Hewlett Packard
Enterprise

CHAPEL 1.24.1 RELEASE NOTES:
INFINIBAND OPTIMIZATIONS

Chapel Team
April 15,2021



INFINIBAND
Background

e Historically, we have focused primarily on improving performance for Cray networks
 Intent was to ensure we had the right language features/semantics first, then prioritize other networks

e Recently, we have been focusing on improving performance for InfiniBand (IB) networks
e We use the GASNet communication library with the ibv conduit to target InfiniBand (gasnet-ibv)

2



INFINIBAND OPTIMIZATIONS
Background

e Memory must be registered with the network in order to do one-sided GETs/PUTs (RDMA)

« gasnet-ibv supports two registration modes:
— Static: All memory is registered at startup—fast communication, but hurts NUMA affinity and leads to long startup times
—Dynamic: Memory is registered at communication time—can add overhead, but good NUMA affinity and fast startup

e Chapel defaults to dynamic registration to get good NUMA affinity and fast startup times

« We believe this is the right choice for most users getting started
- Have recommended static registration to some users with certain communication-heavy idioms
e Ideally, we just want to have one mode with no, or few, downsides

e Late in the 1.24 release cycle, we identified some pre-existing performance issues on InfiniBand at scale
« Diagnosed the root causes, leading to improvements for both static and dynamic registration
— These improvements motivated April's 1.24.1 release

— o



INFINIBAND STATIC REGISTRATION
IMPROVEMENTS

e =0



INFINIBAND STATIC REGISTRATION
Background and This Effort

Background: Registration will fault memory in if it hasn’t been already

« gasnet-ibv static registration is a serial operation, which meant fault-in was serial

— This was slow and resulted in poor NUMA affinity
—In practice when allocating memory, the allocation would live on a single NUMA domain, limiting memory bandwidth

This Effort: Parallelize and interleave memory fault-in prior to registration
e Interleaving improves memory bandwidth by spreading memory accesses across NUMA domains
 Parallelizing speeds up fault-in time



INFINIBAND STATIC REGISTRATION

Impact

e Improved performance for NUMA-sensitive codes under static registration (gn-ibv-fast)

HPCC: Global STREAM Perf (GB/s) - n=5,723,827,200 — global stream GB/s (gn-ibv-large)
-- global stream GB/s (gn-ibv-fast)

2500
@ 2000
e}
e
8 1500 S
é T
= 1000 - - _—
2
3]
o 500

0

14 Mar 15 Mar 16 Mar 17 Mar 18 Mar 19 Mar 20 Mar 21 Mar

NPB: FT Perf (Mflops/s) - size D — prim-comm ft MFlop/s (gn-ibv-large)
-~ prim-comm ft MFlop/s (gn-ibv-fast)
500000 -~ ft MFlop/s (gn-ibv-fast)
e T TTTTTTTT T — ft MFlop/s (gn-ibv-large)

400000 ==—="="TTTTTTTmmsmoos -
@ 300000
[72]
Q
kel
S 200000

100000

0

14 Mar 15 Mar 16 Mar 17 Mar 18 Mar 19 Mar 20 Mar 21 Mar

—



INFINIBAND STATIC REGISTRATION
Impact

e Faster startup time

no-op (non-user code startup time) - ::::Eg ::mz gg:::gz:lf:f;)e)

40
30

20

Time (seconds)

10

_______________________________

0
14 Mar 15 Mar 16 Mar 17 Mar 18 Mar 19 Mar 20 Mar 21 Mar

e Startup time is faster than before, but still linear with respect to the amount of memory

e On nodes with 1 TB of memory, starfup takes ~60 seconds
—Most of this time is spent registering memory, not faulting it in
—May be able to improve this, though static registration will always have more startup overhead compared to dynamic

—



INFINIBAND DYNAMIC REGISTRATION
IMPROVEMENTS

R



INFINIBAND DYNAMIC REGISTRATION
Background and This Effort

Background: gasnet-ibv dynamic registration only registers memory at communication time
e Results in fast startup, but registration cost can limit communication performance
« NUMA affinity is based on user first-touch rather than as a side-effect of registration
« Requires tracking which memory regions are currently registered

