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CORE LANGUAGE STABILIZATION



Background and This Effort

Background:
• Over the past several releases, we have been working toward a forthcoming Chapel 2.0 release
• Intent: stop making backward-breaking changes to core language and library features

– use semantic versioning to reflect if/when such changes are made

This Effort:
• Chapel 1.24 addresses most major language-related concerns identified in Chapel 1.23

– resolution of tertiary methods and operators
– various forms of conversions between types
– definition of ‘out’ and ‘inout’ intents
– nilability ergonomics w.r.t. conditional control flow
– collections of non-nilable classes
– implicit accesses to sync/single

• This deck addresses these efforts in detail
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OUTLINE

• Use and Import Statement Improvements
• Operator Overloading
• Levels of Conversions
• ‘out’ Intent Changes
• Control-Flow Declarations
• Reorganizing the Memory Module
• Support for Arrays of Classes
• Deprecating Implicit Reads/Writes of Sync/Single
• Core Language Stabilization: Next Steps
• Other Language and Library Improvements



USE AND IMPORT STATEMENT 
IMPROVEMENTS



Background

• Could ‘import’ or ‘use’ types that were defined in a module
• But couldn’t explicitly bring in tertiary methods

import Mod.someMethod; // error: can’t list methods in limitation clauses
import Mod.R;          // error: ‘R’ not defined in ‘Mod’
use Mod;               // This works, but isn’t very precise

• Needed a way to access methods when given an instance of a type
• Methods were visible even if ‘use’ or ‘import’ was ‘private’ or had a limitation clause

– This was inconsistent with other functions or symbols
import DefinesR, Mod.returnAnR;  // Nothing here explicitly brings in ‘R.someMethod()’…

var rec = returnAnR();
rec.someMethod();                // …but it could be called regardless

• Chapel 1.23 added support for always finding primary and secondary methods from a type’s scope
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USE/IMPORT IMPROVEMENTS

module Mod {
// ‘use’ enables access to record ‘R’

private use DefinesR;
proc R.someMethod() { … }
proc returnAnR(): R { … }

}



This Effort

• Enabled listing types with tertiary methods in ‘use’ / ‘import’

use DefinesR;
import Mod.R;     // Now supported; provides access to ’proc R.*’ in ‘Mod’

var rec = new R(…);
rec.someMethod(); // Now works!

• Returned to respecting ‘private’ and limitation clauses
import DefinesR, Mod.returnAnR;  // Nothing here explicitly brings in ‘R.someMethod()’…

var rec = returnAnR();
rec.someMethod();                // …so now it can’t be called!
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USE/IMPORT IMPROVEMENTS

module Mod {
// ‘use’ enables access to record ‘R’

private use DefinesR;
proc R.someMethod() { … }
proc returnAnR(): R { … }

}



Impact, and Next Steps

Impact:
• Privacy and limitation clauses are less complicated to explain

– No more exceptions for methods

Next Steps:
• Fix bug with inherited type methods visibility (see issue #17134)

• Ensure operator methods have same visibility as regular methods

• Add support for listing operators in limitation clauses (see issue #17003)
– E.g.
import Mod1.+;
use Mod2 except -;
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https://github.com/chapel-lang/chapel/issues/17134
https://github.com/chapel-lang/chapel/issues/17003


OPERATOR OVERLOADING



Background

• Chapel permitted overloading operators via normal function definitions
proc +(lhs: t1, rhs: t2) { … }      // ‘t2’ can be the same as ‘t1’

• Operators could not be defined as methods

• Could get an instance of a type without having its operators available
use DefinesR only R; // Can’t list ‘+’ here!

var a = new R(5);
var b = new R(2);
var c = a + b;       // Error: the ‘+’ operator isn’t visible!

