

» address an otherwise vague namespace issue
operator R.+(x: R, y: R) { ..}

‘ArgumentParser’ package module: in support of richer command-line options than ‘config’ supports
« developed in support of the ‘mason’ package manager

other improvements: progress with interfaces, refinements to ranges, etc.
o done in support of Chapel 2.0, user feedback and requests

—

5

STANDARD LIBRARY STABILIZATION

e This represents the lion’s share of the remaining work for Chapel 2.0

Sl10413
paumQ / paJeys
sAely /sulewoq / sebuey
salAg / bulils
UOISISA

oWl |

dxabay

disH

awl | aje
10113SAS
o1segsAs

SAS

umeds
sadA] DSAS / 1idD
101e131|BUIZII0LDD A
SJal|diweuAq
slalleg

wopuey

UieN

dNO

sdo4ig
1abatu|big

sadA |

UO1139]}9y

yied

Ol

WalsASo|I
AJOWBSIN
‘Beigquiwo)

13S

den

s

deaH

AU3g |odeyd
sulljing

R
n
o
i

B Not 2.0

Review Started

Progress

Stable

4

- » ~ . N -
\ w
’ ,'.\ 3 ™
-~ = ~
o s .
4 o <t
' \ " N N
\ — N
L V ™~ ,.__‘r\
e ‘.\ - N
: -

- X £~ 3 ~ -
Y » -~ \ -
* . e

\ P _ ~

SO MANY PERFORMANCE IMPROVEMENTS

Primarily motivated by...

...user code, especially Arkouda
...fargeting new platforms
—InfiniBand-based systems

—high core-count chips like AMD Rome
—large-memory nodes

0.6

0.5

——1 BEFORE
6l AFTER

Time (s)

1 2 4 8 16 32 64 128
Threads

LLNL CoMD Time (sec)

0.4

0.3

Time (seconds)

0.2

0.1

0
01Aug

02 Aug 03 Aug 04 Aug 05 Aug 06 Aug 07 Aug

—

Performance (GiB/s)

Performance (MB/s per node)

Groupby Performance

8=
~
\ »
\ Y
N\ e S O O s 2
6=
==
\ L
\ y
e N ”
4
2 S - -
0

3.5

25

26 Aug 28 Aug 30 Aug 01 Sep 03 Sep 05 Sep 07 Sep

Bale: Indexgather Perf (MB/s per node)

25 Jul 01 Aug 08 Aug 15 Aug 22 Aug 29 Aug 05 Sep 12 Sep

Time (seconds) GiB/s

Performance (MB/s per node)

Arkouda Gather Performance
HPE Apollo (HDR-100 IB) -- 8 GiB arrays

™ chpl serialized poll
. chpl1.24.1

—_—
—_— e T

Locales (x 112 cores / locale)

16-node allLocalesBarrier (100,000 trials)

70
60
50
40
30
20

10

]
InfiniBand Aries

ml24 2125

Bale: Aggregated Indexgather Perf (MB/s per node)
1200

1000 '

800
600
400

200

0l

Jul 2021 Aug 2021 Sep 2021

&

\
D -(|
) | :
4 ; 2 |
s { ‘ -
B F NN
A , |
: p
4

LLVM-BY-DEFAULT

Background:

« Traditionally, Chapel has generated C code as its “portable assembly”
- LLVM-based back-end was also available as an option

In Chapel 1.25:

 Finally made good on a long-term intention to switch to our LLVM back-end by default
— C-based compilation is still available as an option

« Motivation:
—reduce burden of attempting to support all versions of all C compilers
—communicate Chapel semantics more directly to back-end than C permits
—leverage community investment in, and familiarity with, LLVM
- somewhat faster compilation times, on average
—attractive path for targeting GPUs

Status:

« A bif terrifying in the “what will users find in the field that we missed?” sense
—but so far, no major fires

—

10

COMPILER REWORK: OFF TO A STRONG START

Background:

o The traditional Chapel compiler is...
...slow (seconds to minutes)
...often difficult to understand, in the presence of errors

...not terribly well-architected: inflexible, challenging for new contributors to get started
« These largely reflect its history as a scrappy research project, by a small feam, moving fast

This Effort:

o This release, kicked off an effort to massively rework it and address these lacks:
—faster / more flexible compilation: separate compilation, incremental recompilation, dynamic evaluation of code

— better user experience
— easier to contribute to

Status:

o parsing ~3/4 of Chapel features into the new infternal representation (IR)
—converting user code down to traditional compiler’s IR and executing it
o first draft of resolution for types and calls

Chapel Documentation

Best Practices for Contributors

© Compiler Library APl Docs

» Docs for Contributors » Compiler Library APl Docs

Compiler Library API Docs
This section documents the various functions and types of the new compiler.

Symbols by Namespace

« code structure documented online: https://chapel-lang.org/docs/main/developer/compiler-internals/index.html

—

11

https://chapel-lang.org/docs/main/developer/compiler-internals/index.html

- o D

/ITH CHAPEL .

-

A AR
T e
4“

&

- » ~ . N -
\ w
’ ,'.\ 3 ™
-~ = ~
o s .
4 o <t
' \ " N N
N ~ N
L V ™~ ,.__‘r\
e ‘.\ - N
: -

- X £~ 3 ~ -
Y » -~ \ -
* . e

\ P _ ~

GPUS: NOTIONAL GOAL

A Sample GPU Computation, notionally:

on here.GPU {

var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

— .

GPUS: SIX MONTHS AGO

A Sample GPU Computation, as of Chapel 1.24:

pragma '"codegen for GPU"

export proc add nums (A: c ptr(real(64))) {
A[O0] = A[0]+5;

}

var funcPtr = createFunction();

var A = [1, 2, 3, 4, 51;

__primitive ("gpu kernel launch", funcPtr,

<grid and block size>,..,
c ptrTo(A), ..);
writeln (A) ;

extern {
#define FATBIN FILE "chpl gpu.fatbin"
double createFunction () { Read
fatbinBuffer = <read FATBIN FILE into buffer> faTtﬂnary
cuModuleloadData (&cudaModule, fatbinBuffer); and create a
cuModuleGetFunction (&function, cudaModule, CUDA
"add_nums®) ; J function
}

GPUS: TODAY

A Sample GPU Computation, in Chapel 1.25:

on here.getChild (1) {

var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

— .

GPUS: INITIAL PERFORMANCE STUDY

HPCC Stream: very few changes needed to our typical Stream code to target GPUs

on here.getChild (1) { Stream
var A, B, C: [l..n] PSS N ——— @
const alpha = 2.0;

400

forall b in B do b

—— -
forall ¢ in C do c forall-based

—&— foreach-based
-%- C+CUDA

32 64 128 256 512
Number of Elements (M)

Better

Throughput
(GB/s)
N
3

forall a, b, ¢ in zip (A, B,
= b + alpha * c;

— .

GPUS: NEXT STEPS

e Plenty of housecleaning, refactoring, streamlining, etc.

e Language design issues

e Support richer and more flexible styles of programming

e Support a richer model of memory and inter-device data fransfers
e Support a wider variety of vendors

e Further performance analysis and optimization

: HPE PROPRIETARY | 17

SUMMARY

Great progress since Chapel 1.24:

o Performance and portability improvements
Chapel 2.0 stabilization, especially w.r.t. libraries

Massive strides in GPU support
Strong start on compiler revamp

User support and community activity, including CHIUW 2021

Near-term priorities:
« Continue with, and accelerate, library stabilization for Chapel 2.0
« Continue efforts to target GPUs and revamp the compiler
« Ongoing user support and outreach

19

¥
A
A

