 E—

Hewlett Packard
Enterprise

CHAPEL 1.23 RELEAS:'
PERFORMANCE OPTIMIZAT

Chapel Team
October 15, 2020

OUTLINE

o Array Optimizations

e Compilation Time Improvements

e Memory Improvements

Automatic Local Access Optimization

Improvements to Associative Types ™

Array Tracking Optimization
Constant Domain Optimization

Parallel Array Initialization

Parallel Array Assighment

Array Swap Optimization

.;5 3

OPTIMIZATION

AUTOMATICLOCAL ACCESS OPTIMIZATION
Background

e |terating over arrays/domains using forall' is a very common pattern in Chapel:

var D = newBlockDom({1l..N});
var A: [D] int;

loop is run over the domain of an array

forall 1 in D do

A[i] = calculate (i) ; the array is indexed using the loop index

e For distributed arrays, every 'A[i]' checks whether it is a local access
« This check is overhead for this pattern: they are all guaranteed to be local
e Potential workarounds:

forall (a, 1) in zip (A, A.domain) do
a = calculate (1) ;

clunky
forall 1 in A.domain do

A.localAccess (1) = calculate (i) ;

—

5

AUTOMATIC LOCAL ACCESS OPTIMIZATION
This Effort

e Implemented a compiler analysis that replaces 'Ali]' with 'A.localAccess[i]’

o The optimization is done statically if the compiler can prove that:
—the loop domain supports the optimization
—the array is indexed with the loop index symbol
—the loop domain matches the array's domain
o The optimization is subject to a dynamic check at execution time if:
—the first two conditions above are met, but the compiler cannot prove that the loop and array domains match

e An example where the optimization can be done statically:
var D = newBlockDom({1l..10});
var A: [D] int;
forall i in D do
A[i] = calculate(i); // ==> AlocalAccessli] = calculate();

—

6

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Arrays With Common Domains

e The optimization also applies to multiple arrays

var D = newBlockDom({1l..N});
var A: [D] int;

var B: [D] int;
forall i in D do

A[1i] = calculate(B[1]):;

e Even when the loop domain is not explicit
var D = newBlockDom({1l..N});
var A: [D] int;
var B: [D] int;

forall i in A.domain do
A[1i] = calculate(B[1]):;

—

array(s) indexed using the loop index

loop is run over the domain of array(s)

array(s) indexed using the loop index

loop is run over a domain query

array(s) have the same domain as the loop

7

AUTOMATIC LOCAL ACCESS OPTIMIZATION
Dynamic Checks

e |f the compiler cannot determine the domain of an array:
« Equality of domains will be checked at execution time
« Depending on that, an optimized or unoptimized version of the loop will be run

var A = newBlockArr ({1..N}, int);
var B = newBlockArr ({1..N}, int); //currently we can't infer 'B' has the same domain as'A'’
forall i in A.domain do
A[i] = calculate(B[i]); //Blilislocalif A.domain == B.domain
// that can only be confirmed at execution time

e Terminology
e 'A'is a static candidate
e 'B'is a dynamic candidate

e The compiler will clone loops if there are one or more dynamic candidates
e This can increase compilation time

—

AUTOMATIC LOCAL ACCESS OPTIMIZATION
Dynamic Checks

var A = newBlockArr ({1..N}, int); var A = newBlockArr ({1..N}, int);
var B = newBlockArr ({1..N}, int); var B = newBlockArr ({1..N}, int);
param staticCheckA = canUselocalAccess (A, A.domain) ; forall i in A.domain do
param staticCheckB = canUseLocalAccess (B, A.domain); A[i1] = calculate(B[1]);
i1f staticCheckA || staticCheckB {

const dynamicCheckB = canUselocalAccessDyn (B, A.domain);

if dynamicCheckB then
forall i in A.domain do

Static checks are created for both arrays

A.localAccess[1] = calculate(B.localAccess[1i]);
else
forall i in A.domain do Dynamic check is created only for B
A.localAccess[1] = calculate(B[1]);
} else {

forall i in A.domain do
A[1] = calculate(B[1]);
}

— .

