Hewlett Packard
Enterprise

CHAPEL 1.24 RELEASE NOTES:

Chapel Team
March 18, 2021

LANGUAGE AND LIBRARY IMPROVEMENTS

CORE LANGUAGE STABILIZATION

e -

CORE LANGUAGE STABILIZATION
Background and This Effort

Background:
o Over the past several releases, we have been working toward a forthcoming Chapel 2.0 release

« Infent: stop making backward-breaking changes to core language and library features
—use semantic versioning to reflect if/when such changes are made

This Effort:

o Chapel 1.24 addresses most major language-related concerns identified in Chapel 1.23
—resolution of tertiary methods and operators
—various forms of conversions between types
—definition of ‘out’ and ‘inout’ intents
- nilability ergonomics w.r.t. conditional control flow
— collections of non-nilable classes
—implicit accesses to sync/single
« This deck addresses these efforts in detail

—

OUTLINE \

Use and Import Statemen

» Operator Overloading — AR AT A

. " SRS o R ey

Levels of CONVEFSIONE " S frs i s oA st 1 s
‘out’ Intent.Changes ™ :fa = = L EF i Rafiey % L e
Control-Flow Declarations RS a
Reorganizing the Memory Module L AT
Support for Arrays of Classes A S ki
e Deprecating Implicit Reads/Writes of Sync/Sin‘gI_e_ |
Core L anguage Stabilization: Next Steps it o
Other Language and Library Improvements e

USE AND IMPORT STATEMENT
IMPROVEMENTS

e =0

USE/IMPORT IMPROVEMENTS

Background
e Could ‘import’ or ‘use’ types that were defined in a module module Mod |
 But couldn’t explicitly bring in tertiary methods // ‘use’ enables access to record ‘R’
import Mod.someMethod; //error:can’tlist methods in limitation clauses private use DefinesR;
import Mod.R; // error: ‘R’ not defined in ‘Mod’ proc R.someMethod() { .. }
use Mod; // This works, but isn’t very precise proc returnAnR(): R { .. }

» Needed a way to access methods when given an instance of a type

« Methods were visible even if ‘use’ or ‘import’ was ‘private’ or had a limitation clause
— This was inconsistent with other functions or symbols
import DefinesR, Mod.returnAnR; //Nothing here explicitly brings in ‘R.someMethod()'..

var rec = returnAnR();
rec.someMethod () ; // ..but it could be called regardless

e Chapel 1.23 added support for always finding primary and secondary methods from a type’s scope

—

USE/IMPORT IMPROVEMENTS

This Effort

e Enabled listing types with tertiary methods in ‘use’ / ‘import’

use DefinesR;
import Mod.R;

var rec = new R(..)
rec.someMethod () ;

// Now supported; provides access to ‘proc R. *’ in ‘Mod’

’

// Now works!

e Returned to respecting ‘private’ and limitation clauses

import DefinesR, Mod.returnAnR;

var rec = returnAnR() ;

rec.someMethod () ;

—

// ..so now it can’t be called!

module Mod {
// ‘use’ enables access to record ‘R’

private use DefinesR;
proc R.someMethod () {
proc returnAnR(): R {

// Nothing here explicitly brings in ‘R.someMethodQ'...

}

USE/IMPORT IMPROVEMENTS
Impact, and Next Steps

Impact:

e Privacy and limitation clauses are less complicated to explain
—No more exceptions for methods

Next Steps:
o Fix bug with inherited type methods visibility (see issue #17134)

« Ensure operator methods have same visibility as regular methods

« Add support for listing operators in limitation clauses (see issue #17003)
-E.g.
import Modl.+;
use Mod? except -—;

—

8

https://github.com/chapel-lang/chapel/issues/17134
https://github.com/chapel-lang/chapel/issues/17003

OPERATOR OVERLOADING

e

OPERATOR OVERLOADING
Background

e Chapel permitted overloading operators via normal function definitions
proc +(lhs: tl, rhs: t2) { .. } // ‘t2’ can be the same as ‘11’

o Operators could not be defined as methods

« Could get an instance of a type without having its operators available

use DefinesR only R; //Can'tlist‘+ here! module DefinesR {
record R {

var a = new R (D) var f;
var b = new R(2); /
var ¢ = a + b; // Error: the “+’ operator isn’t visible! proc +(lhs: R, rhs: R)

return new R(lhs.f + rhs.f);

}

« Made it difficult to associate operators with a type / find overloaded operators on a given type
—Had to search for individual operators

—

10

OPERATOR OVERLOADING
This Effort

» Added a new ‘operator’ keyword to declare operator overloads
operator +(lhs: tl, rhs: t2) { ..} //‘%2 canbethesame as ‘11’

e Added support for declaring operator overloads as methods
o Can be declared as primary, secondary, or tertiary methods

« Treated like a ‘type’ method, but called as usual (infix/prefix/postfix notation, without a ‘this’ instance)
record R { , .