This Effort: Identified bottleneck in registration tracking code that limited performance and scalability
o Core issue was that we were running out of dynamic registration entries
—Number of entries was hard-coded to what older generation networks could support

o Collaborated with the GASNet team to resolve this issue
—Number of entries is now based on execution-time query of hardware capabilities



INFINIBAND DYNAMIC REGISTRATION

Impact

» Significant performance improvements for codes with large point-to-point communication patterns

Large Array GET Performance

--1G array (gn-ibv-fast)
— 1G array (gn-ibv-large)

14000 N --1M array (gn-ibv-fast)
12000 o= e N — 1M array (gn-ibv-large)
e SE=fs————===-——=========——-----= --1/4 mem array (gn-ibv-fast)
g 10000 — 1/4 mem array (gn-ibv-large)
=3
< 8000
o
5 6000
E
€ 4000
(]
[od
2000
0
21 Mar 28 Mar 04 Apr 11 Apr
Large Array PUT Performance --1G array (gn-ibv-fast)
14000 --1/4 mem array (gn-ibv-fast)
— 1G array (gn-ibv-large)
12000} - - - m e T T T T T oo —— oo == 1M array (gn-!bv-fast)
— 1M array (gn-ibv-large)
g 10000 — 1/4 mem array (gn-ibv-large)
=
~ 8000
[0]
o
& 6000
E
£ 4000
(]
[od
2000
0
21 Mar 28 Mar 04 Apr 11 Apr

10



INFINIBAND DYNAMIC REGISTRATION
Impact

e Significant performance improvements for codes with all-to-all communication patterns

NPB: FT Perf (Mflops/s) - size D — prim-comm ft MFlop/s (gn-ibv-large)
-- prim-comm ft MFlop/s (gn-ibv-fast)
-~ ft MFlop/s (gn-ibv-fast)

500000
—————— — ft MFlop/s (gn-ibv-large)

400000

¥ 300000
Q
S

= 200000

100000

0

21 Mar 28 Mar 04 Apr 11 Apr
ISx variations — Release (gn-ibv-large)
60 -- Release (gn-ibv-fast)
— Hand Optimized (gn-ibv-large)
-- Hand Optimized (gn-ibv-fast)

w
T
=
Q
8]
)
L
[0]
E
'_

0




INFINIBAND DYNAMIC REGISTRATION

Impact

e Significant performance improvements for Arkouda

Argsort Performance

12
@ L ) —
o R —
O 8 /!
~ /
o /
5] /
% 6 /
S /
.g 4
o)
o
2
0
26 Mar 28 Mar 30 Mar 01 Apr 03 Apr 05 Apr
Groupby Performance
8
0 6 ———— -—
o /
O /
Y /
S
8 4 // J
© Sy
€ /7
5 ______________________________ / //
E 2 /
o / T T
L
0::::::::::::::::::::::::::::::é/’/// 7777777777777777777777777
26 Mar 28 Mar 30 Mar 01 Apr 03 Apr 05 Apr

Performance (GiB/s)

Performance (GiB/s)

Coargsort Performance

26 Mar 28 Mar 30 Mar 01 Apr 03 Apr 05 Apr

26 Mar 28 Mar 30 Mar 01 Apr 03 Apr

05 Apr

12



INFINIBAND OPTIMIZATIONS
Next Steps

e Explore ways to speed up static registration, possibly by parallelizing it
» Consider supporting a mode that runs a process per NUMA domain

e Continue to improve dynamic registration performance
 ISx and some other communication-intensive applications still lag behind static registration

e Look at using On-Demand-Paging (ODP) as an alternative registration mechanism
« Hardware/firmware takes care of registration on-demand rather than tracking in software

o Current prototype hangs
—Needs more investigation and collaboration with the GASNet team

e Investigate experimental ucx conduit
e Unified Communication X (UCX) is likely the future for targeting InfiniBand with GASNet
e We have done preliminary testing and want to track ucx as upstream support becomes more stable

—

13



THANK YOU

https://chapel-lang.org
@ChapelLanguage

e e