AUTOMATIC LOCAL ACCESS OPTIMIZATION
Dynamic Checks

var A = newBlockArr ({1..N}, int); -var A = newBlockArr({1l..N}, int); E
var B = newBlockArr ({1..N}, int); .var B = newBlockArr({1l..N}, int); &
param staticCheckA = canUselLocalAccess (A, A.domain); . forall i in A.domain do .
param staticCheckB = canUseLocalAccess (B, A.domain); E A[i] = calculate(B[1]); E
if staticCheckA || staticCheckB { AN NS NN NN NN NS NN NN EEE NN EEENEEEEEEEE

const dynamicCheckB = canUselocalAccessDyn (B, A.domain); Will be executed if
if dynamicCheckB then

forall i in A.domain do

* A passes static checks

* B passes static and dynamic checks

A.localAccess[1] = calculate(B.localAccess|[1]);
else

Will be executed if
* A passes static checks
* B fails static or dynamic checks

forall 1 in A.domain do

A.localAccess[1] = calculate(BI[1]);
} else {

forall i in A.domain do : v
A[i] = calculate(B[i]); Will be executed i

} * Neither array passes static checks

— e

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Dynamic Support for Subset Domains

e The optimization covers cases where the loop domain is a subset of the array domain

var D = newBloc-:kDom ({1..10})~; Optimized upon a dynamic check
var A, B: [D] int;

forall in D.expand(-1) do
Ali] calculate(B[1i]);

bt

e |t also detects iteration over (a subset of) the local subdomain of a distributed array's domain

var D = newBlockDom({1..10});

var A, B: [D] int;

coforall 1 in lLocales do on 1 {
forall i

A[1i] = calculate(B[1]); Optimized upon a dynamic check
// ... or ...

forall 1 in D.localSubdomain () .expand(-1) do
A[i1] = calculate(B[1]):

in D.localSubdomain() do

> —
<

—

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Queried Domains in Array Formals

e Static optimization opportunities for array formals without domain queries are limited

'ALi]' can be optimized statically

proc foo (A, B) {
forall i in A.domain do
A[i] = calculate(B[1]):;

}

e To avoid dynamic checks and loop cloning, be more explicit when multiple arguments share a domain

proc foo(A: [?D], B: [D]) {
forall i in A.domain do

A[i] = calculate (B[i]): We know that B is an array that has

the same domain as the loop domain

12

AUTOMATIC LOCAL ACCESS OPTIMIZATION
Available Compiler Flags

e --[no-]Jauto-local-access

e Enable/disable this optimization
o Enabled by default

e --[no-]Jdynamic-auto-local-access
« Enable/disable dynamic optimization
o Enabled by default
e Dynamic optimization results in loop cloning and can increase compilation time in some codes

e --[no-]report-auto-local-access

« Enable/disable verbose output about the optimization steps
« Disabled by default

— .

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Caveats

e The optimization is thwarted if
e The locale changes between the 'forall' and the array access

forall i in A.domain do
on Locales[X] do // this statement can move the execution to another locale
A[i] = calculate (1) ;

e The array index symbol is not identical to the loop index symbol

forall i1 in A.domain {
const k = 1i;
A[k] = calculate (i),

14

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Caveats

e Zippered foralls are supported only if the loop index is expanded

forall (i,a) in zip (D, somelterator()) { } //theloop will be analyzed further

forall idx in zip (D, somelterator()) { } // the loop will not be analyzed further

e Indexing intfo shadow variables is not analyzed

forall i in D with (ref A) do

A[i1i] = calculate (i),

e Indexing info array views is not analyzed

var A = otherArr[2..10];

forall i1 in A.domain do
A[l1] = calculated(1i):;

— .

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Impact STREAM
=10 _ —#— Automatic Local Access
e Global STREAM with array indexing: o —— 122
:C:BO
forall i in ProblemSpace do %20
C. : A ©
A[i1i] = B[i]+ alpha * C[i]; %10
m
0 1 1
32 64 128 256 512
now essentially performs like other idioms: Number of Locales(x 36 cores/locale)
STREAM
i) 1.0 = = &
forall (a, b, c¢) in zip (A, B, C) do
a = b + alpha * c; >0'8 —°
206 | ¢
or: 2
) F=04
Lu 02k —— Automatic Local Access
A =B + alpha * C; ' —— 1.22
] | [| [|
32 64 128 256 512

Number of Locales(x 36 cores/locale)