• Made it difficult to associate operators with a type / find overloaded operators on a given type
– Had to search for individual operators
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OPERATOR OVERLOADING

module DefinesR {
record R {

var f;
}
proc +(lhs: R, rhs: R)

return new R(lhs.f + rhs.f);
}



This Effort

• Added a new ‘operator’ keyword to declare operator overloads
operator +(lhs: t1, rhs: t2) { … }  // ‘t2’ can be the same as ‘t1’

• Added support for declaring operator overloads as methods
• Can be declared as primary, secondary, or tertiary methods
• Treated like a ‘type’ method, but called as usual (infix/prefix/postfix notation, without a ‘this’ instance)

record R {
var f: int;
operator +(lhs: R, rhs: R) {   // Primary method

return new R(lhs.f + rhs.f);
}

}

operator R.–(lhs: R, rhs: R) {   // Secondary method

return new R(lhs.f – rhs.f);
}
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OPERATOR OVERLOADING

module DefinesTertiary {
use DefinesR;

// Tertiary method

operator R.*(lhs: R, rhs: R) {
return new R(lhs.f * rhs.f);

}
}



Impact and Status

Impact:
• Operators can now be more closely associated with a type, like traditional methods

– Can also still be declared as standalone functions for type-neutral cases

• The ‘operator’ keyword permits operators to be found more easily

Status:
• Standalone operators declared with the ‘operator’ keyword can be used in place of the ‘proc’ form
• Operator methods have some known issues (see next slide), but behave correctly in basic usage
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Next Steps

• Replace ‘proc <op>’ definitions with ‘operator <op>’ definitions in internal/standard/package libraries
• Use method approach where appropriate

• Deprecate ‘proc <op>’ form

• Decide how to handle forwarding operator methods (see issue #16992) and implement

• Add support for listing operators in forwarding and ‘use’/‘import’ limitation clauses (see issue #17003)

• Ensure method visibility rules apply to operator methods

• Update syntax highlighting modes to highlight ‘operator’ (emacs, vim, etc.)

• Make ‘operator’ visible in documentation of operator functions and methods declared with keyword
• To make searching documentation easier as well
• Today it looks like this for an operator method on type ‘Foo’:
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https://github.com/chapel-lang/chapel/issues/16992
https://github.com/chapel-lang/chapel/issues/17003


LEVELS OF CONVERSIONS



Background

• Chapel has supported different kinds of conversions between types
proc f(in arg: real) { }
f(1);                    // implicit conversion for a function call

var x: real = 1.0;
x = 1;                   // conversion in assignment

var y: real = 1;         // conversion in initialization

1: real;                 // cast

• There were open questions about the relationship among these conversions:
• E.g., if an implicit conversion is allowed in initialization, should it also be allowed for function calls? 
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This Effort

• Developed a conceptual framework for these conversions and updated the language accordingly
• Conversions between types come in 4 levels
• Type authors should be able to choose any of these 4 levels
• Distinguish between implicit conversions for function call arguments, assignment, and initialization

• So far, implicit call conversions only apply to built-in types
• E.g., an ‘int’ argument passed to a function accepting a ‘real’
• Allowing them for user-defined types should not impact the rest of these rules
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LEVELS OF CONVERSIONS

Given Which conversions are also required?

= (assign) init= (initialize) : (cast)

implicit call conversion X X X

= (assign) X X

init= (initialize) X

: (cast)



This Effort

• Adjusted the compiler to generate an error when a required conversion is missing:
• no ‘init=’ between two types when ‘=’ is present
• no cast between two types when ‘init=’ is present

• Cleaned up some cases where the compiler translated a conversion into default-initialization + assign

• Added a user-facing way to define casts with ‘operator :’ as follows:
operator : (from: fromType, type t: toType) { ... }
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Impact and Next Steps

Impact:
• Support for conversions is now expected to be stable 

– Even if user-defined implicit conversions for function calls are added later

Next Steps:
• Consider automatically generating ‘operator :’ from ‘init=’ when it is not provided
• Consider enabling implicit conversions for function calls
• Implement tertiary initializers and support them for all types

– to allow conversions to be defined for tuples, arrays, integers, and other built-in types
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‘OUT’ INTENT CHANGES



Background
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‘OUT’ INTENT CHANGES

• We can think of the ‘out’ intent as creating a temporary variable at the call site and then assigning:

• Note that the ‘out’ intent uses ‘=’ in some cases and ‘init=’ in others due to split init

• It was unclear what should happen when the ‘out’ formal has a different type from the actual argument:
proc int8Out(out arg: int(8)) { }
var myInt: int = 1;
int8Out(myInt);  // should this call resolve?  (traditionally, it hasn’t)

