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CHAPEL STABILIZATION
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• ‘in’, ‘out’, and ‘inout’ Intents
• Stabilizing Standard Libraries
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CHAPEL STABILIZATION OVERVIEW



• Chapel 2.0: A forthcoming release in which the core language is stabilized to avoid breaking user code

• Chapel 1.23 contained very few breaking changes compared to other recent releases
• addressed main issues noted in Chapel 1.22 release notes: POI, array initialization, init/deinit order, …
• main upgrade issue has been the need to ‘use’/’import’ standard modules that had incorrectly been visible
• contrast with:

– Chapel 1.17: shifted from constructors to initializers
– Chapel 1.18: switched classes to managed memory
– Chapel 1.19: changed throw/catch to use ‘owned’ errors
– Chapel 1.20: made classes non-nilable by default
– Chapel 1.21: added support for split initialization and copy elision
– Chapel 1.22: switched from 1-based implicit indices to 0-based

• Next steps:
• take stock of where we are with language stability
• focus increasingly on library stability
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IMPLICIT SYNC READS/WRITES



Background

Background:
• Since Chapel’s inception, sync/single variables have supported implicit accesses:

var count$: sync int;
count$ = count$ + 1;  // equivalent to: ‘count$.writeEF(count$.readFE() + 1);’

• Rationale:
– more convenient than requiring methods for every read/write
– followed the precedent set by the Tera MTA / Cray XMT programming model

• However, this has also been a source of long-term concern:
– unwitting reads/writes to such variables can cause deadlock

– this led to the convention of naming sync/single variables with a ‘$’ to alert programmers to their presence

– yet, it’s arguably a red flag when a language depends so heavily on a naming convention like this for clarity
– has also resulted in some asymmetries in the language, e.g.:
var x = y;        // in most cases, x.type == y.type
var z = count$;   // here, z.type == int

• In considering aspects of the core language we might regret freezing as-is, this stood out
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This Effort, Status, and Next Steps

This Effort:
• Explored the impact of disabling implicit accesses

– on our code base
– on key user applications

• Generally, increased our confidence that removing implicit sync accesses would be a positive change
– makes programmer’s intent more explicit
– removes special cases

Status:
• Failed to deprecate implicit sync accesses in time for Chapel 1.23.0

– updating Chapel code base to avoid implicit reads/writes was straightforward, though laborious
– compiler’s reliance on implicit reads/writes was more complicated

– particularly in the context of compiler-generated initializers

Next Steps: Barring significant objections, deprecate these accesses for the next Chapel release
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IN, OUT, AND INOUT INTENTS



Motivation

• This section considers how ‘in’, ‘out’, and ‘inout’ arguments might interact with ‘init=’

• Why is this an interesting topic?
• These intents…

…currently support implicit conversions in some cases but not others
…have become more like initializing and returning variables over time, yet behave differently in mixed-type situations

• These inconsistencies point to a potential language design problem

• There are several use cases that would benefit from user-defined implicit conversions:
– types that wrap integers, e.g. ‘byteIndex’ and ‘codepointIndex’
– converting from ‘strideable=false’ to ‘strideable=true’ ranges

• ‘init=’ already supports many patterns that seem similar to implicit conversion
– yet it does not enable implicit conversions in argument passing
– can we rationalize the current behavior, or is there something missing?
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Background

• A record can support initialization and assignment from another type with ‘init=’ and ‘=’:
record R {

var x: int;
}
proc R.init=(rhs: int) { this.x = rhs; }
proc =(ref lhs: R, const ref rhs: int) { lhs.x = rhs; }

var x: R = 1; // OK: runs R.init=(1)
x = 2;        // OK: runs the ‘=‘ overload above

• Note that split initialization changes some cases that might look like ‘=’ calls into ‘R.init=’ calls:
var y: R; // y is not initialized here
y = 2;    // y is split-initialized here with R.init=(int)

• The remainder of this discussion assumes the above definition of R
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‘in’ Intent: Background

• ‘in’ formal arguments are intended to be symmetric with variable initialization
• The compiler rewrites each ‘in’ intent as a variable initialization at the call site:

• ‘in’ formal arguments currently allow implicit conversions for built-in types:
proc fIntIn(in arg: int) { }

var myInt8: int(8) = 1;
fIntIn(myInt8);     // currently allowed: performs implicit conversion from int(8) to int

…myInt8 + myInt64…  // this '+' expression also relies on coercion due to its ‘in’ intent
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fIn(something)
var inTemp = something;
fIn’(ref inTemp); // fIn’ accepts argument by ‘ref’ and

// takes ownership of it
translates into

proc fIn(in arg: R) { }



‘in’ Intent: Question

• Since this is allowed ...
var x: R = 1; // uses R.init=(int)

... should this also be allowed? [issue 16576]
proc fIn(in arg: R) { }

fIn(1); // should it use R.init=(int) ?

