
CHAPEL 1.24.1 RELEASE NOTES:
ONGOING EFFORTS: FCFS AND CLOSURES

Chapel Team
April 15, 2021

Background

• Chapel’s current support for first-class functions and closures was drafted by a 2010 summer intern
• Features have received only slight amounts of attention since then
• Works surprisingly well, given the level of effort
• That said…

– line between what works and what doesn’t is often unclear
– documentation is poor
– syntactic choices aren’t universally beloved

• Users ask about these features reasonably often
• And arguably moreso in recent years

• This slide deck captures where we are today, and considers options for going forward

2

FIRST-CLASS FUNCTIONS AND CLOSURES

Background: Defining Terms

• First-class functions (FCFs) are functions that can be passed around like any other value

• A closure is a first-class function that captures one or more outer variables

• Capturing is the process of storing one or more outer variables to use later (by reference or value)

• An outer variable is any variable defined outside the scope of a function, that is not global

3

FIRST-CLASS FUNCTIONS AND CLOSURES

Background: Nested Functions and Capturing

• Chapel provides support for writing nested functions that can capture outer variables
• Nested functions that capture are not considered closures

– Unlike FCFs, they cannot escape the scope in which they were defined

proc f() {
var x = 5;
proc g() {

writeln(x); // Here ‘x’ refers to an outer variable defined in ‘f’
// This reference is safe because ‘g’ cannot escape the scope of ‘f’

}
g(); // Prints ‘5’

}
f();

4

FIRST-CLASS FUNCTIONS AND CLOSURES

Background: First-Class Functions

• Chapel provides support for treating functions as first-class values
• Referred to as first-class functions (FCFs)

proc foo(x: int, y: int) { return x + y; }
// Create a variable ‘fn’ that refers to the function ‘foo’

var fn = foo;
writeln(fn(1, 2));

• Chapel supports constructing FCFs from anonymous functions via the ‘lambda’ keyword
// Here ‘fn’ refers to an anonymous function

var fn = lambda(x: int, y: int) { return x + y; };
writeln(fn(1, 2));

• Function types can be constructed via use of the ‘func’ keyword
// The type of a function that takes two ints and returns an int

type t = func(int, int, int);

5

FIRST-CLASS FUNCTIONS AND CLOSURES

Background: Closures

• Chapel does not currently support the creation of closures
• A closure is a FCF that captures one or more outer variables

– The below program does not work today
proc main() {

var x = 5;

proc g1() { writeln(x); }

var fn1 = g1; // This way of creating a closure breaks today
fn1();

var fn2 = lambda() { writeln(x); }; // This way also breaks

fn2();
}

6

FIRST-CLASS FUNCTIONS AND CLOSURES

Why Add Support for Closures?

• Closures make certain patterns easier to write, such as ‘update()’ calls for ‘list’ and ‘map’
• Recall that ‘map.update()’ provides a parallel-safe way to update an element in a map

record myUpdater {
var x: int;
proc this(const ref k, ref v) { v = x; }

}
var m: map(int, int);
m.add(0, 0);
var x = 5; // Imagine ‘x’ is some expensive computation
m.update(0, new myUpdater(x)); // Update ‘m[0]’ to the value ‘5’

• With support for closures, a lambda could be used instead of a record, reducing boilerplate
var x = 5;
m.update(0, lambda(k: int, ref v: int) {

v = x;
});

7

FIRST-CLASS FUNCTIONS AND CLOSURES

This Effort

• Explore improvements to nested functions, FCFs, and support for closures
• Propose some possible answers to the following questions:

– Should we change the syntax for constructing anonymous functions?
– Should we change the syntax for expressing the type of a function?
– How should nested functions capture outer variables?
– How should closures capture outer variables?
– What happens to the outer variables of a closure when it is returned?
– Should closures with generic arguments be supported?
– Should we allow the argument types of anonymous functions to be omitted?