• Similar code with ‘return’ was already working:
proc returnInt8(): int(8) { return 0; }
var myInt: int = 1;
myInt = returnInt8();  // works, uses a conversion when assigning to ‘myInt’ 

fOut(c)
var outTmp: R; 
fOut’(outTmp); 
c = outTmp;

translates into

proc fOut(out arg: R) { ... } proc fOut’(arg: R) { ... }



This Effort

• Changed ‘out’ intent to be more similar to ‘return’
• the type of an ‘out’ intent formal is now inferred from the function body rather than the call site
• types of ‘out’ intent formals are no longer considered in candidate selection or disambiguation

• Resolved open questions about how ‘out’ interacts with ‘=’ / ‘init=’ overloads
• conversions enabled with ‘=’ / ‘init=’ can be run on a call to a function with ‘out’
• these conversions still do not affect which function is called

• Adjusted ‘inout’ to reflect a composition of ‘in’ and ‘out’
• the type is inferred from the call site, like ‘in’
• conversions are considered in candidate selection, like ‘in’
• as the called function is returning, actuals are set from the ‘inout’ formals with ‘=’ / ’init=’, like ‘out’

• Changed some ‘out’ intent arguments in modules and tests to ‘ref’
• when the type information needed to flow from the call site
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Impact

• Conversions are now allowed for ‘out’ function calls using ‘=’ / ‘init=’ as one might expect:
proc int8Out(out arg: int(8)) { }
var myInt: int = 1;
int8Out(myInt);  // now resolves, uses ‘=’ to set ‘myInt’ from the ‘out arg’ formal

• Now ‘out’ formals can be used to initialize untyped variables
proc f(out a, out b, out c) {

a = 1;
b = 2.0;
c = "hi";

}

var x, y, z;
f(x, y, z);

writeln( (x,y,z) );  // prints (1, 2.0, hi)
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Next Steps

• Allow programmers to request ‘out’ formal type inference from the call site (issue #17198)
• ‘channel.readbits’ used to look like this

proc channel.readbits(out v: integral, nbits: integral): bool throws

– however, that does not work if the type of ‘v’ is determined by the function body
– for now, ‘channel.readbits’ uses the ‘ref’ intent:

proc channel.readbits(ref v: integral, nbits: integral): bool throws

• a type query expression could indicate that the type should come from the call site:
proc channel.readbits(out v: ?T, nbits: integral): bool throws

• such a mechanism could enable a few other patterns as well:
proc foo(out B: ?T) where isArray(T) { for i in B.domain do B(i) = i; }
proc f(out arg: ?T) { if something then arg = 1; }
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https://github.com/chapel-lang/chapel/issues/17198


CONTROL-FLOW DECLARATIONS



Background and This Effort

Background: a nil-check is required yet unnecessary after establishing that a nilable variable is non-nil
var c: MyClass? = ...;
if c then

c.doSomething();  // error: did you mean ‘c!.doSomething()’ ?

This Effort: the non-nilable value can be stored in a “control-flow variable” or “constant”
if const c2 = c then

c2.doSomething();       // OK: ‘c2’ is non-nilable

• also available in while-do loops
while const curr = computeNext() do

curr.process();         // OK: ‘curr’ is non-nilable

• a control-flow variable is accessible only in the corresponding then-branch or loop body
• if it is declared as ‘var’, it can be assigned
• a control-flow variable stores a ‘borrow’ when its control-flow expression is ‘owned’ or ‘shared’
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Impact and Next Steps

Impact:
• improved nilability ergonomics
• superfluous postfix-! operations can now be avoided

Next Steps:
• potentially permit the control-flow variable to retain ‘owned’ or ‘shared’ management when desired
• potentially consider allowing other types in the control-flow declarations, like numbers
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REORGANIZING THE MEMORY 
MODULE



Background and This Effort

Background: The ‘Memory’ module contained functions to diagnose memory usage
• E.g., ‘memUsed()’ returned the memory usage of the current locale
• E.g., ‘physicalMemory()’ returned the total memory on a locale

This Effort: Expanded the capabilities of the ‘Memory’ module
• Reorganized the ‘Memory’ module into submodules

– ‘Memory’: The root module
– ‘Memory.Diagnostics’: The contents of the ‘Memory’ module were moved here
– ‘Memory.Initialization’: New functions for low-level moves and deinits

• Deprecated the functions and types in the ‘Memory’ module
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The ‘Memory.Initialization’ Module

• The ‘Memory.Initialization’ module provides functions to perform low-level moves

• A low-level move copies the bytes of a value around in memory
– Like C assignment or C ‘memcpy()’

