
CHAPEL 1.23 RELEASE NOTES:
PERFORMANCE OPTIMIZATIONS

Chapel Team
October 15, 2020

OUTLINE

• Array Optimizations
• Compilation Time Improvements
• Memory Improvements

2

ARRAY OPTIMIZATIONS

• Automatic Local Access Optimization
• Improvements to Associative Types
• Array Tracking Optimization
• Constant Domain Optimization
• Parallel Array Initialization
• Parallel Array Assignment
• Array Swap Optimization

3

AUTOMATIC LOCAL ACCESS
OPTIMIZATION

• Iterating over arrays/domains using 'forall' is a very common pattern in Chapel:

var D = newBlockDom({1..N});
var A: [D] int;
forall i in D do
A[i] = calculate(i);

• For distributed arrays, every 'A[i]' checks whether it is a local access
• This check is overhead for this pattern: they are all guaranteed to be local

• Potential workarounds:

forall (a, i) in zip(A, A.domain) do
a = calculate(i);

forall i in A.domain do
A.localAccess(i) = calculate(i);

5

AUTOMATIC LOCAL ACCESS OPTIMIZATION

the array is indexed using the loop index

Background

loop is run over the domain of an array

clunky

This Effort

• Implemented a compiler analysis that replaces 'A[i]' with 'A.localAccess[i]'
• The optimization is done statically if the compiler can prove that:

– the loop domain supports the optimization
– the array is indexed with the loop index symbol
– the loop domain matches the array's domain

• The optimization is subject to a dynamic check at execution time if:
– the first two conditions above are met, but the compiler cannot prove that the loop and array domains match

• An example where the optimization can be done statically:
var D = newBlockDom({1..10});
var A: [D] int;
forall i in D do
A[i] = calculate(i); // ==> A.localAccess[i] = calculate(i);

6

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Arrays With Common Domains

• The optimization also applies to multiple arrays
var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;
forall i in D do
A[i] = calculate(B[i]);

• Even when the loop domain is not explicit
var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;
forall i in A.domain do
A[i] = calculate(B[i]);

7

AUTOMATIC LOCAL ACCESS OPTIMIZATION

loop is run over the domain of array(s)

array(s) indexed using the loop index

loop is run over a domain query

array(s) indexed using the loop index

array(s) have the same domain as the loop

Dynamic Checks

• If the compiler cannot determine the domain of an array:
• Equality of domains will be checked at execution time
• Depending on that, an optimized or unoptimized version of the loop will be run

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int); // currently we can't infer 'B' has the same domain as 'A'

forall i in A.domain do
A[i] = calculate(B[i]); // B[i] is local if A.domain == B.domain

// that can only be confirmed at execution time

• Terminology
• 'A' is a static candidate
• 'B' is a dynamic candidate

• The compiler will clone loops if there are one or more dynamic candidates
• This can increase compilation time

8

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Dynamic Checks

9

AUTOMATIC LOCAL ACCESS OPTIMIZATION

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
param staticCheckA = canUseLocalAccess(A, A.domain);
param staticCheckB = canUseLocalAccess(B, A.domain);
if staticCheckA || staticCheckB {

const dynamicCheckB = canUseLocalAccessDyn(B, A.domain);
if dynamicCheckB then

forall i in A.domain do
A.localAccess[i] = calculate(B.localAccess[i]);

else
forall i in A.domain do

A.localAccess[i] = calculate(B[i]);
} else {

forall i in A.domain do
A[i] = calculate(B[i]);

}

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
forall i in A.domain do

A[i] = calculate(B[i]);

Static checks are created for both arrays

Dynamic check is created only for B

Dynamic Checks

10

AUTOMATIC LOCAL ACCESS OPTIMIZATION

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
param staticCheckA = canUseLocalAccess(A, A.domain);
param staticCheckB = canUseLocalAccess(B, A.domain);
if staticCheckA || staticCheckB {

const dynamicCheckB = canUseLocalAccessDyn(B, A.domain);
if dynamicCheckB then

forall i in A.domain do
A.localAccess[i] = calculate(B.localAccess[i]);

else
forall i in A.domain do

A.localAccess[i] = calculate(B[i]);
} else {

forall i in A.domain do
A[i] = calculate(B[i]);