) module DefinesTertiary {

var f: int; use DefinesR;

operator +(lhs: R, rhs: R) { // Primary method ’

return new R(lhs.f + rhs.f); J/ Tertiary method

operator R.*(lhs: R, rhs: R) {
return new R(lhs.f * rhs.f);

operator R.-(lhs: R, rhs: R) { // Secondary method
return new R(lhs.f - rhs.f);

}

—

11

OPERATOR OVERLOADING

Impact and Status

Impact:

o Operators can now be more closely associated with a type, like traditional methods
—Can also still be declared as standalone functions for type-neutral cases
e The ‘operator’ keyword permits operators to be found more easily

Status:

« Standalone operators declared with the ‘operator’ keyword can be used in place of the ‘proc’ form
o Operator methods have some known issues (see next slide), but behave correctly in basic usage

12

OPERATOR OVERLOADING
Next Steps

e Replace ‘proc <op>’ definitions with ‘operator <op>’ definitions in internal/standard/package libraries
o Use method approach where appropriate

e Deprecate ‘proc <op>’ form
e Decide how to handle forwarding operator methods (see issue #16992) and implement

e Add support for listing operators in forwarding and ‘use’/‘import’ limitation clauses (see issue #17003)

e Ensure method visibility rules apply to operator methods
e Update syntax highlighting modes to highlight ‘operator’ (emacs, vim, etc.)

» Make ‘operator’ visible in documentation of operator functions and methods declared with keyword

« To make searching documentation easier as well
e Today it looks like this for an operator method on type ‘Foo”: proctype Foo.+(lhs: Foo, rhs: Foo)

— .

https://github.com/chapel-lang/chapel/issues/16992
https://github.com/chapel-lang/chapel/issues/17003

LEVELS OF COl

-_,' <

4

LY

v

LEVELS OF CONVERSIONS
Background

e Chapel has supported different kinds of conversions between types

proc f(in arg: real) { }

£f(1); // implicit conversion for a function call
var x: real = 1.0;

x = 1; // conversion in assignment

var y: real = 1; // conversion in initialization

1: real; // cast

e There were open questions about the relationship among these conversions:
e E.g, if an implicit conversion is allowed in initialization, should it also be allowed for function calls?

15

LEVELS OF CONVERSIONS
This Effort

e Developed a conceptual framework for these conversions and updated the language accordingly
o Conversions between types come in 4 levels
o Type authors should be able to choose any of these 4 levels
« Distinguish between implicit conversions for function call arguments, assignment, and initialization
e So far, implicit call conversions only apply to built-in types
e E.g, an‘int’ argument passed to a function accepting a ‘real’
o Allowing them for user-defined types should not impact the rest of these rules

Given Which conversions are also required?

= (assign) init=(initialize) s (cast)
implicit call conversion X X X
= (assign) X X
init=(initialize) X
¢ (cast)

16

LEVELS OF CONVERSIONS
This Effort

e Adjusted the compiler to generate an error when a required conversion is missing:

e no ‘init="between two types when ‘=" is present
e no cast between two types when ‘init="is present

e Cleaned up some cases where the compiler translated a conversion into default-initialization + assign

e Added a user-facing way to define casts with ‘operator :” as follows:
operator : (from: fromType, type t: toType) { ... }

17

LEVELS OF CONVERSIONS
Impact and Next Steps

Impact:

o Support for conversions is now expected to be stable
- Even if user-defined implicit conversions for function calls are added later

Next Steps:
« Consider automatically generating ‘operator :’ from ‘init=" when it is not provided
« Consider enabling implicit conversions for function calls
o Implement tertiary initializers and support them for all types
—to allow conversions to be defined for tuples, arrays, integers, and other built-in types

18

‘OUT’ INTENT CHANGES
Background

e We can think of the ‘out’ intent as creating a temporary variable at the call site and then assigning:

proc fOut (out arg: R) { ... } proc fOut’ (arg: R) { ... }
var outTmp: R;

fout (c) translates into ::} fout’ (outTmp) ;
c = outTmp;

o Note that the ‘out’ infent uses ‘=" in some cases and ‘init="in others due to split init

e |t was unclear what should happen when the ‘out’ formal has a different type from the actual argument:
proc int80ut (out arg: int(8)) { }
var myInt: int = 1;
int80ut (myInt); //should this call resolve? (traditionally, it hasn’t)

e Similar code with ‘return’ was already working:

proc returnInt8(): int(8) { return 0; }
var myInt: int = 1;
myInt = returnInt8(); //works, uses a conversion when assigning to ‘myint’