• This call is not allowed today

• However, allowing it would:
• make ‘in’ intent more similar to variable initialization
• let ‘init=’ across types create an implicit conversion

• Note that the C++ problem solved by ‘explicit’ is avoided by having distinct routines for ‘init’ vs. ‘init=’
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https://github.com/chapel-lang/chapel/issues/16576


‘out’ Intent: Background

• ‘out’ formal arguments are intended to behave similarly to returning
• If we have ...

... then the following 3 variable declarations behave similarly in terms of initialization:
var a = fReturn(); // no record copy

var b: R;
b = fReturn(); // no record copy due to split-init

var c: R;
fOut(c); // no record copy due to split-init via out intent
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proc fOut(out arg: R) {
arg = new R(1);

}

proc fReturn() {
return new R(1);

}



‘out’ intent: Background

• We can think of the ‘out’ intent as creating a temporary variable at the call site and then assigning:

• Note that the ‘out’ intent uses ‘=’ in some cases and ‘init=’ in others due to split init

• What if the ‘out’ formal has a different type from the actual argument?
proc int8Out(out arg: int(8)) { }
var myInt: int = 1;
int8Out(myInt); // should this call resolve?

• This call is not allowed today
• However, if it were allowed, it would have a clear interpretation:
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fOut(c)
var outTmp: R; 
fOut’(ref outTmp); 
c = outTmp;

translates into

int8Out(myInt)

var outTmp: int(8);
int8Out’(ref outTmp);
myInt = outTmp; // OK: setting `int` from `int(8)` is allowed

translates into

proc fOut(out arg: R) { ... }



‘out’ intent: Question

• If we have ...

... then the following are allowed
var a: R = iReturn(); // initializes ‘a’ with R.init=(int)

var b: R;
b = iReturn(); // split-init of ‘b’ through call to R.init=(int)

• Should the corresponding ‘out’ intent example also be allowed? [issue 16582]
var c: R;
iOut(c); // Should this initialize c with R.init=(int) ?

• What about the ‘int8Out(myInt)’ example on the previous slide?
• The compiler could use the following reasoning when considering if ‘iOut’ is a candidate for the call:

• observe that ‘arg’ is producing an ‘int’ value
• check for availability of ‘init=’ and/or ‘=’ to set the actual ‘c’ of type ‘R’ from an ‘int’ [see also issue 15838]
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proc iReturn() {
return 1;

}

proc iOut(out arg: int) {
arg = 1;

}

https://github.com/chapel-lang/chapel/issues/16582
https://github.com/chapel-lang/chapel/issues/15838


‘inout’ Intent: Background

• ‘inout’ is intended to represent a combination of ‘in’ and ‘out’

• What if the formal argument ‘arg’ and the actual argument ‘something’ have different types?
• Such calls are generally not allowed—but they are allowed for array slices

• If allowed, there would be at a minimum these two requirements:
• Need to be able to copy-initialize to the formal type from the actual

– so need something like ‘proc FormalType.init=(arg: ActualType)’
• Need to be able to assign to the actual from the formal

– so need something like  ‘proc =(ref lhs: ActualType, rhs: FormalType)’
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fInout(something);
var inTemp = something; // copy-initialize
fInout’(ref inTemp);    // fInout’ accepts by ‘ref’ and updates
something = inTemp;     // write-back to original value

translates into

proc fInout(inout arg: R) { }



‘inout’ Intent: Question

• If the record provides ‘init=’ and ‘=’ to meet the two minimum requirements...
proc R.init=(rhs: int) { ... }

proc =(ref lhs: int, const ref rhs: R) { ... }
// and perhaps int.init=(R) - see issue #16582

... then should the following be allowed? [issue 16554]
proc fInout(inout arg: R) { }

var i = 1;
fInout(i);