}

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
forall i in A.domain do

A[i] = calculate(B[i]);

Will be executed if
• A passes static checks
• B passes static and dynamic checks

Will be executed if
• A passes static checks
• B fails static or dynamic checks

Will be executed if
• Neither array passes static checks

Dynamic Support for Subset Domains

• The optimization covers cases where the loop domain is a subset of the array domain
var D = newBlockDom({1..10});
var A, B: [D] int;
forall i in D.expand(-1) do

A[i] = calculate(B[i]);

• It also detects iteration over (a subset of) the local subdomain of a distributed array's domain
var D = newBlockDom({1..10});
var A, B: [D] int;
coforall l in Locales do on l {

forall i in D.localSubdomain() do
A[i] = calculate(B[i]);

// ... or ...
forall i in D.localSubdomain().expand(-1) do

A[i] = calculate(B[i]);
}

11

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Optimized upon a dynamic check

Optimized upon a dynamic check

Queried Domains in Array Formals

• Static optimization opportunities for array formals without domain queries are limited

proc foo(A, B) {
forall i in A.domain do
A[i] = calculate(B[i]);

}

• To avoid dynamic checks and loop cloning, be more explicit when multiple arguments share a domain

proc foo(A: [?D], B: [D]) {
forall i in A.domain do
A[i] = calculate(B[i]);

}

12

AUTOMATIC LOCAL ACCESS OPTIMIZATION

'A[i]' can be optimized statically

Currently, we can't determine whether B is an array
early enough during compilation, so we use dynamic

checks for it

We know that B is an array that has
the same domain as the loop domain

Available Compiler Flags

• --[no-]auto-local-access
• Enable/disable this optimization
• Enabled by default

• --[no-]dynamic-auto-local-access
• Enable/disable dynamic optimization
• Enabled by default
• Dynamic optimization results in loop cloning and can increase compilation time in some codes

• --[no-]report-auto-local-access
• Enable/disable verbose output about the optimization steps
• Disabled by default

13

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Caveats

• The optimization is thwarted if
• The locale changes between the 'forall' and the array access

forall i in A.domain do
on Locales[X] do // this statement can move the execution to another locale

A[i] = calculate(i);

• The array index symbol is not identical to the loop index symbol

forall i in A.domain {
const k = i;
A[k] = calculate(i);

}

14

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Caveats

• Zippered foralls are supported only if the loop index is expanded

forall (i,a) in zip(D, someIterator()) { } // the loop will be analyzed further

forall idx in zip(D, someIterator()) { } // the loop will not be analyzed further

• Indexing into shadow variables is not analyzed

forall i in D with (ref A) do

A[i] = calculate(i);

• Indexing into array views is not analyzed

var A = otherArr[2..10];

forall i in A.domain do
A[i] = calculated(i);

15

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Impact

• Global STREAM with array indexing:

forall i in ProblemSpace do
A[i] = B[i]+ alpha * C[i];

now essentially performs like other idioms:

forall (a, b, c) in zip(A, B, C) do
a = b + alpha * c;

or:

A = B + alpha * C;

16

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Impact

• Explicit 'localAccess' calls are no longer needed in NPB-FT
• Kernel with 'localAccess' calls

• Kernel without 'localAccess' calls

17

AUTOMATIC LOCAL ACCESS OPTIMIZATION

forall ijk in DomT {
const elt = V.localAccess[ijk] *

T.localAccess[ijk];

V.localAccess[ijk] = elt;
Wt.localAccess[ijk] = elt;

}

forall ijk in DomT {
const elt = V[ijk] *

T[ijk];

V[ijk] = elt;
Wt[ijk] = elt;

}

Next Steps

• Expand static check to certain array/domain operations, e.g.:
coforall l in Locales do on l {
forall i in A.localSubdomain() do // localSubdomain always produces a subset

A[i] = calculate(i);
forall i in A.domain[someSlice] do // slicing always produces a subset