• A low-level move does not perform assignment (e.g., Chapel’s proc=)
– The destination is overwritten, and leaks/crashes can occur if used improperly

• A low-level move does not produce a copy (e.g., Chapel’s init=)
– The ‘moveInitialize()’ function will error if calling it would copy ‘src’
var src: nonPodRecord;
var dst: nonPodRecord = noinit; // Assume ‘noinit’ works for types besides arrays (it currently does not)
moveInitialize(dst, src);       // Compiler error: Call to ‘moveInitialize’ would copy ‘src’

writeln(src);
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The ‘Memory.Initialization’ Module

• The ‘Memory.Initialization’ module provides tools to help users build their own collections
use Memory.Initialization;

record myList {
// Assume ‘noinit’ works for non-POD types (right now it does not)

var data: [0..7] nonPodRecord = noinit;
var size = 0;

}
proc myList.add(in x: nonPodRecord) {

// Move ‘x’ into ‘data’ without assigning it

moveInitialize(data[size], x); 
size += 1;

}
proc myList.popLast() {

size -= 1;
return moveToValue(data[size]); // Consume data[size] and move it into a new value

}
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proc myList.clear() {
for i in 0..<size {

// Destroy elements of a ‘myList’ manually

explicitDeinit(data[i]);
}

}



Impact, Next Steps

Impact: The ‘Memory’ namespace has been expanded for use by several memory-themed modules
• Users should change uses of ‘Memory’ to ‘Memory.Diagnostics’ to avoid deprecation warnings

Next Steps:
• Make the compiler aware of calls to ‘explicitDeinit()’

– It still deinitializes variables that have had ‘explicitDeinit()’ called on them

• Update standard collections to use ‘Memory.Initialization’ where possible
– Strive to build our collections entirely out of user-facing features

• Explore more kinds of low-level moves
– Such as a function to move a value across locales, see: #15808
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https://github.com/chapel-lang/chapel/issues/15808


SUPPORT FOR ARRAYS OF CLASSES



Background

Background: Only one flavor of fixed size array was left unsupported in the previous release
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list map set fixed array resized array assoc array sparse tuple
owned t ✅ ✅ ✅ ✅ " " " ✅

shared t ✅ ✅ ✅ ✅ " " " ✅

borrowed t ✅ ✅ ✅ ✅ " " " ✅

unmanaged t ✅ ✅ ✅ ✅ " " " ✅

(shared t, shared t) ✅ ✅ ✅ ❌ " " " ✅

owned t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

shared t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

borrowed t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

unmanaged t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

(shared t?, shared t?) ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

record ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

Key
✅Working ❌ Not yet working      🔹 Not expected to work



Key
✅Working ❌ Not yet working      🔹 Not expected to work

This Effort

This Effort: Added support for fixed arrays of tuples containing non-nilable classes
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list map set fixed array resized array assoc array sparse tuple
owned t ✅ ✅ ✅ ✅ " " " ✅

shared t ✅ ✅ ✅ ✅ " " " ✅

borrowed t ✅ ✅ ✅ ✅ " " " ✅

unmanaged t ✅ ✅ ✅ ✅ " " " ✅

(shared t, shared t) ✅ ✅ ✅ ✅ " " " ✅

owned t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

shared t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

borrowed t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

unmanaged t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

(shared t?, shared t?) ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

record ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅• Bug related to default initialization of tuple array 
elements containing non-nilable classes
• Fixed by #16802

https://github.com/chapel-lang/chapel/pull/16802


Impact and Next Steps

Impact:  Fixed-size arrays of all class flavors are now supported

Next Steps:
• Support resized arrays of non-nilable classes

– see discussion in ‘Ongoing Efforts’ release notes
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DEPRECATING IMPLICIT 
READS/WRITES OF SYNC/SINGLE



Background

• Since Chapel’s inception, sync/single variables have supported implicit accesses:
var count$: sync int;
count$ = count$ + 1;  // equivalent to the more explicit: ‘count$.writeEF(count$.readFE() + 1);’

• Rationale:
• more convenient than requiring methods for every read/write
• followed the precedent set by the Tera MTA / Cray XMT programming model

• However, this has also been a source of long-term concern:
• unwitting reads/writes to such variables can cause deadlocks

