
CHAPEL 1.24 RELEASE NOTES:
PERFORMANCE OPTIMIZATIONS

Chapel Team
March 18, 2021

OUTLINE

• Remote Cache Improvements
• Automatic Copy Aggregation
• Automatic Local Access Improvements
• First-class Representation for Zip Clauses
• Scan Improvements
• Array Tracking Optimization
• Memory Leak Improvements

REMOTE CACHE IMPROVEMENTS

Background

• Chapel has a cache for remote data that can be enabled with ‘--cache-remote’
• Can provide significant speedups for suboptimal communication patterns

– Supports read-ahead and write-behind
– Can eliminate repeated communication

var A, B:[1..n] int;
on Locales[1] do

for i in 1..n do
B[i] = A[i];

• For this toy program, cache provides 20x speedup on Cray Aries, 100x speedup on FDR InfiniBand
• Previously off by default due to performance regressions in some workloads, particularly at scale

4

REMOTE CACHE

without --cache-remote with --cache-remote

GETs for A[i] 8 bytes per iteration 1024-byte chunks

PUTs for B[i] 8 bytes per iteration 1024-byte chunks

array metadata GETs several GETs per iteration GETs on first iteration only

Background

• Observed scaling problems with local manipulation of cache management data structures
• Originally seen for HPCC Random Access using GETs/PUTs (RA-rmo)
• Created a synthetic benchmark that enables simulating higher locale counts to see cache overheads

5

RANDOM ACCESS CACHE SCALING

0

0.2

0.4

0.6

16 64 256 1024 4096 16384

µs
 p

er
 o

pe
ra

tio
n

Simulated Number of Locales

--cache-remote overhead per operation

before

This Effort and Impact

This Effort: Reduced data structure manipulation by simplifying the lookup table
Impact: Data structure manipulation now has constant overhead

6

RANDOM ACCESS CACHE SCALING

0

0.2

0.4

0.6

16 64 256 1024 4096 16384

µs
 p

er
 o

pe
ra

tio
n

Simulated Number of Locales

--cache-remote overhead per operation

before after

Impact

• Improved RA performance at scale
• Still lags overall, but this is a worst-case for the cache with fine-grained random access on a fast network

7

RANDOM ACCESS CACHE SCALING

0

0.5

1

1.5

2

2.5

3

3.5

G
U

PS

RA-rmo Performance (512 node XC)

no cache cache before cache after

Background

• Observed performance issues with Arkouda at scale with the cache enabled
• Particularly for argsort and gather

8

ARKOUDA CACHE SCALING

0

0.5

1

1.5

argsort gather reduce scan scatter stream

Normalized Arkouda Performance (512 node XC)

no cache 1.23 cache

This Effort and Impact

This Effort: Switched from a coarse-grained strategy to fine-grained strategy to handle task yields
Impact: Cache is now a net benefit to Arkouda performance

9

ARKOUDA CACHE SCALING

0

0.5

1

1.5

argsort gather reduce scan scatter stream

Normalized Arkouda Performance (512 node XC)

no cache 1.23 cache cache+better yields

This Effort

• Cache performance and scaling issues have been addressed as described in previous sections
• Known/expected regression for RA-rmo
• No other regressions up to 512 nodes for core benchmarks and Arkouda

• As a result, enabled the cache by default
• Cache can still be disabled with ‘--no-cache-remote’

10

TURNING CACHE ON BY DEFAULT

Impact

• Significant performance improvements for some benchmarks

11

TURNING CACHE ON BY DEFAULT

~30x improvement ~3x improvement

~2x speed up
~2x speed up

Impact

• Some unexpected regressions for micro-benchmarks that have not been closely studied yet

12

TURNING CACHE ON BY DEFAULT

~1.5x regression

Impact

• Some expected, but minor regressions for random access patterns
• For RA-rmo, non-blocking comm enabled by cache outweighs overhead, but only implemented for gasnet

13

TURNING CACHE ON BY DEFAULT

~20% improvement for
configs w/ NB comm

~10% regression for
configs w/o NB comm

Status and Next Steps

Status: Remote cache scaling has been improved and is enabled by default
• Overall, significant performance improvements for codes with suboptimal communication patterns

Next Steps: Continue to improve cache performance
• Investigate overheads for remaining performance regressions
• Implement non-blocking communication in ‘ugni’ and ‘ofi’

