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REMOTE CACHE IMPROVEMENTS



Background

• Chapel has a cache for remote data that can be enabled with ‘--cache-remote’
• Can provide significant speedups for suboptimal communication patterns

– Supports read-ahead and write-behind
– Can eliminate repeated communication

var A, B:[1..n] int; 
on Locales[1] do

for i in 1..n do
B[i] = A[i];

• For this toy program, cache provides 20x speedup on Cray Aries, 100x speedup on FDR InfiniBand
• Previously off by default due to performance regressions in some workloads, particularly at scale
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REMOTE CACHE

without --cache-remote with --cache-remote

GETs for A[i] 8 bytes per iteration 1024-byte chunks

PUTs for B[i] 8 bytes per iteration 1024-byte chunks

array metadata GETs several GETs per iteration GETs on first iteration only



Background

• Observed scaling problems with local manipulation of cache management data structures
• Originally seen for HPCC Random Access using GETs/PUTs (RA-rmo)
• Created a synthetic benchmark that enables simulating higher locale counts to see cache overheads
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This Effort and Impact

This Effort: Reduced data structure manipulation by simplifying the lookup table
Impact: Data structure manipulation now has constant overhead
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Impact

• Improved RA performance at scale  
• Still lags overall, but this is a worst-case for the cache with fine-grained random access on a fast network
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RANDOM ACCESS CACHE SCALING
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Background

• Observed performance issues with Arkouda at scale with the cache enabled
• Particularly for argsort and gather
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ARKOUDA CACHE SCALING

0

0.5

1

1.5

argsort gather reduce scan scatter stream

Normalized Arkouda Performance (512 node XC)

no cache 1.23 cache



This Effort and Impact

This Effort: Switched from a coarse-grained strategy to fine-grained strategy to handle task yields
Impact: Cache is now a net benefit to Arkouda performance
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This Effort

• Cache performance and scaling issues have been addressed as described in previous sections
• Known/expected regression for RA-rmo
• No other regressions up to 512 nodes for core benchmarks and Arkouda

• As a result, enabled the cache by default
• Cache can still be disabled with ‘--no-cache-remote’
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TURNING CACHE ON BY DEFAULT



Impact

• Significant performance improvements for some benchmarks
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TURNING CACHE ON BY DEFAULT

~30x improvement ~3x improvement

~2x speed up
~2x speed up



Impact

• Some unexpected regressions for micro-benchmarks that have not been closely studied yet
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TURNING CACHE ON BY DEFAULT

~1.5x regression



Impact

• Some expected, but minor regressions for random access patterns
• For RA-rmo, non-blocking comm enabled by cache outweighs overhead, but only implemented for gasnet

13

TURNING CACHE ON BY DEFAULT

~20% improvement for 
configs w/ NB comm

~10% regression for 
configs w/o NB comm



Status and Next Steps

Status: Remote cache scaling has been improved and is enabled by default
• Overall, significant performance improvements for codes with suboptimal communication patterns

Next Steps: Continue to improve cache performance
• Investigate overheads for remaining performance regressions
• Implement non-blocking communication in ‘ugni’ and ‘ofi’
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REMOTE CACHE



AUTOMATIC COPY AGGREGATION



Background

• Fine-grained communication is a well-known cause of overhead in distributed memory

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];

• Accesses to ‘A’ are guaranteed to be local
• Accesses to ‘B’ can be remote

• In which case, every access will incur communication and increase overhead
• However, these accesses can be reordered and/or aggregated 
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AUTOMATIC COPY AGGREGATION



Background

There are two ways this overhead can be mitigated:
1. The compiler can turn the loop into:

forall i in D do
unorderedCopy(A[i], B[computeIndex(i)]);

– The communication layer copies the data asynchronously, hiding the overhead
– Can improve performance significantly
– However, the accesses are still handled via individual messages
– This optimization was added in 1.19, and turned on by default in 1.20
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AUTOMATIC COPY AGGREGATION



Background

There are two ways this overhead can be mitigated:
2. A special “aggregator” object can be used to buffer data on its source

forall i in D with (var agg = newSrcAggregator(A.eltType) do
agg.copy(A[i], B[computeIndex(i)]);