• If allowed, it would have a clear interpretation:
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fInout(i);
var inTemp: R = i; // copy-initialize using R.init(int)
fInout’(ref inTemp);
i = inTemp;         // write-back to i using =(int, R)

translates into

https://github.com/chapel-lang/chapel/issues/16554


Summary

• Should mixed-type ‘init=’ overloads indicate when implicit conversions are allowed?
• Would allow the ‘init=’ to do the conversion for an ‘in’ intent argument

• Should implicit conversions be allowed for ‘out’ arguments?
• when implicit conversion exists from the formal type to the actual

• Should implicit conversions be allowed for ‘inout’ arguments?
• when an implicit conversion exists from the actual to the formal and back again

19

IN, OUT, INOUT INTENTS



STABILIZING STANDARD LIBRARIES



Background and This Effort

Background:
• Recent releases have focused on stabilizing the core language for a forthcoming Chapel 2.0 release
• However, breaking changes to the standard library can be equally frustrating for existing programs

– e.g., having ‘writeln’ change its interface could be as impactful as changing from 1- to 0-based indexing

• For this reason, Chapel 2.0 should also commit to stabilizing a core set of the standard libraries
– also need to review library-like features on built-in types

– e.g., methods defined on ranges, domains, and arrays

This Effort:
• Enumerated a set of core standard libraries to prioritize for review
• Discussed approach and factors to consider in reviewing libraries

– names of modules, routines, types, variables, arguments, …
– behaviors of features
– etc.

• Identified an initial set of libraries to review as a team; and owners to lead discussions
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Status and Next Steps

Status:
• Started this review process toward the end of this release cycle

– reviewed the ‘Time’ module as a team
– shoring up core language features continued to consume most of our Chapel 2.0 cycles for this release

• ‘Time’ module confirmed our suspicions: even a modest-sized library can take a fair amount of time
– though hopefully we’ll get more efficient as we go

Next Steps:
• Resolve open questions and complete action items identified in reviewing ‘Time’
• Start iterating through other modules regularly
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ONGOING PERFORMANCE EFFORTS

• Aggregation Improvements
• Remote Cache Improvements
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AGGREGATION IMPROVEMENTS



Arkouda Background

• Copy aggregators were added to Arkouda in the 1.20 timeframe 
• Significantly improved the performance of fine-grained operations
• For 32-node Cray CS (FDR InfiniBand) and 32-node Cray XC (Aries):

– 100x speedup for index gathers (remote GETs) on CS, slower on XC so not used
– 300x speedup for index scatters (remote PUTs) on CS, 80% speedup on XC
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Arkouda Effort and Impact

This Effort: Further tuned aggregator performance, enabled GET aggregator for XC
• Cached remote allocations, optimized bulk transfers, and improved yield frequency

Impact: Significant performance improvements, performance parity between CS and XC
– 3.5x speedup for index gathers on CS, 2.5x speedup on XC
– 30% speedup for index scatters on CS, 25% speedup on XC
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Arkouda Status

• Believe we’re approaching performance limit for this aggregation implementation
• However, hard to gauge without a reference implementation to compare against
• To that end we wanted to compare aggregation performance against Bale
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Bale Background

• Bale is a collection of mini-applications written in UPC/SHMEM
• Tests various communication idioms and patterns

– Histogram (stresses remote atomics)
– Indexgather (stresses remote GETs)

• Bale also contains aggregated communication libraries
• Exstack – synchronous single-hop aggregators
• Conveyors – supports multiple implementations, including asynchronous multi-hop aggregators

• Previously ported and optimized elegant Chapel versions of Histogram and Indexgather
• But had not looked at aggregated versions
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Bale Effort

• Wrote aggregated version of Indexgather
• Copy aggregators require minor code changes but provide significant performance speedups

// Intuitive indexgather

forall (t, r) in zip (tmp, Rindex) do
t = A[r];

// Aggregated indexgather

forall (t, r) in zip (tmp, Rindex) with (var agg = new SrcAggregator(int)) do
agg.copy(t, A[r]);
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Bale Status

• Identified local overheads in distributed array indexing
• Cyclic overhead is most dramatic, but Block has overhead too

– Can be mitigated with eager remote-access-data (RAD) optimization, at the expense of slower array creation time
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Bale Status

• Performance is competitive with reference SHMEM
• On par with Exstack with less memory overhead
• Ahead of Conveyors, though we expect to fall behind for non-trivial applications and at higher scale
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Next Steps

