
CHAPEL 1.24.1 RELEASE NOTES: 
INFINIBAND OPTIMIZATIONS

Chapel Team
April 15, 2021



Background

• Historically, we have focused primarily on improving performance for Cray networks
• Intent was to ensure we had the right language features/semantics first, then prioritize other networks

• Recently, we have been focusing on improving performance for InfiniBand (IB) networks
• We use the GASNet communication library with the ibv conduit to target InfiniBand (gasnet-ibv)

2

INFINIBAND 



Background

• Memory must be registered with the network in order to do one-sided GETs/PUTs (RDMA)
• gasnet-ibv supports two registration modes:

– Static: All memory is registered at startup—fast communication, but hurts NUMA affinity and leads to long startup times
– Dynamic: Memory is registered at communication time—can add overhead, but good NUMA affinity and fast startup

• Chapel defaults to dynamic registration to get good NUMA affinity and fast startup times
• We believe this is the right choice for most users getting started

– Have recommended static registration to some users with certain communication-heavy idioms

• Ideally, we just want to have one mode with no, or few, downsides

• Late in the 1.24 release cycle, we identified some pre-existing performance issues on InfiniBand at scale
• Diagnosed the root causes, leading to improvements for both static and dynamic registration

– These improvements motivated April’s 1.24.1 release

3

INFINIBAND OPTIMIZATIONS



INFINIBAND STATIC REGISTRATION 
IMPROVEMENTS



Background and This Effort

Background: Registration will fault memory in if it hasn’t been already
• gasnet-ibv static registration is a serial operation, which meant fault-in was serial

– This was slow and resulted in poor NUMA affinity 
– In practice when allocating memory, the allocation would live on a single NUMA domain, limiting memory bandwidth

This Effort: Parallelize and interleave memory fault-in prior to registration
• Interleaving improves memory bandwidth by spreading memory accesses across NUMA domains
• Parallelizing speeds up fault-in time

5

INFINIBAND STATIC REGISTRATION



Impact

• Improved performance for NUMA-sensitive codes under static registration (gn-ibv-fast)

6

INFINIBAND STATIC REGISTRATION



Impact

• Faster startup time

• Startup time is faster than before, but still linear with respect to the amount of memory
• On nodes with 1 TB of memory, startup takes ~60 seconds

– Most of this time is spent registering memory, not faulting it in
– May be able to improve this, though static registration will always have more startup overhead compared to dynamic

7

INFINIBAND STATIC REGISTRATION



INFINIBAND DYNAMIC REGISTRATION 
IMPROVEMENTS



Background and This Effort

Background: gasnet-ibv dynamic registration only registers memory at communication time
• Results in fast startup, but registration cost can limit communication performance
• NUMA affinity is based on user first-touch rather than as a side-effect of registration
• Requires tracking which memory regions are currently registered

This Effort: Identified bottleneck in registration tracking code that limited performance and scalability
• Core issue was that we were running out of dynamic registration entries

– Number of entries was hard-coded to what older generation networks could support

• Collaborated with the GASNet team to resolve this issue
– Number of entries is now based on execution-time query of hardware capabilities

9

INFINIBAND DYNAMIC REGISTRATION



Impact

• Significant performance improvements for codes with large point-to-point communication patterns

10

INFINIBAND DYNAMIC REGISTRATION



Impact

• Significant performance improvements for codes with all-to-all communication patterns

11

INFINIBAND DYNAMIC REGISTRATION



Impact

• Significant performance improvements for Arkouda

12

INFINIBAND DYNAMIC REGISTRATION



Next Steps

• Explore ways to speed up static registration, possibly by parallelizing it
• Consider supporting a mode that runs a process per NUMA domain

• Continue to improve dynamic registration performance
• ISx and some other communication-intensive applications still lag behind static registration

• Look at using On-Demand-Paging (ODP) as an alternative registration mechanism
• Hardware/firmware takes care of registration on-demand rather than tracking in software
• Current prototype hangs

– Needs more investigation and collaboration with the GASNet team

• Investigate experimental ucx conduit
• Unified Communication X (UCX) is likely the future for targeting InfiniBand with GASNet
• We have done preliminary testing and want to track ucx as upstream support becomes more stable

13

INFINIBAND OPTIMIZATIONS



THANK YOU
https://chapel-lang.org
@ChapelLanguage