– Requires extra effort from the programmer
– Aggregators were first used in Arkouda during the Chapel 1.20 development cycle

– Local data is temporarily stored in per-task, per-locale buffers
– These buffers are of limited size and flush when they fill up

– When they do, data is transferred in bulk
– Achieves much better performance than unordered copy

– Arkouda source has more than 60 locations where aggregators are used
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AUTOMATIC COPY AGGREGATION



This Effort

• The compiler can now use aggregators automatically with the ‘--auto-aggregation’ flag:

forall i in D do
A[i] = B[computeIndex(i)];
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AUTOMATIC COPY AGGREGATION



This Effort

• The compiler can now use aggregators automatically with the ‘--auto-aggregation’ flag:

forall i in D do
A[i] = B[computeIndex(i)];

forall i in D with (var agg = newSrcAggregator(A.eltType)) do
agg.copy(A[i], B[computeIndex(i)]);
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AUTOMATIC COPY AGGREGATION

transformed into



This Effort

• This optimization is built on three existing optimizations that help in key operations and analysis
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AUTOMATIC COPY AGGREGATION

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];



This Effort

• This optimization is built on three existing optimizations that help in key operations and analysis

• Analysis: Can this copy be executed out-of-order?
– Unordered forall optimization checks for hazards
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AUTOMATIC COPY AGGREGATION

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];



This Effort

• This optimization is built on three existing optimizations that help in key operations and analysis

• Analysis: Can this copy be executed out-of-order?
– Unordered forall optimization checks for hazards

• Analysis: Is one side local, where the other is likely not?
– Automatic local access does that analysis
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AUTOMATIC COPY AGGREGATION

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];



This Effort

• This optimization is built on three existing optimizations that help in key operations and analysis

• Analysis: Can this copy be executed out-of-order?
– Unordered forall optimization checks for hazards

• Analysis: Is one side local, where the other is likely not?
– Automatic local access does that analysis

• Transformation: Aggregate data
– Arkouda has Aggregators that can be readily used

24

AUTOMATIC COPY AGGREGATION

var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;

forall i in D with (var agg = ...) do
agg.copy(A[i], B[computeIndex(i)]);



This Effort

• This optimization also supports array iterators
• Array iterators were not subject to locality analysis in ‘forall’s

– Automatic local access is only about ‘forall’s over domains

• Elements yielded from distributed arrays can be local within loop bodies
• If they are part of a copy where the other side is likely remote, it is an aggregation opportunity

• The compiler can now infer that elements yielded from arrays in ‘forall’s are local within the loop body
• This can trigger aggregation in the following case:

forall (a, i) in zip(A, 0..) do
B[computeIndex(i)]  =  a;
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AUTOMATIC COPY AGGREGATION

Source of the copy is local

Copy will be aggregated



This Effort

• Aggregation can also trigger based on the use of fast followers
• When a follower is aligned with the leader, it can use the fast-follower iterator which yields elements faster
• It also implies that yielded elements are local within the ‘forall’ body

forall (i,a) in zip(A.domain, A) do
A[computeIndex(i)] = a;

• If a fast follower is used for ‘A’, the copy will also be aggregated
– ‘Block’, ‘Cyclic’, and ‘Stencil’ distributions support fast followers
– In many cases like the above, they will be used
– Sometimes this can be determined statically, sometimes it relies on dynamic checks
– In either case, if a fast follower is used, aggregation will be used as well
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AUTOMATIC COPY AGGREGATION

‘A’ is aligned with the leader

‘a’ must be local within the body

copy can be aggregated



This Effort

• --[no-]auto-aggregation
• Enable/disable optimization
• Off by default
• If ‘CHPL_COMM=none’ or ‘--local’ is used, this flag is ignored, and the optimization is disabled

• --[no-]report-auto-aggregation
• Enables/disables verbose output about the optimization steps
• Off by default
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AUTOMATIC COPY AGGREGATION



Impact

• Bale indexgather benefits greatly from 
aggregation

• ‘--auto-aggregation’ reaches the same 
performance as the manual version
• No user effort is needed