14

REMOTE CACHE

AUTOMATIC COPY AGGREGATION

Background

• Fine-grained communication is a well-known cause of overhead in distributed memory

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];

• Accesses to ‘A’ are guaranteed to be local
• Accesses to ‘B’ can be remote

• In which case, every access will incur communication and increase overhead
• However, these accesses can be reordered and/or aggregated

16

AUTOMATIC COPY AGGREGATION

Background

There are two ways this overhead can be mitigated:
1. The compiler can turn the loop into:

forall i in D do
unorderedCopy(A[i], B[computeIndex(i)]);

– The communication layer copies the data asynchronously, hiding the overhead
– Can improve performance significantly
– However, the accesses are still handled via individual messages
– This optimization was added in 1.19, and turned on by default in 1.20

17

AUTOMATIC COPY AGGREGATION

Background

There are two ways this overhead can be mitigated:
2. A special “aggregator” object can be used to buffer data on its source

forall i in D with (var agg = newSrcAggregator(A.eltType) do
agg.copy(A[i], B[computeIndex(i)]);

– Requires extra effort from the programmer
– Aggregators were first used in Arkouda during the Chapel 1.20 development cycle

– Local data is temporarily stored in per-task, per-locale buffers
– These buffers are of limited size and flush when they fill up

– When they do, data is transferred in bulk
– Achieves much better performance than unordered copy

– Arkouda source has more than 60 locations where aggregators are used

18

AUTOMATIC COPY AGGREGATION

This Effort

• The compiler can now use aggregators automatically with the ‘--auto-aggregation’ flag:

forall i in D do
A[i] = B[computeIndex(i)];

19

AUTOMATIC COPY AGGREGATION

This Effort

• The compiler can now use aggregators automatically with the ‘--auto-aggregation’ flag:

forall i in D do
A[i] = B[computeIndex(i)];

forall i in D with (var agg = newSrcAggregator(A.eltType)) do
agg.copy(A[i], B[computeIndex(i)]);

20

AUTOMATIC COPY AGGREGATION

transformed into

This Effort

• This optimization is built on three existing optimizations that help in key operations and analysis

21

AUTOMATIC COPY AGGREGATION

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];

This Effort

• This optimization is built on three existing optimizations that help in key operations and analysis

• Analysis: Can this copy be executed out-of-order?
– Unordered forall optimization checks for hazards

22

AUTOMATIC COPY AGGREGATION

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];

This Effort

• This optimization is built on three existing optimizations that help in key operations and analysis

• Analysis: Can this copy be executed out-of-order?
– Unordered forall optimization checks for hazards

• Analysis: Is one side local, where the other is likely not?
– Automatic local access does that analysis

23

AUTOMATIC COPY AGGREGATION

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];

This Effort

• This optimization is built on three existing optimizations that help in key operations and analysis

• Analysis: Can this copy be executed out-of-order?
– Unordered forall optimization checks for hazards

• Analysis: Is one side local, where the other is likely not?
– Automatic local access does that analysis

• Transformation: Aggregate data
– Arkouda has Aggregators that can be readily used

24

AUTOMATIC COPY AGGREGATION

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D with (var agg = ...) do
agg.copy(A[i], B[computeIndex(i)]);

This Effort

• This optimization also supports array iterators
• Array iterators were not subject to locality analysis in ‘forall’s

– Automatic local access is only about ‘forall’s over domains

• Elements yielded from distributed arrays can be local within loop bodies
• If they are part of a copy where the other side is likely remote, it is an aggregation opportunity

• The compiler can now infer that elements yielded from arrays in ‘forall’s are local within the loop body
• This can trigger aggregation in the following case:

forall (a, i) in zip(A, 0..) do
B[computeIndex(i)] = a;

25

AUTOMATIC COPY AGGREGATION

Source of the copy is local

Copy will be aggregated

This Effort

• Aggregation can also trigger based on the use of fast followers
• When a follower is aligned with the leader, it can use the fast-follower iterator which yields elements faster
• It also implies that yielded elements are local within the ‘forall’ body

forall (i,a) in zip(A.domain, A) do
A[computeIndex(i)] = a;

• If a fast follower is used for ‘A’, the copy will also be aggregated
– ‘Block’, ‘Cyclic’, and ‘Stencil’ distributions support fast followers
– In many cases like the above, they will be used
– Sometimes this can be determined statically, sometimes it relies on dynamic checks
– In either case, if a fast follower is used, aggregation will be used as well