– this led to the convention of naming sync/single variables with a ‘$’ to alert programmers to their presence
– yet, it’s arguably a red flag for a language to depend on a naming convention to ensure clarity

• has also resulted in some asymmetries in the language, e.g.:
var x = y;        // in most cases, x.type == y.type
var z = count$;   // but here, z.type == int

• This stood out as a core language feature we’d likely regret freezing as-is
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This Effort

• Updated Chapel’s modules and tests to use explicit read/write methods
• Deprecated implicit reads/writes of syncs/singles

• given:
var s$, s2$: sync int;

• the following patterns now generate warnings about implicit reads/writes being deprecated:
var x = s$;                  // rewrite:  var x = s$.readFE();
s$ = 1;                      // rewrite:  s$.writeEF(1);
s$ += 1;                     // rewrite:  s$.writeEF(s$.readFE() + 1);
s$ = s2$;                    // rewrite:  s$.writeEF(s2$.readFE());

… s$ + s2$ …;                // rewrite:  … s$.readFE() + s2$.readFE() …
f(s$);  proc f(x: int) {…}   // rewrite:  f(s$.readFE())
if s$ then …                 // rewrite:  if s$.readFE() then …

• warnings are of the form:
– warning: Initializing a type-inferred variable from a 'sync' is deprecated; apply a '.read??()' method to the right-hand side
– warning: Direct assignment to 'sync' variables is deprecated; apply a 'write??()' method to modify one
– etc.
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Impact and Next Steps

Impact:
• New warnings should encourage users to stop relying on implicit reads/writes so that we can remove them

Next Steps:
• Determine how compiler-generated initializers of objects with sync/single fields should work

– see next slide

• Remove support for implicit reads/writes
• Consider ceasing to recommend that sync/single variables be decorated with ‘$’
• Implement default I/O for syncs/singles

– the following has traditionally not been supported due to questions about whether to interpret it as ‘writeln(s$.readFE());’
writeln(s$);

– but without implicit reads/writes, it seems more obvious to treat it as IO on the sync/single itself
– e.g., perhaps write the value if full, a string like ‘<empty>’ if not?
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Next Steps: Compiler-generated Initializers

• Given:
class C {

var s: sync int;
}

• Traditionally, the compiler has generated:
proc C.init(s: sync int) {

this.s = s;  // this generates a warning today, requiring the user to specify an initializer if they want to avoid it

}

• More useful would be to have the compiler generate:
proc C.init(s: int) {

this.s = s;
}

• rationale: the only ‘init=’ routine that a sync variable supports has the form:
proc (sync t).init=(rhs: t) { … }

• open question: would such behavior be specific to syncs/singles, or applicable to user types as well?
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CORE LANGUAGE STABILIZATION:
NEXT STEPS



Next Steps

• Knock out remaining language issues:
• Complete operator methods, deprecating ‘proc’-style operator overloads
• Resolve sync field initializer issues and remove implicit sync accesses
• Complete work on arrays and collections of non-nilable classes

• Focus increasingly on standard library stabilization
• Complete interfaces
• Continue to explore impact of:

• capture of iterator expressions into untyped variables:
var x = [i in 1..10] i;  // what is the type of ‘x’?

• 0-tuples
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Next Steps: Longer-term

• After Chapel 2.0, what else remains to be stabilized / defined?
• first-class functions
• ability to create records with non-default behaviors (e.g., argument / task intents)
• interoperability features
• partial reductions, scans
• how parallel and zippered iterators are defined
• user-defined reductions and scans
• user-defined domain maps
• ability to disable pass-by-keyword matching
• …
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OTHER LANGUAGE AND LIBRARY 
IMPROVEMENTS



For a more complete list of language and library changes and improvements in the 1.24 release, 
refer to the following sections in the CHANGES.md file:

• ‘Syntactic / Naming Changes’
• ‘Semantic Changes / Changes to Chapel Language’

• ‘Namespace Changes’
• ‘New Features’
• ‘Feature Improvements’

• ‘Deprecated / Unstable / Removed Language Features’
• ‘Deprecated / Removed Library Features’

• ‘Standard Library Modules’
• ‘Package Modules’
• ‘Standard Domain Maps (Layouts and Distributions)’
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https://github.com/chapel-lang/chapel/blob/release/1.24/CHANGES.md


THANK YOU
https://chapel-lang.org
@ChapelLanguage