• Continue to tune/improve performance
• Improve local overheads for indexing into distributed arrays
• Optimize for additional networks: newer InfiniBand, Ethernet, Amazon EFA
• Explore auto-tuning to choose aggregation buffer sizes and other parameters for specific hardware/networks

• Migrate aggregation to Chapel’s standard library
• Support arbitrary aggregators, not just copy aggregators

– Draw upon previous work with external Chapel Aggregation Library

• Use Bale as a mechanism to help explore aggregation
• Provides non-trivial use cases, and a reference implementation with which to compare performance

• Add a compiler optimization to automatically use aggregation
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http://louisjenkinscs.github.io/publications/CAL.pdf


REMOTE CACHE IMPROVEMENTS



Background and This Effort

Background:
• Chapel has a cache for remote data that can be enabled with --cache-remote
• Since 1.22, it has been stable enough to recommend to users
• In a few benchmarks, --cache-remote was adding significant overhead

This Effort: Reduced --cache-remote overhead in the worst cases
• Fixed comm/compute overlap under ‘ugni’ to address performance problems with SSCA2
• Evaluated performance and memory overheads at scale (512 nodes on an XC)

– RA-on, RA-atomics, ISX, stream, and stencil showed no performance issues
– RA-rmo had a 15% performance hit

• Developed a prototype that reduces data structure overhead at scale
– RA-rmo has only a 9% performance hit with the prototype
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Status, and Next Steps

Status: Close to enabling --cache-remote by default
• Some benchmarks have significantly better performance with the cache

– 4x improvement for HPL
– 3x improvement for miniMD
– 20x improvement for PTRANS

• Most benchmarks have about the same performance when enabling the cache
• The ~10% overhead of RA-rmo represents the worst case we’ve seen

– not particularly surprising: random access is the worst cache access pattern; fastest network is most sensitive to overhead

• Changes addressing RA-rmo performance at scale did not make it into the 1.23 release

Next Steps: Enable --cache-remote by default
• Finalize and merge change reducing data structure overhead to benefit RA-rmo at scale
• Continue to track and resolve performance issues
• Enable non-blocking comms in ugni

– expect this to provide roughly 30% performance improvement for RA-rmo based on experiments with GASNet
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ONGOING PORTABILITY EFFORTS

• ‘ofi’ Communication Layer
• Chapel on HPE Cray EX Systems
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'OFI' COMMUNICATION LAYER



Background and This Effort

Background:
• 'ofi' comm layer had passed functional testing on a wide variety of system networks
• Neither stability nor performance were where we wanted them to be

This Effort:
• Made conformance with the Chapel Memory Consistency Model (MCM) more principled
• Adjusted provider selection to more often find the highest-performing one that can achieve correctness
• Improved portability

– EX system with dual Rome-64 processors and InfiniBand (found libfabric verbs scalability problem, fixed upstream)
– AWS, with the high-performance EFA network

• Added a bundled third-party libfabric for systems without a system version
• Improved performance
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Performance

• 16-node Cray CS,
InfiniBand network
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Performance

• 16-node Cray CS,
InfiniBand network
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Status and Next Steps

Status:
• Stable, doesn't lack any core functionality
• Performance has improved but still needs work

Next Steps:
• Productization, so we can stop saying "work in progress"
• Add testing on more systems and networks, beyond just IB systems using the verbs provider
• Continue to improve performance
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CHAPEL ON HPE CRAY EX SYSTEMS



Background:
• Have ensured Chapel continues to work on EX as the systems evolve

This Effort:

• Rebranded: Shasta (informal name) → HPE Cray EX (official product name)
• Made changes to track COS (Cray Operating System for EX) and module system changes
• Expanded module configurations nearly to parity with XC, except lacking comm=gasnet

Status:
• Chapel continues to improve on EX, becoming more product-like

Next Steps:
• Add comm=gasnet configurations
• Adjust module file(s) to integrate with new Lua-based module system
• Continue tracking EX product evolution
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TARGETING GPUS FROM CHAPEL



• We are interested in supporting GPU programming from Chapel
• GPUs are very common, yet challenging to program
• GPU support is frequently asked about at Chapel presentations
• it would improve upon Chapel’s “any parallel algorithm on any parallel hardware” theme