– Benchmark kernel:

– Benchmark kernel with manual aggregation:
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AUTOMATIC COPY AGGREGATION

forall i in D2 do
tmp[i] = A[rindex[i]];

forall i in D with (var agg = new SrcAggregator(int)) do
agg.copy(tmp[i], A[rindex[i]]);



Impact

• In Arkouda, we removed all the manual aggregation from the source
• 61 places in total

– 39 are optimized automatically
– 22 are not optimized

• 3 cases that were not using aggregators are now optimized

• The patterns where the aggregation does not fire:
– 9: aggregation is not based on ‘forall’ loops
– 6: compiler cannot prove that unordered operation is safe
– 3: locality is hard to detect
– 2: aggregated copy is not in the last statement of the body
– 1: one side of the assignment is defined within the loop body
– 1: needs further investigation
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AUTOMATIC COPY AGGREGATION
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Status

• This optimization has similar limitations to the unordered forall optimization
• Limited to ‘forall’ bodies

– Data parallelism implies locality in ‘forall’ bodies
– Proving locality outside of a ‘forall’ body is more difficult
– ‘forall’ guarantees no dependency between iterations

• Only the last statement in the loop body is considered
– Ensures that the destination of the copy is not used later in the body

• Fully-local aggregation causes overhead
• Aggregators were initially implemented for manual usage in Arkouda and Bale studies
• As such, they do not handle fully-local copies differently, causing unnecessary buffering

• Fully-remote aggregation is not supported
• Implementing remote-to-remote aggregation is challenging
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AUTOMATIC COPY AGGREGATION



Next Steps

• Reduce the overhead for fully-local aggregation
• We can avoid buffering for cases where both source and destination are local
• Likely to incur a dynamic branch overhead, but will avoid unnecessary buffering and copies

• Extend the optimization beyond the last statement
• This requires detailed alias and dataflow analysis
• However, there are some cases where a compiler-generated statement becomes the last statement

– This unnecessarily thwarts the optimization

• Any improvement made here will also improve the unordered forall optimization

• Reporting improvements
• The generated report can be confusing in cases where there are multiple key statements in one line

– Adding the ability to track the column numbers can help
– This can also enable reproducing the source line, and marking the important parts to assist the user
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AUTOMATIC COPY AGGREGATION



AUTOMATIC LOCAL ACCESS 
IMPROVEMENTS



Background

• An indexed access to a distributed array in Chapel typically works like:
• Check if the accessed index is local

– If so, access the local part of the array
– Else, compute who owns that index and do a remote access

• There are cases where arrays are accessed only locally
• But each access incurs locality check overhead nonetheless

• In 1.23, we added a compiler optimization to automatically use ‘localAccess’
• The optimization analyzes array accesses in ‘forall’ bodies
• Those accesses that are aligned with the loop leader are strength-reduced

– No need to check whether the local part of the array is accessed

forall i in A.domain do
A[i] = compute(i);  // A[i] will be replaced with A.localAccess[i]
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AUTOMATIC LOCAL ACCESS IMPROVEMENTS



This Effort

• In Chapel 1.24, accesses to array views are also covered

var A = newBlockArr({1..10, 1..10}, int);
ref AInner = A[2..9, 2..9];
forall i in AInner.domain do
AInner[i] = compute(i);     // optimized in Chapel 1.24

forall i in A.domain do
if AInner.domain.contains(i) then
AInner[i] = compute(i);   // optimized in Chapel 1.24 (subject to dynamic checks)

ref AFirstCol = A[1..10, 1];
forall i in AFirstCol.domain do
AFirstCol[i] = compute(i);  // optimized in Chapel 1.24

• We have had some implementation challenges for reindex views, so they are still not optimized
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AUTOMATIC LOCAL ACCESS IMPROVEMENTS



This Effort

• Indices yielded from statically aligned followers are also considered

var D = newBlockDom(1..10);
var A: [D] int;
var B: [D] int;
forall (a,i) in zip(A, A.domain) do
B[i] = compute(a);  // B[i] is replaced with B.localAccess[i]