8

FIRST-CLASS FUNCTIONS AND CLOSURES

Syntax for Anonymous FCFs

• Should we change the syntax for constructing anonymous functions?
• Currently they are constructed using the ‘lambda’ keyword

var fn = lambda(x: int, y: int) {
return x + y;

};

• One option is to replace ‘lambda’ with a different existing keyword such as ‘proc’
var fn = proc(x: int, y: int) {

return x + y;
};

• Another option is to replace ‘lambda’ with new syntax, for example:
var fn = |x: int, y: int| {

return x + y;
};

9

FIRST-CLASS FUNCTIONS AND CLOSURES

Syntax for the Type of a Function

• Should we change the syntax for constructing the type of a function?
• Currently they are constructed using the ‘func’ keyword

// The type of a function that takes two ints and returns an int

type t = func(int, int, int);

• Function types could be expressed in a manner like function declaration
// The type of a function that takes two ints and returns an int

type t = proc(int, int): int;

• Or a more functional style of syntax could be introduced, for example:
// The type of a function that takes two ints and returns an int

type t = (int, int) -> int;

10

FIRST-CLASS FUNCTIONS AND CLOSURES

Capturing Non-Local Variables in Nested Functions

• Currently, nested functions capture outer variables by reference
proc foo() {

var x = 5;
proc bar() { writeln(x); }
x = 6;
bar();

}
foo(); // Prints ‘6’

• Non-local variables could be captured by default-intent instead
• The above would print ‘5’, because the default intent of ’int’ is ‘const in’

• Non-local variables could also be captured by value
• Though this is probably not the behavior we want

11

FIRST-CLASS FUNCTIONS AND CLOSURES

Capturing Non-Local Variables in Closures

• How should a closure capture outer variables?
• Recall that a closure is a FCF that refers to one or more outer variables

proc foo() {
var a = 5;
var fn = lambda() { writeln(a); }
a += 1;
fn(); // Should this print 5, or 6?

}

• Some possible options:
• Non-local variables will always be captured by reference
• Non-local variables will always be captured by value
• Non-local variables will always be captured by default-intent
• The user can use syntax to specify whether to capture by reference or by value

12

FIRST-CLASS FUNCTIONS AND CLOSURES

Option 1: Always Capture by Reference

• Non-local variables will always be captured by reference
proc foo() {

var a = 5;
// The lambda will capture ‘a’ by reference
var fn = lambda() { writeln(a); }
a += 1;
fn(); // Prints ‘6’

}

• Care must be taken when a closure escapes the scope where it is created
• Or else captured variables may refer to deallocated memory
• We will discuss this more soon

13

FIRST-CLASS FUNCTIONS AND CLOSURES

Option 2: Always Capture by Value

• Non-local variables will always be captured by value
proc foo() {

var a = 5;
// The lambda will capture ‘a’ by value
var fn = lambda() { writeln(a); }
a += 1;
fn(); // Prints ‘5’

}

• An expensive approach for large arrays / records

14

FIRST-CLASS FUNCTIONS AND CLOSURES

Option 3: Capture by Default-Intent

• Non-local variables will always be captured by default-intent
proc foo() {

var a = 5;
// Capturing a FCF by ‘ref’ could make it capture by reference
var fn = lambda() { writeln(a); }
a += 1;
fn(); // Prints ‘5’

}

• The default-intent of ‘int’ is ‘const in’, so ‘a’ would be captured by value
• Small types can be copied for convenience

15

FIRST-CLASS FUNCTIONS AND CLOSURES

Option 4: User Chooses Capture Mode

• The user can use syntax to specify the capture mode, for example:
proc foo() {

var a = 5;
// Creating a FCF with ‘ref’ could make it capture by reference
var fn = ref lambda=() { writeln(a); }
a += 1;
fn(); // Prints ‘6’

}

proc foo() {
var a = 5;
// Creating a FCF with ‘var’ could make it capture by value

var fn = var lambda() { writeln(a); }
a += 1;
fn(); // Prints ‘5’

}

16

FIRST-CLASS FUNCTIONS AND CLOSURES

What About C++ and Rust?

• In C++, the capture mode can be specified via syntax such as ‘[=]’ (which copies)

int x = 5;
auto fn = [=] { std::cout << x << std::endl; }; // Move a copy of ‘x’ into ‘func’

x = 6;
fn(); // Prints ‘5’

• In Rust, a captured variable may be borrowed, copied, or moved

let mut x = 5;
let func = move || { println!("{}", x); }; // Move a copy of ‘x’ into ‘func’

x = 6;
func(); // Prints ‘5’

println!("{}", x); // Prints ‘6’

17

FIRST-CLASS FUNCTIONS AND CLOSURES

Returning Closures

• What should happen to the outer variables of a closure when it is returned?
• If ‘y’ is still captured by reference after ‘foo()’ returns, it will refer to invalid memory locations

proc foo() {
var y = 5;
return lambda() { writeln(y); };

}
var fn = foo(); // What about the write of ‘y’ in ‘fn’?