• There have been several efforts relating to GPU support in Chapel
• early work at UIUC
• collaboration with AMD [1] [2] [3]
• recent work from Georgia Tech and ANU, featured at CHIUW 2019 and CHIUW 2020
• meanwhile, users have run on GPUs via Chapel interoperability features (e.g., Inria Lille’s branch & bound work)

• Our team’s efforts started in earnest during this release cycle (yet are still at an early stage)
• getting experience wrapping GPU libraries
• considering how to compile Chapel to GPUs

45

TARGETING GPUS FROM CHAPEL

https://chapel-lang.org/presentations/SC11/05-sidelnik-gpu.pdf
https://github.com/chapel-lang/chapel/blob/master/doc/rst/developer/chips/17.rst
https://github.com/chapel-lang/chapel/blob/master/doc/rst/developer/chips/22.rst
https://github.com/rocmarchive/chapel/tree/chpl-hsa-master
https://chapel-lang.org/CHIUW2019.html
https://chapel-lang.org/CHIUW2020.html


CHAPEL INTERFACE TO CUBLAS



Background and This Effort

Background:
• cuBLAS is a library of basic linear algebra subroutines (BLAS) optimized for GPUs
• Chapel’s C interoperability simplifies interfacing with the cuBLAS C API and CUDA C runtime

This Effort:
• Initial effort to use GPUs with Chapel
• Wrap a part of the CUDA runtime and cuBLAS library with Chapel
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Example: SAXPY (y[i] = a*x[i] + y[i])

• Initialize variables normally
use cuBLAS;

var N = 10: int(32);
var a = 2: real(32);

var X: [1..N] real = 3.0;
var Y: [1..N] real = 5.0;

• Function to copy data from CPU to GPU
var gpu_ptr_X = cpu_to_gpu(c_ptrTo(X), c_sizeof(real)*N:size_t);
var gpu_ptr_Y = cpu_to_gpu(c_ptrTo(Y), c_sizeof(real)*N:size_t);

• cuBLAS wrapper
cu_saxpy(cublas_handle, N, gpu_ptr_X, gpu_ptr_Y, a);

• Function to copy data from GPU to CPU
gpu_to_cpu(c_ptrTo(Y), gpu_ptr_Y, c_sizeof(real)*N:size_t);

-Note: Function names (e.g. cpu_to_gpu and cu_saxpy) and cuBLAS module name may change in the future.
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Status and Next Steps

Status:
• No runtime performance difference when using cuBLAS from C vs. Chapel
• Currently level-1 cuBLAS wrappers 

(scalar-vector operations) are implemented

Next Steps:
• Implement cuBLAS wrappers for 

level-2 (matrix-vector) and 
level-3 (matrix-matrix) operations
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COMPILING FOR GPUS
(AND VECTORIZATION)



Introduction

• Vectorization and compiling for GPUs have many overlapping concerns 

• This section will discuss how the Chapel language might be updated to support GPUs and vectorization
• It makes 7 proposals that combine to improve the situation
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VECTORIZATION 
IMPLEMENTATION UPDATE



Background:
• LLVM’s compilation strategy supports detailed hinting about vectorizability

– in the form of loop and memory access hints

• Experimental integration with the Region Vectorizer (RV) provides outer-loop vectorization
– providing significant performance improvements, including 4–6x for a Clenshaw benchmark
– However, correctness improvements to vectorization in 1.19 prevented RV vectorization for the Clenshaw benchmark

This Effort:
• Revisit LLVM vectorization hinting strategy to vectorize in more cases

– Encountered problems with order-independence of RandomStream follower loops (see later section)

Impact: 
• Vectorization hinting to the LLVM Loop Vectorizer is more likely
• Clenshaw benchmark once again vectorizes with RV

Next Steps: Resolve language design questions brought up by this effort
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COMBINING GPU SUPPORT AND 
VECTORIZATION



Types of Vectorization

There are 2 different types of vectorization that will be supported by the Chapel compiler:

1. Automatic vectorization for any loop where the compiler can prove it will not impact correctness
• Already reasonably well-supported by C compilers and by the stock LLVM loop optimization pass
• Applies to inner loops, including those that come about from iterator inlining
• Most reductions will disable vectorization (only a few are recognized, gives up for others)