• As with other cases, this optimization can be subject to dynamic checks

var A = newBlockArr(1..10, int);
var B = newBlockArr(1..10, int);  // cannot statically tell that `B` has the same domain as `A`
forall (a,i) in zip(A, A.domain) do
B[i] = compute(a);  // this will also be optimized, but with a dynamic check
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AUTOMATIC LOCAL ACCESS IMPROVEMENTS



Status

• We have a more complete automatic local access optimization in 1.24
• Rank-change and slice views are also analyzed for the optimization
• We leverage the fast follower optimization to analyze accesses based on indices yielded by followers
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AUTOMATIC LOCAL ACCESS IMPROVEMENTS



Next Steps

• Extend the coverage to dynamically aligned followers

var A = newBlockArr(1..10, int), B = newBlockArr(1..10, int);
forall (a, i) in zip(A, B.domain) do
B[i] = compute(a);          // this is not optimized in 1.24

• Fix issues with reindex views

• Access to shadow variables are still not covered because their scope is the loop body
• However, this optimization adds code outside the loop to do some static and/or dynamic checks

forall i in myObj.A.domain with (ref innerA = myObj.A) do
innerA[i] = compute(i);     // this is not optimized in 1.24

• Can we have an outer ‘ref’ temp for ‘myObj.A’ and run checks on it?
– This is challenging: ’myObj.A’ can have side effects

37

AUTOMATIC LOCAL ACCESS IMPROVEMENTS



FIRST-CLASS REPRESENTATION FOR 
ZIP CLAUSES



Background

• A zip clause indicates iteration over multiple iterables
• The compiler used to represent and implement zip clauses with tuples

• Because historically tuple syntax was used instead of zip clauses
forall (a, b) in zip(A, B) do foo(); 

ref ARef = A, BRef = B;
var iterTuple = (ARef, BRef);
for f in getLeader(iterTuple) do

on ... do
for (a,b) in getFollower(iterTuple, f) do foo();

• This entangled the implementation of tuples and zip clauses

• We have found this to prevent some optimization opportunities for array slices
• When slices were used in zip clauses, they were “hidden” from the compiler and could not be forwarded
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FIRST-CLASS REPRESENTATION FOR ZIP CLAUSES

In 1.23, this was translated into



This Effort

• zip clauses in forall loops now have a direct representation in the compiler

forall (a, b) in zip(A, B) do foo(); 

for f in getLeader(A) do
on ... do
for (a,b) in zip(getFollower(A, f), getFollower(B, f)) do foo();
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FIRST-CLASS REPRESENTATION FOR ZIP CLAUSES

‘A’ and ‘B’ are used directly inside the ‘on’ statement

Now, this is represented with



Impact

• Remote value forwarding can now trigger for zipped symbols
• Because they are no longer “hidden” in tuples
• Takes us one step closer to making array slices lighter-weight

– Some issues with promotions remain to be addressed

• Compilation speed improvements
• Multilocale Arkouda compilation is ~80 seconds faster
• Local Arkouda compilation is ~14 seconds faster 

• Most of the module code that was handling zip tuples is removed
• It was challenging to maintain

• Debugging the compiler using AST dumps and the generated code is simpler
• The support code for zip clauses is adjacent to their foralls
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FIRST-CLASS REPRESENTATION FOR ZIP CLAUSES



Next Steps

• We still use tuples to represent:
• zippered for loops
• forall expressions

• We plan to remove all these cases
• Further reduction in module and generated code complexity
• Potential improvements in compilation time
• Easier compiler debugging

42

FIRST-CLASS REPRESENTATION FOR ZIP CLAUSES



SCAN IMPROVEMENTS



Background:
• Scans were parallelized for 1D default and Block-distributed arrays in Chapel 1.20
• Parallel scans were added for 1D Private-distributed arrays in Chapel 1.21/1.22

This Effort:
• Parallelized scan operations for 1D Replicated arrays
• Generally improved the performance of scan operations

– squashed an unnecessary default initialization of the result array
– skipped the second “update” pass when using a single task for scans of local arrays:

+ scan  1 1 1 1 1 1 1 1

1 2 3 1 2 3 1 2

+ exc-scan0 3 6

1 2 3 4 5 6 7 8

44

Background and This Effort
SCAN IMPROVEMENTS

+ scan  1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8

0

1 2 3 4 5 6 7 8

Multi-task 
Implementation:

Single-task
Implementation:

Unnecessary work,
now skipped:

+ +

per-task scan:

cross-task 
exclusive scan:

per-task update:



Impact

Impact:
• Scans on Replicated 1D arrays should see improved performance / a lack of serialization warnings
• Most 1D scans should see modest performance benefit

– particularly those on local arrays within parallel code sections:
var A, B: [1..m] [1..n] real = …;
forall i in 1..m do

B[i] = + scan A[i];  // here, each scan will typically use a single task since the ‘forall’ is likely to utilize all the cores
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SCAN IMPROVEMENTS
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Status and Next Steps

Status:
• Parallel scans of 1D arrays are increasingly well-supported and tuned

Next Steps:
• Improve scalability of block-distributed scans 
• Parallel scan improvements:

– ensure scans of 1D array-like expressions are parallelized
B = + scan (A: int);

– parallelize scans of multidimensional arrays
– consider extending parallelism to challenging/less mature distributions (e.g., Cyclic, Block-Cyclic)
– generalize implementation to support cases where the ‘result’ and ‘state’ types don’t match

• Add language support for partial scans, exclusive scans, directional scans
• Finalize and document the user-defined reduction/scan interface
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ARRAY TRACKING OPTIMIZATION



Background and This Effort

Background: Chapel domains track arrays declared over them
• Supports resizing arrays when their domain is modified:

var D = {1..10};
var A: [D] int;
var B: [D] int;
D = {1..20};     // this resizes 'A' and ‘B’

• Prior to Chapel 1.23, domains tracked arrays with a singly linked list—O(1) insertion, O(n) removal
• Chapel 1.23 switched to a hash table to track arrays—O(1) insertion and removal 

– Significantly reduced worst-case tracking behavior, but slightly hurt best-case and increased compilation time

This Effort: Switched from hash table to a doubly linked list
• O(1) insertion and removal still, but with a much smaller constant factor
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ARRAY TRACKING OPTIMIZATION



Impact

• Faster array view creation due to reduced tracking overhead

• Reduced compilation time because hash table is no longer compiled by default
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ARRAY TRACKING OPTIMIZATION



MEMORY LEAK IMPROVEMENTS



Background:
• We have been working on closing compiler-generated memory leaks

– In 1.23, we had 24 leaking tests that were caused by 8 distinct bugs

This Effort:
• 1.24 closes all known remaining leaks
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MEMORY LEAK IMPROVEMENTS



Impact:
• As of Chapel 1.24.1, we do not have any known leaks remaining

– A single test leaks by design, but is not currently factored out of the memory leaks test system
– In 1.24.0, there was one last-minute leak that stemmed from the new ‘interface’ feature, but it has since been closed
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MEMORY LEAK IMPROVEMENTS

3.6 KB leaked
in 1.23

40 B leak
in 1.24.0

24 tests leaked
in 1.23

2 tests leak
in 1.24.0

8 B leak
in 1.24.1

1 test leaks
in 1.24.1



Status:
• There are no known memory leaks remaining as of Chapel 1.24.1

Next Steps:
• Adjust the testing infrastructure to report any new leaks as a correctness failure
• Develop best practices for package authors to do memory leak testing
• Extend nightly memory leaks testing to both backends

– Today, we test for memory leaks with the LLVM backend only manually and on occasion
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MEMORY LEAK IMPROVEMENTS



OTHER PERFORMANCE 
IMPROVEMENTS



For a more complete list of performance changes and improvements in the 1.24 release, refer to 
the following sections in the CHANGES.md file:

• ‘Performance optimizations/improvements’
• ‘Memory improvements’
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OTHER PERFORMANCE IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.24/CHANGES.md


THANK YOU
https://chapel-lang.org
@ChapelLanguage


