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e Chapel 2.0 / Language and Library Highlights

e Performance Improvements and Studies

o Compiler Imprévemen’rs
e Targeting GPUs with Chapel
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CHAPEL 2.0

Background:

« Over the past few years, we have been working toward a forthcoming Chapel 2.0 release

« Infent: stop making backward-breaking changes to core language and library features
—thereafter, use semantic versioning to reflect if/when such changes are made

This Release:

« Major language-related fixes have largely wound down
« Primary remaining effort is on stabilizing the standard libraries
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LANGUAGE / LIBRARY IMPROVEMENTS

‘foreach’ loops: express parallel loops that should be implemented by the current task
 help indicate opportunities for vectorization or GPU execution when a “forall’ loop’s tasks would be overkill

foreach i in 1..n do //assertthat thisloop is order-independent
ali] = blpli]];

‘manage’ statements: support Python-like context management
« prioritized to support resizable collections of non-nilable classes

operators: prototyped in 1.24, now ready for use

» address an otherwise vague namespace issue
operator R.+(x: R, y: R) { ..}

‘ArgumentParser’ package module: in support of richer command-line options than ‘config’ supports
« developed in support of the ‘mason’ package manager

other improvements: progress with interfaces, refinements to ranges, etc.
o done in support of Chapel 2.0, user feedback and requests

—
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STANDARD LIBRARY STABILIZATION

e This represents the lion’s share of the remaining work for Chapel 2.0
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SO MANY PERFORMANCE IMPROVEMENTS

Primarily motivated by...

...user code, especially Arkouda
...fargeting new platforms
—InfiniBand-based systems

—high core-count chips like AMD Rome
—large-memory nodes
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LLVM-BY-DEFAULT

Background:

« Traditionally, Chapel has generated C code as its “portable assembly”
- LLVM-based back-end was also available as an option

In Chapel 1.25:

 Finally made good on a long-term intention to switch to our LLVM back-end by default
— C-based compilation is still available as an option

« Motivation:
—reduce burden of attempting to support all versions of all C compilers
—communicate Chapel semantics more directly to back-end than C permits
—leverage community investment in, and familiarity with, LLVM
- somewhat faster compilation times, on average
—attractive path for targeting GPUs

Status:

« A bif terrifying in the “what will users find in the field that we missed?” sense
—but so far, no major fires

—
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COMPILER REWORK: OFF TO A STRONG START

Background:

o The traditional Chapel compiler is...
...slow (seconds to minutes)
...often difficult to understand, in the presence of errors

...not terribly well-architected: inflexible, challenging for new contributors to get started
« These largely reflect its history as a scrappy research project, by a small feam, moving fast

This Effort:

o This release, kicked off an effort to massively rework it and address these lacks:
—faster / more flexible compilation: separate compilation, incremental recompilation, dynamic evaluation of code

— better user experience
— easier to contribute to

Status:

o parsing ~3/4 of Chapel features into the new infternal representation (IR)
—converting user code down to traditional compiler’s IR and executing it
o first draft of resolution for types and calls

# Chapel Documentation

Best Practices for Contributors

© Compiler Library APl Docs

# » Docs for Contributors » Compiler Library APl Docs

Compiler Library API Docs
This section documents the various functions and types of the new compiler.

Symbols by Namespace

« code structure documented online: https://chapel-lang.org/docs/main/developer/compiler-internals/index.html

—
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https://chapel-lang.org/docs/main/developer/compiler-internals/index.html
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GPUS: NOTIONAL GOAL

A Sample GPU Computation, notionally:

on here.GPU {

var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

— .



GPUS: SIX MONTHS AGO

A Sample GPU Computation, as of Chapel 1.24:

pragma '"codegen for GPU"

export proc add nums (A: c ptr(real(64))) {
A[O0] = A[0]+5;

}

var funcPtr = createFunction();

var A = [1, 2, 3, 4, 51;

__primitive ("gpu kernel launch", funcPtr,

<grid and block size>,..,
c ptrTo(A), ..);
writeln (A) ;

extern {
#define FATBIN FILE "chpl gpu.fatbin"
double createFunction () { Read
fatbinBuffer = <read FATBIN FILE into buffer> faTtﬂnary
cuModuleloadData (&cudaModule, fatbinBuffer); and create a
cuModuleGetFunction (&function, cudaModule, CUDA
"add_nums®) ; J function
}



GPUS: TODAY

A Sample GPU Computation, in Chapel 1.25:

on here.getChild (1) {

var A = [1, 2, 3, 4, 5];
forall a in A do
a += 5;

— .



GPUS: INITIAL PERFORMANCE STUDY

HPCC Stream: very few changes needed to our typical Stream code to target GPUs

on here.getChild (1) { Stream
var A, B, C: [l..n] PSS N ——— @
const alpha = 2.0;

400

forall b in B do b

—— -
forall ¢ in C do c forall-based

—&— foreach-based
-%- C+CUDA
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forall a, b, ¢ in zip (A, B,
= b + alpha * c;
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GPUS: NEXT STEPS

e Plenty of housecleaning, refactoring, streamlining, etc.

e Language design issues

e Support richer and more flexible styles of programming

e Support a richer model of memory and inter-device data fransfers
e Support a wider variety of vendors

e Further performance analysis and optimization

: HPE PROPRIETARY | 17






SUMMARY

Great progress since Chapel 1.24:

o Performance and portability improvements
Chapel 2.0 stabilization, especially w.r.t. libraries

Massive strides in GPU support
Strong start on compiler revamp

User support and community activity, including CHIUW 2021

Near-term priorities:
« Continue with, and accelerate, library stabilization for Chapel 2.0
« Continue efforts to target GPUs and revamp the compiler
« Ongoing user support and outreach
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