A[i] = calculate(i)
}

• Accesses above will be optimized dynamically on Chapel 1.23, but we could optimize them statically

• Investigate how we can expand the analysis to affine accesses
forall i in A.domain do

A[i] = calculate(A[i-1], A[i], A[i+1]);

18

AUTOMATIC LOCAL ACCESS OPTIMIZATION

IMPROVEMENTS TO
ASSOCIATIVE TYPES

Background and This Effort

Background: Historically, Chapel's lowest-level associative types were associative domains/arrays
• Hash table implementation was intertwined in domain/array implementation

– Other types like set/map were built on top of associative domains/arrays
– Wanted associative type for internal data structures, but associative domains created circular dependency

This Effort: Factored hash table implementation into an internal standalone type
• Changed set/map types to use the standalone hash table, which enabled optimizations
• Further optimized hash table implementation, especially for repeated insertions/deletions

20

ASSOCIATIVE TYPES

Impact

• Significantly improved performance for associative types
• Especially for repeated insertion/removal patterns identified by users

21

ASSOCIATIVE TYPES

ARRAY TRACKING OPTIMIZATION

Background and This Effort

Background: Chapel domains track arrays declared over them
• Supports resizing arrays when their domain is modified:

var D = {1..10};
var A: [D] int;
var B: [D] int;
D = {1..20}; // this resizes 'A' and ‘B’

• Previously, domains tracked arrays with a linked list, which has O(n) removal
• In many cases, arrays are removed in the opposite order that they are created, so O(1) in practice
• However, for arrays-of-arrays that freed their array elements in parallel, O(n) behavior occurred

– Some user codes have suffered from this

This Effort: Switched from using a linked list to a hash table to track arrays
• Hash table insertion/removal is always O(1)

23

ARRAY TRACKING OPTIMIZATION

Impact

• Significantly reduced worst-case overheads for tracking arrays
• ~700x speedup for task-intents with array-of-arrays

// Snippet from user n-body code

const nBodies = 10000;
const D = {0..#nBodies};
var forces: [D][0..#3] real;
forall d in D with (+ reduce forces) { … } // 486.5s -> 0.65s

• ~500x speedup for distributed array-of-arrays at 512 nodes

// Per-task timers from ISx, 9 timers in actual code

const D = newBlockDom(0..#numLocales*here.maxTaskPar);
var totalTimeSPMD, ...: [D][1..trials] real; // 250.0s -> 0.5s

24

ARRAY TRACKING OPTIMIZATION

CONSTANT DOMAIN OPTIMIZATION

Background

• Tracking the arrays declared over a domain was optimized
• However, tracking is only needed if the domain can be resized
• Unnecessary if the domain is constant

26

CONSTANT DOMAIN OPTIMIZATION

This Effort

• Stop tracking arrays for domains declared 'const' or domain literals

const D = {1..10};
var A: [D] int; // no need to track A, 'D’ is a constant

var B: [1..20] int; // no need to track 'B', 1..20 is a constant

• An important case for this optimization is array-of-arrays

var A: [1..1_000_000][1..5] int; // no need to track 1 million arrays, 1..5 is a constant

• Add compiler analysis to detect domain creation/move/copy operations
• By only looking at variable/formal declarations
• And not doing def/use analysis

27

CONSTANT DOMAIN OPTIMIZATION

Impact

• More than 2x faster array initialization/deinitialization on constant domains

• 2.5x faster initialization, 6x faster deinitialization for array-of-arrays

28

CONSTANT DOMAIN OPTIMIZATION

Init (ns) Deinit (ns)

Chapel 1.22 118 96

Chapel 1.23 51 47

Next Steps

• Implement lighter-weight reference counting for domains

• More def/use analysis on domains and arrays can help cover some more cases
• Passing a non-constant domain to a 'const ref' formal and defining an array on that formal
• Domains that are declared 'var' but never modified

• Find answers for some semantic questions
• Should we special-case domains w.r.t copy elision rules?