2. Vectorization that occurs with programmer input
• Applies to parallel constructs like ‘forall’ / ‘vectorizeOnly’ including as outer loops
• Requires features like ‘reduce’, ‘in’ and ‘var’ intents to create per-vector-lane operations

• We expect to continue to provide (1)
• This section is focused on (2)
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SIMD vs SIMT

• A GPU has some similarities with a CPU with an advanced vector unit
• A SIMT platform like a GPU is not so far off from a SIMD-style instruction set supporting

– masking out vector lanes (to handle branches in the vectorized code)
– gather and scatter (to handle loads and stores in the vectorized code)

• In SIMT-style programming, each “task” has a separate thread of control
• SIMD-style programming only has one thread of control

• It is possible to start from a SIMT-style programming model and then convert it to SIMD
• SIMT is arguably a more platform-independent strategy
• tools exist that do this, e.g. Intel’s Implicit SPMD Program Compiler or an OpenCL compiler targeting CPUs
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SIMD vs SIMT: Example

SIMD
for i in 0..12 by 4 {

var a, b, c: vec4real;
b = simd_load_4real(B[i]);
c = simd_load_4real(C[i]);
simd_add_4_real(a, b, c);
simd_store_4real(A[i], a);

}
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SIMT
proc kernel(ref A, B, C) {

var i = getMySimtIndex();
A[i] = B[i] + C[i];

}

run_kernel(kernel,
0..12,
workgroupSize=4,
A, B, C);

1 2 3 4
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+
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b

c

a

10 2 3 4

50 6 7 8

=

60 8 10 12

11 2 3 4

55 6 7 8

66 8 10 12

“vector lane”



Unifying

• Proposal 1: Enable a unified programming model for vectorization and for GPUs

• Depending on the target, the compiler will translate the same code into
• vectorized code for execution on a CPU
• a GPU kernel for execution on a GPU

• The programming model for these two will be substantially similar

• (Platform-specific Chapel code will still be needed in some cases for performance reasons)
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Global-view

• Proposal 2: Enable vectorization/GPU execution for global-view programs

• Global-view programming is important to Chapel’s productivity
A = B + alpha*C

• Global-view programming includes
• promoted operations over arrays
• forall-intents to create “task-local” variables: ‘in’ and ‘var’ intents
• forall ‘reduce’ intent

• Chapel programmers need to be able to use these features without disabling vectorization/GPU support
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SIMT

• Proposal 3: Support SIMT-style programming to keep flexibility

• SIMT-style programming allows low-level code to be added within a global-view context
• expecting that a ‘forall’ will become a GPU kernel
• GPU-specific SIMT code can be added within the ‘forall’ in the SIMT model
• compare with the SIMD vector code example where the loop invoking the SIMD code needed to be modified
• this property would also help with distributed memory programming [issue 14405]

• SIMT-style also allows one to use GPU features like ‘shared memory’ within a block (CUDA terms)
• a.k.a. ‘local data store’ within a workgroup (OpenCL terms)

• Being able to write SIMT code within a larger parallel loop allows one to fine-tune performance
• imagine a science application written with global-view programming
• a performance engineer can update portions of it but should not need to restructure everything
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Motivation

• One of the key elements of SIMT programming is that there is a way to get some form of thread index
• Along with this, GPU programming models also allow one to query the space being iterated

• Helps with smoothing boundary between forall and coforall+on in distributed programs [issue 14405]
• Important for GPU features like ‘shared memory’ within a block (CUDA terms) [chip 17]

• a.k.a. ‘local data store’ within a workgroup (OpenCL terms)
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Example from SIMT example

SIMD
for i in 0..12 by 4 {

var a, b, c: vec4real;
b = simd_load_4real(B[i]);
c = simd_load_4real(C[i]);
simd_add_4_real(a, b, c);
simd_store_4real(A[i], a);

}
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SIMT
proc kernel(ref A, B, C) {

var i = getMySimtIndex();
A[i] = B[i] + C[i];

}

run_kernel(kernel,
0..12,
workgroupSize=4,
A, B, C);

1 2 3 4
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“vector lane”



Distributed Parallel Iterators

• A typical distributed parallel iterator looks like this:
iter myiter(... tag=standalone...) {

coforall loc in targetLocales do on loc {
const numChunks = _computeNumChunks(...);
coforall t in 1..numChunks {

const part = computePartforChunk(...);
order-independent-for i in part {

yield f(i);
}

}
}

}

• This iterator has 3 portions:
• Divide work among locales (‘coforall loc … on loc’)
• Divide work among tasks (‘coforall t in 1..numChunks’)
• Indicate the work per task (‘order-independent-for i in part’)
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Forall loops and vectorization