—

IZO

‘OUT’ INTENT CHANGES
This Effort

e Changed ‘out’ intent to be more similar to ‘return’

« the type of an ‘out’ intent formal is now inferred from the function body rather than the call site
« types of ‘out’ intent formals are no longer considered in candidate selection or disambiguation

e Resolved open questions about how ‘out’ interacts with ‘=" / ‘init=" overloads
e conversions enabled with ‘=" / ‘init="can be run on a call to a function with ‘out’
» these conversions still do not affect which function is called

e Adjusted ‘inout’ to reflect a composition of ‘in” and ‘out’
« the type is inferred from the call site, like ‘in’
e conversions are considered in candidate selection, like ‘in’
e as the called function is returning, actuals are set from the ‘inout’ formals with ‘=" /’init=’, like ‘out’

e Changed some ‘out’ intent arguments in modules and tests to ‘ref’
« when the type information needed to flow from the call site

—

21

‘OUT’ INTENT CHANGES

Impact

e Conversions are now allowed for ‘out’ function calls using ‘=’ / ‘init=" as one might expect:

proc int80ut (out arg: int(8)) { }
var myInt: int = 1;
int80ut (myInt); //now resolves, uses ‘=" to set ‘myint’ from the ‘out arg’ formal

e Now ‘out’ formals can be used to initialize untyped variables

proc f (out a, out b, out c) {

a = 1;
b = 2.0;
c = "hi",’

var x, vy, zZ;
t(x, y, z);

writeln((x,vy,z)); //prints(1, 2.0, hD

—

‘OUT’ INTENT CHANGES
Next Steps

e Allow programmers to request ‘out’ formal type inference from the call site (issue #17198)
 ‘channel.readbits’ used to look like this

proc channel.readbits (out v: integral, nbits: integral): bool throws

—however, that does not work if the type of ‘v’ is determined by the function body
—for now, ‘channel.readbits’ uses the ‘ref’ intent:

proc channel.readbits (ref v: integral, nbits: integral): bool throws

« a type query expression could indicate that the type should come from the call site:

proc channel.readbits(out v: ?T, nbits: integral): bool throws

« such a mechanism could enable a few other patterns as well:

proc foo(out B: ?T) where isArray(T) { for 1 in B.domain do B(1i) = 1; }
proc f (out arg: ?T) { if something then arg = 1; }

—

23

https://github.com/chapel-lang/chapel/issues/17198

CONTROL-FLOW DECLARATIONS

e

CONTROL-FLOW DECLARATIONS
Background and This Effort

Background: a nil-check is required yet unnecessary after establishing that a nilable variable is non-nil

var c: MyClass? = ...;
if ¢ then
c.doSomething () ; //error:did you mean ‘c.doSomething(Q’ ?

This Effort: the non-nilable value can be stored in a “control-flow variable” or “constant”

if const c2 = ¢ then
c2.doSomething () ; // OK: ‘c2’ is non-nilable
e also available in while-do loops
while const curr = computeNext () do
curr.process () ; // OK: ‘curr’ is non-nilable

a control-flow variable is accessible only in the corresponding then-branch or loop body
if it is declared as ‘var’, it can be assigned

a control-flow variable stores a ‘borrow’ when its control-flow expression is ‘owned’ or ‘shared’

— |

25

CONTROL-FLOW DECLARATIONS
Impact and Next Steps

Impact:

o improved nilability ergonomics
 superfluous postfix-! operations can now be avoided

Next Steps:

« potentially permit the control-flow variable to retain ‘owned’ or ‘shared’ management when desired
« potentially consider allowing other types in the control-flow declarations, like numbers

— .

REORGANIZING THE MEMORY
MODULE

e - e

REORGANIZING THE MEMORY MODULE
Background and This Effort

Background: The ‘Memory’ module contained functions to diagnose memory usage

e E.g., ‘memUsedQ’ returned the memory usage of the current locale
e E.g, ‘physicalMemory(Q)’ returned the total memory on a locale