26

AUTOMATIC COPY AGGREGATION

‘A’ is aligned with the leader

‘a’ must be local within the body

copy can be aggregated

This Effort

• --[no-]auto-aggregation
• Enable/disable optimization
• Off by default
• If ‘CHPL_COMM=none’ or ‘--local’ is used, this flag is ignored, and the optimization is disabled

• --[no-]report-auto-aggregation
• Enables/disables verbose output about the optimization steps
• Off by default

27

AUTOMATIC COPY AGGREGATION

Impact

• Bale indexgather benefits greatly from
aggregation

• ‘--auto-aggregation’ reaches the same
performance as the manual version
• No user effort is needed

– Benchmark kernel:

– Benchmark kernel with manual aggregation:

28

AUTOMATIC COPY AGGREGATION

forall i in D2 do
tmp[i] = A[rindex[i]];

forall i in D with (var agg = new SrcAggregator(int)) do
agg.copy(tmp[i], A[rindex[i]]);

Impact

• In Arkouda, we removed all the manual aggregation from the source
• 61 places in total

– 39 are optimized automatically
– 22 are not optimized

• 3 cases that were not using aggregators are now optimized

• The patterns where the aggregation does not fire:
– 9: aggregation is not based on ‘forall’ loops
– 6: compiler cannot prove that unordered operation is safe
– 3: locality is hard to detect
– 2: aggregated copy is not in the last statement of the body
– 1: one side of the assignment is defined within the loop body
– 1: needs further investigation

29

AUTOMATIC COPY AGGREGATION

39
3

22 optimized

newly discovered

not optimized

Status

• This optimization has similar limitations to the unordered forall optimization
• Limited to ‘forall’ bodies

– Data parallelism implies locality in ‘forall’ bodies
– Proving locality outside of a ‘forall’ body is more difficult
– ‘forall’ guarantees no dependency between iterations

• Only the last statement in the loop body is considered
– Ensures that the destination of the copy is not used later in the body

• Fully-local aggregation causes overhead
• Aggregators were initially implemented for manual usage in Arkouda and Bale studies
• As such, they do not handle fully-local copies differently, causing unnecessary buffering

• Fully-remote aggregation is not supported
• Implementing remote-to-remote aggregation is challenging

30

AUTOMATIC COPY AGGREGATION

Next Steps

• Reduce the overhead for fully-local aggregation
• We can avoid buffering for cases where both source and destination are local
• Likely to incur a dynamic branch overhead, but will avoid unnecessary buffering and copies

• Extend the optimization beyond the last statement
• This requires detailed alias and dataflow analysis
• However, there are some cases where a compiler-generated statement becomes the last statement

– This unnecessarily thwarts the optimization

• Any improvement made here will also improve the unordered forall optimization

• Reporting improvements
• The generated report can be confusing in cases where there are multiple key statements in one line

– Adding the ability to track the column numbers can help
– This can also enable reproducing the source line, and marking the important parts to assist the user

31

AUTOMATIC COPY AGGREGATION

AUTOMATIC LOCAL ACCESS
IMPROVEMENTS

Background

• An indexed access to a distributed array in Chapel typically works like:
• Check if the accessed index is local

– If so, access the local part of the array
– Else, compute who owns that index and do a remote access

• There are cases where arrays are accessed only locally
• But each access incurs locality check overhead nonetheless

• In 1.23, we added a compiler optimization to automatically use ‘localAccess’
• The optimization analyzes array accesses in ‘forall’ bodies
• Those accesses that are aligned with the loop leader are strength-reduced

– No need to check whether the local part of the array is accessed

forall i in A.domain do
A[i] = compute(i); // A[i] will be replaced with A.localAccess[i]

33

AUTOMATIC LOCAL ACCESS IMPROVEMENTS

This Effort

• In Chapel 1.24, accesses to array views are also covered

var A = newBlockArr({1..10, 1..10}, int);
ref AInner = A[2..9, 2..9];
forall i in AInner.domain do
AInner[i] = compute(i); // optimized in Chapel 1.24

forall i in A.domain do
if AInner.domain.contains(i) then
AInner[i] = compute(i); // optimized in Chapel 1.24 (subject to dynamic checks)

ref AFirstCol = A[1..10, 1];
forall i in AFirstCol.domain do
AFirstCol[i] = compute(i); // optimized in Chapel 1.24

• We have had some implementation challenges for reindex views, so they are still not optimized