• Proposal 4: Provide ways for code executing within a forall loop to discover task & vector division

• What information is needed?
• query current vector lane and number of vector lanes

– i.e., for GPU programming, the thread number among threads in the block and the block size

• query the launched task number and the number of tasks that were launched
• (potentially, similar information for number of locales used)

• It is important for some use cases that the task division be repeatable
• i.e. two different ‘forall’ loops create the same number of tasks - see  [issue 14405]

• It is also easier in many cases if the vector lanes can be multidimensional
• so that e.g. ‘Forall.getCurrentVectorLane()’ returns a tuple rather than an integer
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Sketch

• Here is a sketch of what that might look like:

• First, for a tiled matrix transpose (for GPU)
forall (i, j) in Dom {

const (idX, idY) = Forall.getCurrentVectorLane();
const (nX, nY) = = Forall.getNumberOfVectorLanes();
...;

• Second, for a distributed matrix transpose
forall (i, j) in Dom {

const (idX, idY) = Forall.getTask();
const (nX, nY) = Forall.getNumberOfTasks();

...
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• Proposal 5: Allow barriers among vector lanes within ‘forall’ and ‘foreach’ loops

• Barriers are important in GPU programming
• shared memory in GPU programming only exists during the kernel & execution of a thread block
• as a result, having different parts of a computation use shared memory requires a barrier

– because separate ‘forall’ loops would create different kernels

• a potential alternative is to create a separate notion of the GPU tasks—different from the ‘forall’
– and then to ensure certain adjacent ‘forall’ loops use the same tasks
– this seems more fraught

• The barrier will wait for all vector lanes to reach that point

• It might look like something along these lines
Forall.barrierVectorLanes();
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• Proposal 6: Opt into GPU execution with ‘on’ statements

• We will not want all code to run on the GPU
• GPUs are only effective for data-parallel computations

• Use a GPU sublocale and ‘on’ statements to request GPU execution
• Since GPUs can’t run all code, ‘on’ a GPU means to create affinity with a GPU, where

– memory is allocated in GPU memory
– data-parallel loops are run as GPU kernels (‘order-independent-for’ in the examples)

• Using sublocales here allows things like a Block-distributed array over GPUs
• even for programming, something like a cluster of nodes where each node contains 4 GPUs

• Thinking is that memory transfers will be optimized similarly to PGAS / distributed memory

• Implication: leader iterators may, but won’t necessarily, request GPU execution, with ‘on’ statements
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REQUESTING VECTOR WIDTH OR 
NUMBER OF TASKS



• Proposal 7: Provide a way to request the GPU block size on a given ‘forall’ loop

• Proposal 4 suggests that this information can be discovered within a ‘forall’ loop
• Still need a way to set the information for a ‘forall’ loop

• A sketch of a solution:
• all iterators need to accept a ‘configuration: loopConfiguration’ argument
• ‘loopConfiguration’ stores properties normally communicated to the iterator from the calling loop

– GPU block size request / requested number of vector lanes
– requested number of qthreads-style tasks to create

• it could also contain the shape of the overall iteration space when it is known
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GPU EXAMPLES



GPU EXAMPLES

• Stream
• Reduction
• Transpose

74



Stream

• Intent is for existing promoted stream to continue to be effective
A = B + alpha*C  // Supposing that A, B, and C are (say) Block-distributed to GPU memory

• Let’s consider a lower-level view
forall (a, b, c) in zip(A, B, C) {

a = b + alpha*c;
}

• compiler translates into
coforall ... do on ... {

coforall ... {
order-independent-for i in followThis {

ref a = A[i], b = B[i], c = C[i];  // from follower iterators
a = b + alpha*c;

}
}

}
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Stream: Memory Access Order

• Since the follower loop is order-independent, it can run vectorized or on a GPU
• Since we earlier had an ‘on’ statement to a GPU sublocale, it will run on GPU as a kernel

order-independent-for i in followThis {
ref a = A[i]; ref b = B[i]; ref c = C[i]; // from follower iterators

a = b + alpha*c;
}

• It is important to make sure that the default loop ordering provides a reasonable memory access order
• For the GPU, we need GPU threads to work with adjacent memory for best efficiency