This Effort: Expanded the capabilities of the ‘Memory’ module

« Reorganized the ‘Memory’ module into submodules

—‘Memory’: The root module
- ‘Memory.Diagnostics”: The contents of the ‘Memory’ module were moved here
- ‘Memory.Initialization”: New functions for low-level moves and deinits

o Deprecated the functions and types in the ‘Memory’ module

28

REORGANIZING THE MEMORY MODULE

The ‘Memory.Initialization’ Module

e The ‘Memory.Initialization’ module provides functions to perform low-level moves

o A low-level move copies the bytes of a value around in memory
—Like C assignment or C ‘memcpy()’

o A low-level move does not perform assignment (e.g., Chapel’s proc=)
— The destination is overwritten, and leaks/crashes can occur if used improperly

» A low-level move does not produce a copy (e.g., Chapel’s init=)
— The ‘movelnitialize()’ function will error if calling it would copy ‘src’

var src: nonPodRecord;
var dst: nonPodRecord = noinit; //Assume ‘noinit’ works for types besides arrays (it currently does not)
movelnitialize (dst, src); // Compiler error: Call to ‘movelnitialize’ would copy ‘src’

writeln (src) ;

—

29

REORGANIZING THE MEMORY MODULE

The ‘Memory.Initialization’ Module

e The ‘Memory.Initialization’ module provides tools to help users build their own collections

use Memory.Initialization;

record myList {
// Assume ‘noinit’ works for non-POD types (right now it does not)

var data: [0..7] nonPodRecord = noinit; proc mylList.clear () ({

var size = 0; for i in 0..<size {
} // Destroy elements of a ‘myList’ manually
proc mylList.add (in x: nonPodRecord) { explicitDeinit (data[il]);

// Move X’ into ‘data’ without assigning it)

movelInitialize (data[size], Xx); }

size += 1;

}
proc myList.popLast() {

size -= 1;
return moveToValue (data[size]); //Consume data[size] and move it into a new value

}

— .

REORGANIZING THE MEMORY MODULE
Impact, Next Steps

Impact: The ‘Memory’ namespace has been expanded for use by several memory-themed modules
« Users should change uses of ‘Memory’ to ‘Memory.Diagnostics’ to avoid deprecation warnings

Next Steps:

« Make the compiler aware of calls to ‘explicitDeinit()’
— It still deinitializes variables that have had ‘explicitDeinit()’ called on them

o Update standard collections to use ‘Memory.Initialization’ where possible
— Strive to build our collections entirely out of user-facing features

« Explore more kinds of low-level moves
—Such as a function to move a value across locales, see:; #15808

—

31

https://github.com/chapel-lang/chapel/issues/15808

SUPPORT FOR ARRAYS OF CLASSES

e - e

SUPPORT FOR ARRAYS OF CLASSES
Background

Background: Only one flavor of fixed size array was left unsupported in the previous release

list map set fixed array resizedarray assoc array sparse tuple
ownedt v 4 ¢ 4
sharedt ¢ * *
borrowed t * ¢ 4
unmanaged t ¢ ¢ ¢
(shared t, sharedt) X 4 ¢ 4
owned ?
shared 1?
borrowed 1?
unmanaged 1?
(shared 1?, shared 1?)
record

Key
Working X Not yet working ¢ Not expected to work

—

SUPPORT FOR ARRAYS OF CLASSES
This Effort

This Effort: Added support for fixed arrays of tuples containing non-nilable classes

list map set fixed array resizedarray assoc array sparse tuple
ownedt 4 ¢ 4
sharedt ¢ * *
borrowed t * ¢ 4
unmanaged t 4 ¢ ¢
(shared t, sharedt) 4 4 4
owned ?
shared 1?
borrowed 1?
unmanaged 1?
(shared 1?, shared 1?)
record

* Bug related to default initialization of tuple array

elements containing non-nilable classes
@ working

: * Fixed by #16802 | 5

https://github.com/chapel-lang/chapel/pull/16802

SUPPORT FOR ARRAYS OF CLASSES
Impact and Next Steps

Impact: Fixed-size arrays of all class flavors are now supported

Next Steps:

o Support resized arrays of non-nilable classes
—see discussion in ‘Ongoing Efforts’ release notes

— .

DEPRECATING IMPLICIT
READS/WRITES OF SYNC/SINGLE

e =0

IMPLICIT SYNC READS/WRITES
Background

e Since Chapel’s inception, sync/single variables have supported implicit accesses:

var count$: sync int;
count$ = count$ + 1; //equivalentto the more explicit: ‘countS.writeEF(countS.readFEQ + 1);

e Rationale:
e more convenient than requiring methods for every read/write
 followed the precedent set by the Tera MTA / Cray XMT programming model
e However, this has also been a source of long-term concern:
o unwitting reads/writes to such variables can cause deadlocks
—this led to the convention of naming sync/single variables with a ‘S’ to alert programmers to their presence
—yet, it’s arguably a red flag for a language to depend on a naming convention to ensure clarity
 has also resulted in some asymmetries in the language, e.g.:

var x = y; // in most cases, x.type == y.type
var z = counts$; // but here, z.type == int

e This stood out as a core language feature we’d likely regret freezing as-is

—

37

IMPLICIT SYNC READS/WRITES
This Effort

e Updated Chapel’'s modules and tests to use explicit read/write methods
e Deprecated implicit reads/writes of syncs/singles
e given:

var s$, s2$: sync int;
« the following patterns now generate warnings about implicit reads/writes being deprecated:

var X = SS; // rewrite: var x = sS.readFEQ;

s$S = 1; // rewrite: sS.writeEF(1);

sS += 1; // rewrite: sS.writeEF(sS.readFEQ + 1);
s$S = s2$; // rewrite: sS.writeEF(s2S.readFEQ);

. 8$ + s2$% ..; // rewrite: ... sS.readFEQ + s2S.readFEQ ...
f(s$); proc f(x: int) {..} // rewrite: f(sS.readFEQ)

if s$ then .. // rewrite: if sS.readFEQ then ...

« warnings are of the form:
—warning: Initializing a type-inferred variable from a 'sync' is deprecated; apply a '.read??(Q' method to the right-hand side
—warning: Direct assignment to 'sync' variables is deprecated; apply a 'write??()' method to modify one
—efc.

— |

IMPLICIT SYNC READS/WRITES
Impact and Next Steps

Impact:
o New warnings should encourage users to stop relying on implicit reads/writes so that we can remove them

Next Steps:
« Determine how compiler-generated initializers of objects with sync/single fields should work
—see next slide
e Remove support for implicit reads/writes
« Consider ceasing to recommend that sync/single variables be decorated with ‘S’
o Implement default I/O for syncs/singles
—the following has traditionally not been supported due to questions about whether to interpret it as ‘writeln(s$.readFEQ);

writeln(s$);
- but without implicit reads/writes, it seems more obvious to treat it as 10 on the sync/single itself

- e.g.,, perhaps write the value if full, a string like ‘<empty>’ if not?

— .

IMPLICIT SYNC READS/WRITES

Next Steps: Compiler-generated Initializers

e Given:
class C {
var s: sync int;
}
e Traditionally, the compiler has generated:

proc C.init (s: sync int) {
this.s = s; //this generates a warning today, requiring the user to specify an initializer if they want to avoid it

}
e More useful would be to have the compiler generate:

proc C.init (s: int) {
this.s = s;
}
« rationale: the only ‘init=" routine that a sync variable supports has the form:

proc (sync t).init=(rhs: t) { ..}
« open question: would such behavior be specific to syncs/singles, or applicable to user types as well?

—

40

CORE LANGUAGE STABILIZATION:
NEXT STEPS

e -

CORE LANGUAGE STABILIZATION
Next Steps

e Knock out remaining language issues:
o Complete operator methods, deprecating ‘proc’-style operator overloads
« Resolve sync field initializer issues and remove implicit sync accesses
o Complete work on arrays and collections of non-nilable classes
e Focus increasingly on standard library stabilization
e Complete interfaces
e Continue to explore impact of:
 capture of iterator expressions intfo untyped variables:

var x = [1 in 1..10] 1i; //whatis the type of x’?
o O-tuples

42

CORE LANGUAGE STABILIZATION

Next Steps: Longer-term

o After Chapel 2.0, what else remains to be stabilized / defined?
o first-class functions
o ability to create records with non-default behaviors (e.g., argument / task intents)
« interoperability features
 partial reductions, scans
« how parallel and zippered iterators are defined
 user-defined reductions and scans
 user-defined domain maps
e ability to disable pass-by-keyword matching

— .

OTHER LANGUAGE AND LIBRARY
IMPROVEMENTS

e =0

OTHER LANGUAGE AND LIBRARY IMPROVEMENTS

For a more complete list of language and library changes and improvements in the 1.24 release,
refer to the following sections in the CHANGES.md file:

e ‘Syntactic / Naming Changes’

 ‘Semantic Changes / Changes to Chapel Language’

e ‘Namespace Changes’

e ‘New Features’

e ‘Feature Improvements’

 ‘Deprecated / Unstable / Removed Language Features’
e ‘Deprecated / Removed Library Features’

 ‘Standard Library Modules’

 ‘Package Modules’

« ‘Standard Domain Maps (Layouts and Distributions)’

— .

https://github.com/chapel-lang/chapel/blob/release/1.24/CHANGES.md

THANK YOU

https://chapel-lang.org
@ChapelLanguage

PN LR