• Some possible options:
• Prohibit returning closures that capture outer variables by reference
• On return, implicitly convert to a new closure that captures all outer variables by value
• Migrate outer variables to the heap, with a reference count

18

FIRST-CLASS FUNCTIONS AND CLOSURES

Option 1: Prohibit Returning Closures that Capture by Reference

• One option is to prohibit returning closures that capture outer variables by reference

proc foo() {
var y = 5;
return lambda() { writeln(y); }; // Error: cannot return lambda that refers to outer variable ‘y’

}

19

FIRST-CLASS FUNCTIONS AND CLOSURES

Option 2: Convert to a New Closure That Captures by Value

• Another option is to convert to a new closure that captures all outer variables by value

proc test() {
var y = 5;

proc foo() {
// When the closure is returned, the value of ‘y’ is saved

return lambda() { writeln(y); }
}

var fn = foo();
y = 6;

fn(); // Prints ‘5’

}

20

FIRST-CLASS FUNCTIONS AND CLOSURES

Option 3: Migrate Outer Variables to the Heap

• Another option is migrating all outer variables to the heap, with a reference count
• This ensures that outer variables will outlive the scope that created them

proc foo() {
var y = 5;
// Create two closures that both print ‘y’. The first closure increments ’y’

var fn1 = lambda() { writeln(y); y += 1; };
var fn2 = lambda() { writeln(y); };
// Because the closures are returned, the compiler stores ‘y’ on the heap rather than the stack

return (fn1, fn2);
}
{

var (fn1, fn2) = foo();

fn1(); // Prints ‘5’
fn2(); // Prints ‘6’

} // ‘y’ is freed here since ‘fn1’ and ‘fn2’ have left scope

21

FIRST-CLASS FUNCTIONS AND CLOSURES

Capture Rules May Apply to Other Constructs

• The capture rules that are chosen may apply to other constructs as well
• Consider the following situation in which we define a function object

proc foo() {
var y = 5;

record r {
proc this() { writeln(y); } // Here ’y’ may be captured, or this could be an error

}

return new r();
}

var r1 = foo();
r1(); // What this prints depends on the capture rules we choose, if we allow it at all

22

FIRST-CLASS FUNCTIONS AND CLOSURES

Supporting FCFs with Generic Arguments

• Currently, FCFs must specify an explicit type for each formal argument
proc foo(a) { writeln(a); }
var fn = foo; // Error: cannot refer to generic function ‘foo’ by value

• Should we support FCFs with generic formal arguments?
proc foo(a) { writeln(a); }
var fn = foo;
fn(1); // Prints ‘1’

23

FIRST-CLASS FUNCTIONS AND CLOSURES

Omitting Argument Types of Anonymous Functions

• Currently, anonymous ‘lambda’ functions must specify the type of every argument
var fn = lambda(x) { writeln(x); }; // Error: cannot capture generic lambda

• Should we allow the argument types of anonymous functions to be omitted?
• This could be done even if we decide not to support creating generic FCFs

• Anonymous functions often appear inline
• Which makes explicit argument types feel like boilerplate

• It would be nice if argument types could be omitted as a syntactic convenience
var fn = lambda(x) { writeln(x); };
fn(1); // Prints ‘1’

24

FIRST-CLASS FUNCTIONS AND CLOSURES

Omitting Argument Types for Closures in Rust

• In Rust, the types of closure arguments may be omitted
• If the closure is being returned, the returning function must declare an explicit return type
• The type of the closure is made concrete the first time it is called

– Cannot call the closure again using arguments of different types
let func = | x | { println!("{}", x); };
func(1);
func(“1”); // Error: expected integer, found `&str`

• This design would differ from the current rules Chapel uses to instantiate generic functions
• Today, a concrete function would be instantiated for each combination of argument types

• We could adjust the rules for anonymous functions to mimic Rust as a syntactic convenience
• Would this cause too much confusion?

25

FIRST-CLASS FUNCTIONS AND CLOSURES

Status, Next Steps

Status: Discussion about capturing rules, FCFs, and closures is still at an early stage

Next Steps:
• Continue to study how other languages implement capturing rules and closures
• Identify which of the features discussed are most important to users
• Reach agreement within the team

26

FIRST-CLASS FUNCTIONS AND CLOSURES

THANK YOU
https://chapel-lang.org
@ChapelLanguage