– See https://github.com/chapel-lang/chapel/issues/16431

29

CONSTANT DOMAIN OPTIMIZATION

https://github.com/chapel-lang/chapel/issues/16431

PARALLEL ARRAY INITIALIZATION

Background: Chapel initializes large numeric (integral/real/complex) arrays in parallel
• Performance issues with tracking a domain’s arrays prevented parallelizing arrays-of-arrays

–As a simplified proxy we only parallelized integral/real/complex arrays
–Optimizing how arrays are tracked eliminated that performance issue

This Effort: Extend parallel initialization to all arrays

Impact: Better NUMA affinity for more arrays, which improves performance of parallel operations

31

PARALLEL ARRAY INITIALIZATION

PARALLEL ARRAY ASSIGNMENT

Background and This Effort

Background:
• Large Chapel arrays are initialized in parallel
• However, array assignments were not parallel

var A: [1..n] int; // parallel default initialization
var B: [1..n] int; // parallel default initialization

A = B; // this was done sequentially

• Especially in multi-socket systems, parallel 'memcpy's can improve the bandwidth significantly

This Effort:
• Use parallel local copies for large array assignments if applicable

33

PARALLEL ARRAY ASSIGNMENT

Impact

• Array copies are significantly faster

34

PARALLEL ARRAY ASSIGNMENT

Idioms using
'forall'

Idiom using
'for'

Idiom using
'A = B'

Impact

• Arkouda performance improvements

35

PARALLEL ARRAY ASSIGNMENT

Next Steps

• Investigate making remote array copies parallel
• Initial attempts resulted in some regressions

36

PARALLEL ARRAY ASSIGNMENT

ARRAY SWAP OPTIMIZATION

Background and This Effort

Background:
• Chapel supports a swap assignment operator (‘<=>’) for convenience and optimization opportunities
• Users have long requested that array swaps be performed using a pointer swap rather than per-element swaps

– historically, this wasn’t generally possible due to our implementation of array slices
– once we switched to using array views, it enabled this optimization in many cases

This Effort: Implemented array swaps using pointer swaps for some common cases:
• default rectangular arrays that:

– are the same size
– are stored on the same locale
– are not array views

• block-distributed arrays that:
– have equivalent distributions

38

ARRAY SWAP OPTIMIZATION

Impact

Impact: Turned array swaps for many cases from an O(n) operation to O(1) or O(#targetLocales)

• Supports writing certain code patterns more productively, such as iterative stencil patterns:

var New, Old: [D] real;
do {

New = computeStencil(Old);
const delta = max reduce abs(New – Old);
Old <=> New; // prepare for the next iteration

while delta > epsilon;

39

ARRAY SWAP OPTIMIZATION

Array size
Local Array

Before After Factor
Block Array (16 locales)
Before After Factor

100M 32ms ~0.15ms 213x 67ms 2.7ms 24.8x

1B 310ms ~0.15ms 2070x 510ms 3.4ms 150x

10B [OOM] ~0.15ms N/A 5100ms 3.2ms 1590x

Next Steps

Next Steps:
• Extend optimization to other array types and distributions

– e.g., sparse arrays, Cyclic distributions, etc.

• Optimize other forms of array/sub-array swapping, for example:
A[i, ..] <=> A[j, ..]; // row swap — think about how to implement this efficiently on distributed arrays
A[.., i] <=> A[.., j]; // column swap — (these patterns appear in PNNL’s work on CHGL)

40

ARRAY SWAP OPTIMIZATION

COMPILATION TIME IMPROVEMENTS

• Single-Iteration Coforalls
• Other Compilation Time improvements

41

SINGLE-ITERATION COFORALLS

Background and This Effort

Background: ‘coforall’ loops create a distinct task per loop iteration
• Historically, many iterators would include special cases to avoid task creation for single-iteration coforalls

iter batch(r: range) {
const numTasks = here.maxTaskPar - here.runningTasks() + 1;
if numTasks == 1 then

for i in r do
yield i;

else
coforall tid in 0..<numTasks do

for i in myChunk(tid, numTasks, r) do
yield i;

}

This Effort: Optimize single-iteration coforalls
• Avoid task creation by having parent task run body directly
• Eliminate manipulation of atomic running tasks counter