• GPU has hardware coalescing support
• For vectorization, there is a similar requirement

• common for a vector ‘load’ instruction to require adjacent memory—cheaper than an arbitrary gather
• So, supposing 8 GPU threads / vector lanes, the per-lane ‘foreach’ translates into

8-way-vector-parallel { for i in curVectorLane+followThis by 8 { ... } }
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Reduction

• A reduction might look like this
var sum = 0;
forall a in A with (+ reduce sum) {

sum += a;
}

• The compiler will translate this into something like:
coforall ... do on ... {

coforall ... {
8-way-vector-parallel {

var locSum = 0; // a different accumulator per vector lane / GPU task

for i in curVectorLane+followThis by 8 {
ref a = A[i]; // from follower iterators

locSum += a;
}
// accumulate the 8 locSum values into the task total

}  }  }
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Transpose

• Simplest matrix transpose
forall (i, j) in Dom {

Output[j,i] = Input[i,j];
}

• Tiled matrix transpose
forall (i,j) in {0..<n by t, 0..<n by t} {

var tile: [0..<t, 0..<t] int;
// copy to local tile while transposing

for (ti, tj) in tile.domain {
tile[tj, ti] = Input[i*t + ti, j*t + tj];

}
//copy the already-transposed local tile to output

for (ti, tj) in tile.domain {
Output[j*t + ti, i*t + tj] = tile[ti, tj];

}
}
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// matrix transpose setup
const Dom = {0..<n, 0..<n};
var Input:[Dom] int;
var Output:[Dom] int;
param t = 32; // tile size dimension



Transpose: using shared memory for more GPU performance

• Tiled matrix transpose #2
forall (i,j) in {0..<n by t, 0..<n by t}.these(

configuration=new loopConfiguration(numVectorLanes=(t,8)) { // Proposal 7

on GPUSharedMemory var tile: [0..<t, 0..<t] int;
var x = i, y = j;
var threadIdxX = Forall.getCurrentVectorLane()(0); // Proposal 4
var threadIdxY = Forall.getCurrentVectorLane()(1); // assuming it returns a tuple for the (x,y) dimensions
// copy to local tile while transposing

for j in 0..t by 8 {
tile[threadIdxY+j, threadIdxX] = Input[y+j, x];

}
Forall.vectorBarrier(); // Proposal 5 -- equivalent to __syncthreads()

x = y - threadIdxY + threadIdxX;
y = x - threadIdxX + threadIdxY;
for j in 0..t by 8{

Output[y+j, x] = tile[threadIdxX, threadIdxY + j];
}

}
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Transpose: using shared memory for more GPU performance

• Tiled matrix transpose #2
forall (i,j) in {0..<n by t, 0..<n by t}.these(

configuration=new loopConfiguration(numVectorLanes=(t,8)) { 
on GPUSharedMemory var tile: [0..<t, 0..<t] int;
var x = i, y = j;
var threadIdxX = Forall.getCurrentVectorLane()(0);
var threadIdxY = Forall.getCurrentVectorLane()(1);
// copy to local tile while transposing

for j in 0..t by 8 {
tile[threadIdxY+j, threadIdxX] = Input[y+j, x];

}
Forall.vectorBarrier();

x = y - threadIdxY + threadIdxX;
y = x - threadIdxX + threadIdxY;
for j in 0..t by 8{

Output[y+j, x] = tile[threadIdxX, threadIdxY + j];
}

}
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• Q: Is it possible to have 
the same level of 
performance with a 
kernel written within a 
‘forall’ loop over ‘Dom’ 
rather than tiled? 



TARGETING GPUS: SUMMARY



• This discussion explored GPU support and Vectorization within Chapel
• It includes 7 proposals in support of GPU programming:

• Proposal 1: Enable a unified programming model for vectorization and for GPUs
• Proposal 2: Enable vectorization/GPU execution for global-view programs
• Proposal 3: Support SIMT-style programming to keep flexibility
• Proposal 4: Provide ways for code executing within a forall loop to discover task & vector division
• Proposal 5: Allow barriers among vector lanes within ‘forall’ and ‘foreach’ loops
• Proposal 6: Opt-in to GPU execution with ‘on’ statements
• Proposal 7: Provide a way to request the GPU block size on a given ‘forall’ loop
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