
CHAPEL 1.24 RELEASE NOTES:
IMPLEMENTATION IMPROVEMENTS

Chapel Team
March 18, 2021

OUTLINE

• LLVM Backend Improvements
• 'ofi' Communication Layer
• Chapel on HPE Cray EX Systems
• Python 3 Compatibility
• Other Implementation Improvements

LLVM BACKEND IMPROVEMENTS

Background and This Effort

Background: Working to make LLVM the default compiler backend
• rationale:

– reduce effort spent supporting and testing multiple C compilers/versions
– convey semantic information more directly to the back-end
– leverage open-source efforts, community familiarity, GPU back-ends, etc.

This Effort: Increase LLVM testing and fix any problems discovered
• Discovered several issues with LLVM code generation for multilocale tests

– Fixed most of the issues: incorrect flags to codegen, mishandling of signedness, debugging errors, etc.
– Multilocale 'C' interop not currently working with LLVM, but close

• PRs exist that will make LLVM the default post-release
– If 'CHPL_LLVM' is unset, default to…
CHPL_LLVM=bundled # if $CHPL_HOME/third-party/llvm is already built
CHPL_LLVM=system # if a working external system llvm is detected

– If 'CHPL_LLVM' is unset after the above defaults, issue an error requesting that it be explicitly set

4

LLVM IMPROVEMENTS

Status and Next Steps

Status: Nearly ready to switch to LLVM by default
• Cleaned up several bugs for multilocale LLVM testing
• Have open PRs ready to flip the switch

Next Steps: Flip the switch
• Finish getting multilocale interop feature working with LLVM
• Merge the open PRs
• Address any issues uncovered in nightly testing
• Update test configurations to continue testing the C back-end

5

LLVM IMPROVEMENTS

'OFI' COMMUNICATION LAYER

Background and This Effort

Background:
• This communication layer is based on libfabric, defined by the Open Fabrics Interfaces Working Group (thus 'ofi’)
• Libfabric is the native network interface on HPE Cray EX systems, and is portable to others such as AWS/EFA

– Defines an interface to an abstract network
– Application selects a provider which instantiates that abstraction in terms of underlying interfaces

• The ‘ofi’ communication layer had some known functional and performance flaws
– Conformance to the Chapel Memory Consistency Model (MCM) was somewhat unprincipled, had excess overhead
– Selected providers correctly, but was less than ideal about enabling/disabling related capabilities and modes

This Effort:
• Reduced overheads in MCM conformance
• Improved integration with providers' capability sets
• Tuned based on exposure to a wider variety and scale of target platforms, especially HPE Cray EX

7

'OFI' COMMUNICATION LAYER

https://ofiwg.github.io/libfabric/

Impact

• MCM conformance speedup
improved PUT performance
significantly

8

'OFI' COMMUNICATION LAYER

~10x better on a
microbenchmark,
16-node Cray CS

~1.5x better on a
'macro' benchmark,
16-node Cray CS

Status and Next Steps

Status:
• Ready for production use
• There are still some areas where performance is worse than desired

– Memory registration needed with some providers produces poor NUMA locality
– Active Message (on-statement) rates are much lower than with 'gasnet' communication

Next Steps:
• Address known performance issues:

– NUMA
– Bottleneck due to use of a single AM handler (progress thread)

• Ongoing provider- and capability-related improvements
• Add regular testing on more systems and networks

9

'OFI' COMMUNICATION LAYER

CHAPEL ON HPE CRAY EX SYSTEMS

Background:
• Need to ensure Chapel continues to work on EX systems throughout the early-release process

This Effort:
• Adjusted Chapel module to integrate with HPE/Cray PE group's new Lmod module system
• As of Shasta v1.4, unbundled the Chapel package from the OS and included it with Analytics & AI instead

– However, release timing required building that package from 1.23.1 rather than 1.24.0

Status:
• Chapel continues to be available as the EX product line progresses

Next Steps: (not necessarily in order)
• Unbundle Chapel module from Analytics & AI, so it’s a standalone package
• Release Chapel 1.24.x for EX
• Add comm=gasnet configurations
• Continue tracking EX product changes and releases

11

CHAPEL ON HPE CRAY EX SYSTEMS

PYTHON 3 COMPATIBILITY

Background and This Effort

Background:
• Python 2 was officially deprecated in January 2020, but we were still relying on it more than ideal

– Needed to update so that systems that don’t include Python 2 would still be able to use Chapel effectively
– But wanted to minimize impact on systems that use older operating systems

• Python is used by ‘chpldoc’ and the scripts that support ‘printchplenv’
– This meant we were relying on older versions of dependencies to maintain Python 2 compatibility
– Eventually the older versions of these dependencies would become unavailable, too

This Effort:
• Updated ‘printchplenv’ support scripts to use Python 3

– and fall back to Python 2 if Python 3 is unavailable

• Updated ‘chpldoc’ dependencies to latest versions as of November 2020

13

PYTHON 3 COMPATIBILITY

Impact and Next Steps

Impact:
• ‘chpldoc’ now relies solely on Python 3

– Users have already started encountering issues with ‘chpldoc’ from previous releases
– This emphasizes how important this update was

• ‘printchplenv’ is now usable on any system, including systems with ‘python3’ but not ‘python’ in the path

Next Steps:
• Continue to track compatibility with various Python 3 versions

14

PYTHON 3 COMPATIBILITY

OTHER IMPLEMENTATION
IMPROVEMENTS

For a more complete list of implementation changes and improvements in the 1.24 release, refer
to the following sections in the CHANGES.md file:

• ‘Packaging / Configuration Changes’
• ‘Compilation-Time / Generated Code Improvements’

• ‘Portability’
• ‘Runtime Library Changes’
• ‘Launchers’

• ‘Bug Fixes’
• any of the ‘Developer-oriented changes’ sections

16

OTHER IMPLEMENTATION IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.24/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