34

AUTOMATIC LOCAL ACCESS IMPROVEMENTS

This Effort

• Indices yielded from statically aligned followers are also considered

var D = newBlockDom(1..10);
var A: [D] int;
var B: [D] int;
forall (a,i) in zip(A, A.domain) do
B[i] = compute(a); // B[i] is replaced with B.localAccess[i]

• As with other cases, this optimization can be subject to dynamic checks

var A = newBlockArr(1..10, int);
var B = newBlockArr(1..10, int); // cannot statically tell that `B` has the same domain as `A`
forall (a,i) in zip(A, A.domain) do
B[i] = compute(a); // this will also be optimized, but with a dynamic check

35

AUTOMATIC LOCAL ACCESS IMPROVEMENTS

Status

• We have a more complete automatic local access optimization in 1.24
• Rank-change and slice views are also analyzed for the optimization
• We leverage the fast follower optimization to analyze accesses based on indices yielded by followers

36

AUTOMATIC LOCAL ACCESS IMPROVEMENTS

Next Steps

• Extend the coverage to dynamically aligned followers

var A = newBlockArr(1..10, int), B = newBlockArr(1..10, int);
forall (a, i) in zip(A, B.domain) do
B[i] = compute(a); // this is not optimized in 1.24

• Fix issues with reindex views

• Access to shadow variables are still not covered because their scope is the loop body
• However, this optimization adds code outside the loop to do some static and/or dynamic checks

forall i in myObj.A.domain with (ref innerA = myObj.A) do
innerA[i] = compute(i); // this is not optimized in 1.24

• Can we have an outer ‘ref’ temp for ‘myObj.A’ and run checks on it?
– This is challenging: ’myObj.A’ can have side effects

37

AUTOMATIC LOCAL ACCESS IMPROVEMENTS

FIRST-CLASS REPRESENTATION FOR
ZIP CLAUSES

Background

• A zip clause indicates iteration over multiple iterables
• The compiler used to represent and implement zip clauses with tuples

• Because historically tuple syntax was used instead of zip clauses
forall (a, b) in zip(A, B) do foo();

ref ARef = A, BRef = B;
var iterTuple = (ARef, BRef);
for f in getLeader(iterTuple) do

on ... do
for (a,b) in getFollower(iterTuple, f) do foo();

• This entangled the implementation of tuples and zip clauses

• We have found this to prevent some optimization opportunities for array slices
• When slices were used in zip clauses, they were “hidden” from the compiler and could not be forwarded

39

FIRST-CLASS REPRESENTATION FOR ZIP CLAUSES

In 1.23, this was translated into

This Effort

• zip clauses in forall loops now have a direct representation in the compiler

forall (a, b) in zip(A, B) do foo();

for f in getLeader(A) do
on ... do
for (a,b) in zip(getFollower(A, f), getFollower(B, f)) do foo();

40

FIRST-CLASS REPRESENTATION FOR ZIP CLAUSES

‘A’ and ‘B’ are used directly inside the ‘on’ statement

Now, this is represented with

Impact

• Remote value forwarding can now trigger for zipped symbols
• Because they are no longer “hidden” in tuples
• Takes us one step closer to making array slices lighter-weight

– Some issues with promotions remain to be addressed

• Compilation speed improvements
• Multilocale Arkouda compilation is ~80 seconds faster
• Local Arkouda compilation is ~14 seconds faster

• Most of the module code that was handling zip tuples is removed
• It was challenging to maintain

• Debugging the compiler using AST dumps and the generated code is simpler
• The support code for zip clauses is adjacent to their foralls

41

FIRST-CLASS REPRESENTATION FOR ZIP CLAUSES

Next Steps

• We still use tuples to represent:
• zippered for loops
• forall expressions

• We plan to remove all these cases
• Further reduction in module and generated code complexity
• Potential improvements in compilation time
• Easier compiler debugging

42

FIRST-CLASS REPRESENTATION FOR ZIP CLAUSES

SCAN IMPROVEMENTS

Background:
• Scans were parallelized for 1D default and Block-distributed arrays in Chapel 1.20
• Parallel scans were added for 1D Private-distributed arrays in Chapel 1.21/1.22

This Effort:
• Parallelized scan operations for 1D Replicated arrays
• Generally improved the performance of scan operations

– squashed an unnecessary default initialization of the result array
– skipped the second “update” pass when using a single task for scans of local arrays:

+ scan 1 1 1 1 1 1 1 1

1 2 3 1 2 3 1 2

+ exc-scan0 3 6

1 2 3 4 5 6 7 8

44

Background and This Effort
SCAN IMPROVEMENTS

+ scan 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

0

1 2 3 4 5 6 7 8

Multi-task
Implementation:

Single-task
Implementation:

Unnecessary work,
now skipped:

+ +

per-task scan:

cross-task
exclusive scan:

per-task update:

Impact

Impact:
• Scans on Replicated 1D arrays should see improved performance / a lack of serialization warnings
• Most 1D scans should see modest performance benefit

– particularly those on local arrays within parallel code sections:
var A, B: [1..m] [1..n] real = …;
forall i in 1..m do

B[i] = + scan A[i]; // here, each scan will typically use a single task since the ‘forall’ is likely to utilize all the cores

45

SCAN IMPROVEMENTS

0
0.5
1

1.5
2

2.5
3

3.5
4

16 64 128 256 512

Ti
m
e
(s
ec
on
ds
)

Locales (x 36 cores / locale)

Default Init
Noinit

Scan Time
(1/4 Memory)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(s

ec
on

ds
)

Chapel version

Serial Scan (100,000,000 elements)

1.23

1.24

Status and Next Steps

Status:
• Parallel scans of 1D arrays are increasingly well-supported and tuned

Next Steps:
• Improve scalability of block-distributed scans
• Parallel scan improvements:

– ensure scans of 1D array-like expressions are parallelized
B = + scan (A: int);

– parallelize scans of multidimensional arrays
– consider extending parallelism to challenging/less mature distributions (e.g., Cyclic, Block-Cyclic)
– generalize implementation to support cases where the ‘result’ and ‘state’ types don’t match

• Add language support for partial scans, exclusive scans, directional scans
• Finalize and document the user-defined reduction/scan interface

46

SCAN IMPROVEMENTS

ARRAY TRACKING OPTIMIZATION

Background and This Effort

Background: Chapel domains track arrays declared over them
• Supports resizing arrays when their domain is modified:

var D = {1..10};
var A: [D] int;
var B: [D] int;
D = {1..20}; // this resizes 'A' and ‘B’

• Prior to Chapel 1.23, domains tracked arrays with a singly linked list—O(1) insertion, O(n) removal
• Chapel 1.23 switched to a hash table to track arrays—O(1) insertion and removal

– Significantly reduced worst-case tracking behavior, but slightly hurt best-case and increased compilation time

This Effort: Switched from hash table to a doubly linked list
• O(1) insertion and removal still, but with a much smaller constant factor

48

ARRAY TRACKING OPTIMIZATION

Impact

• Faster array view creation due to reduced tracking overhead

• Reduced compilation time because hash table is no longer compiled by default

49

ARRAY TRACKING OPTIMIZATION

MEMORY LEAK IMPROVEMENTS

Background:
• We have been working on closing compiler-generated memory leaks

– In 1.23, we had 24 leaking tests that were caused by 8 distinct bugs

This Effort:
• 1.24 closes all known remaining leaks

51

MEMORY LEAK IMPROVEMENTS

Impact:
• As of Chapel 1.24.1, we do not have any known leaks remaining

– A single test leaks by design, but is not currently factored out of the memory leaks test system
– In 1.24.0, there was one last-minute leak that stemmed from the new ‘interface’ feature, but it has since been closed

52

MEMORY LEAK IMPROVEMENTS

3.6 KB leaked
in 1.23

40 B leak
in 1.24.0

24 tests leaked
in 1.23

2 tests leak
in 1.24.0

8 B leak
in 1.24.1

1 test leaks
in 1.24.1

Status:
• There are no known memory leaks remaining as of Chapel 1.24.1

Next Steps:
• Adjust the testing infrastructure to report any new leaks as a correctness failure
• Develop best practices for package authors to do memory leak testing
• Extend nightly memory leaks testing to both backends

– Today, we test for memory leaks with the LLVM backend only manually and on occasion

53

MEMORY LEAK IMPROVEMENTS

OTHER PERFORMANCE
IMPROVEMENTS

For a more complete list of performance changes and improvements in the 1.24 release, refer to
the following sections in the CHANGES.md file:

• ‘Performance optimizations/improvements’
• ‘Memory improvements’

55

OTHER PERFORMANCE IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.24/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