43

SINGLE-ITERATION COFORALLS

Impact

• Significantly faster single-iteration coforalls

coforall 1..1 {} // ~13x faster with this optimization

coforall 1..here.maxTaskPar do
coforall 1..1 {} // ~90x faster with this optimization

• Single-iteration coforalls have little overhead now
• Enabled removing special cases in iterators, reducing generated code size

– ~3% faster compilation on average
– ~15% faster Arkouda compilation

44

SINGLE-ITERATION COFORALLS

OTHER COMPILATION TIME
IMPROVEMENTS

• Refactored formatted string implementation
• Faster compilation for applications with lots of 'writef' and/or 'string.format' calls
• ~30% faster Arkouda compilation

• Refactored several string/bytes operations
• Reduced inlining with iterators and casts
• ~9% faster compilation on average
• ~3% faster Arkouda compilation

• Replaced some ‘where’-clauses with formal types
• Fewer generic functions to resolve
• ~7% faster compilation on average

46

COMPILATION TIME IMPROVEMENTS

• Multi-locale Arkouda build time on Cray XC

47

COMPILATION TIME IMPROVEMENTS

~ 1200 seconds with 1.22

~ 750 seconds with 1.23

7 minutes faster
compilation

• Single locale Arkouda build time

48

COMPILATION TIME IMPROVEMENTS

~ 460 seconds with 1.22

~ 220 seconds with 1.23

4 minutes shorter
compilation

Next Steps

• More opportunities to reduce the generated code size and compilation time
• We can stop inlining several array support functions

–Need to investigate potential performance regressions

• Iterator outlining
–There are some large iterators that we inline even with '—no-fast'
–Currently, non-inlined iterators generate even more code and are very slow
–Investigate whether we can outline such iterators’ bodies into helpers and inline smaller bodies

49

COMPILATION TIME IMPROVEMENTS

MEMORY IMPROVEMENTS

• Memory Fragmentation Improvements
• Memory Leak Improvements

50

MEMORY FRAGMENTATION
IMPROVEMENTS

Background and This Effort

Background: ‘jemalloc’ per-thread arenas can cause memory fragmentation
• Each thread allocates from a different arena to improve concurrent allocation performance
• Freed memory is not immediately returned to the system, but retained for later use to reduce system calls
• This leads to cross-thread fragmentation, which limits available memory for large allocations—for example:

– thread/arena 0 allocates/frees a large array – had to grab memory from system, retains for future use
– thread/arena 1 then does the same operation – cannot use arena 0 memory, must grab more from system

• This impacted configurations that allocate large arrays through ‘jemalloc’
– Did not impact ugni, which uses a different allocation scheme for large arrays

This Effort: Use a single arena to satisfy large allocations
• Increases contention for large allocations, but concurrent large allocations are rare

52

MEMORY FRAGMENTATION

Impact

• Reduced memory fragmentation and improved performance for repeated array creation

53

MEMORY FRAGMENTATION

Used to run
out of memory

MEMORY LEAK IMPROVEMENTS

Background, This Effort and Next Steps

55

MEMORY LEAKS

Background:
• Memory leaks have historically been tracked in graphs

–Made sense when hundreds of tests leaked
–Makes it cumbersome to triage leaks now that there are only a few leaking tests

This Effort:
• Converted multi-locale leak testing to a correctness test now that it has 0 leaks
• Classified remaining single-locale leaks into distinct bugs with smaller reproducers

–We believe 24 leaking tests are coming from 8 different bugs
–See https://github.com/chapel-lang/chapel/issues/15623

Next Steps:
• Investigate turning single-locale testing into correctness tests

–Will require some adjustments for current known/expected leaks
• Close remaining single-locale leaks

https://github.com/chapel-lang/chapel/issues/15623

OTHER PERFORMANCE
IMPROVEMENTS

For a more complete list of performance optimizations in the 1.23 release, refer to the following
sections in the CHANGES.md file:

• ‘Performance Optimizations’

• ‘Memory Improvements’

57

OTHER PERFORMANCE IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.23/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