—

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Impact

e Explicit 'localAccess' calls are no longer needed in NPB-FT
« Kernel with 'localAccess' calls

- NPB-FT
forall ijk in DomT { (Class D)
const elt = V.localAccess[1Jk] *
. . — —— 1.23 without localAccess
T.localiceessligkl)s % 600 I _¢- 1.22 with localAccess
- 1.22 without localA
V.localAccess[1jk] = elt; %400 WITOUE JOBRIACEEss
Wt.localAccess[1Jk] = elt; ©
} =
. c 200
« Kernel without 'localAccess' calls 3
|
forall ijk in DomT | T g 16 32
const elt = V[ijk] * Number of Locales(x 28 cores/locale)
T[ijk];
VIiijk] = elt;
Wt[ijk] = elt;

}

— .

AUTOMATIC LOCAL ACCESS OPTIMIZATION

Next Steps

e Expand static check to certain array/domain operations, e.g.:

coforall
forall

Ali]
forall
Ali]

}

o Accesses above will be optimized dynamically on Chapel 1.23, but we could optimize them statically

1
1
1

in Locales do on 1 {

in A.localSubdomain ()

calculate (1) ;

in A.domain[someSlice]

calculate (1)

do //localSubdomain always produces a subset

do // slicing always produces a subset

e Investigate how we can expand the analysis to affine accesses

forall 1 in A.domain do

Al1]

calculate(A[i1-1],

Al1],

Ali+1]);

18

IMPROVEMENTS TO
ASSOCIATIVE TYPES

ASSOCIATIVE TYPES
Background and This Effort

Background: Historically, Chapel's lowest-level associative types were associative domains/arrays

« Hash table implementation was intfertwined in domain/array implementation
— Other types like set/map were built on top of associative domains/arrays
- Wanted associative type for internal data structures, but associative domains created circular dependency

This Effort: Factored hash table implementation into an internal standalone type
« Changed set/map types to use the standalone hash table, which enabled optimizations
o Further optimized hash table implementation, especially for repeated insertions/deletions

20

ASSOCIATIVE TYPES
Impact

e Significantly improved performance for associative types
» Especially for repeated insertion/removal patterns identified by users

Associative Type Add/Remove - :\nssociative Array
S — Custom Map
4
m
2 3
o
Q
[0}
K23
) 2
£
|_
1
0
27 Jun 28 Jun 29 Jun 30 Jun 01 Jul 02 Jul 03 Jul

21

ARRAY TRACKING OPTIMIZATION
Background and This Effort

Background: Chapel domains track arrays declared over them
o Supports resizing arrays when their domain is modified:

var D = {1..10};
var A: [D] int;
var B: [D] int;
D= {1..20}; // this resizes 'A' and ‘B’
e Previously, domains tracked arrays with a linked list, which has O(n) removal
e In many cases, arrays are removed in the opposite order that they are created, so O(1) in practice

o However, for arrays-of-arrays that freed their array elements in parallel, O(n) behavior occurred
—Some user codes have suffered from this

This Effort: Switched from using a linked list to a hash table to track arrays
e Hash table insertion/removal is always O(1)

— .

ARRAY TRACKING OPTIMIZATION
Impact

e Significantly reduced worst-case overheads for tracking arrays
o ~700x speedup for task-intents with array-of-arrays

// Snippet from user n-body code
const nBodies = 10000;
const D = {0..#nBodies};

var forces: [D][0..#3] real;
forall d in D with (+ reduce forces) { .. }

o ~500x speedup for distributed array-of-arrays at 512 nodes

// Per-task timers from ISx, 9 timers in actual code

// 486.5s -> 0.65s

const D = newBlockDom (0. .#numLocales*here.maxTaskPar) ;

var totalTimeSPMD, ...: [D][l..trials] real;

—

// 250.0s -> 0.5s

24

CONSTANT DOMAIN OPTIMIZATION
Background

e Tracking the arrays declared over a domain was optimized

« However, tracking is only needed if the domain can be resized
o Unnecessary if the domain is constant

— .

CONSTANT DOMAIN OPTIMIZATION
This Effort

e Stop tracking arrays for domains declared 'const' or domain literals

const D = {1..10};
var A: [D] int; // no need to track A, 'D’ is a constant

var B: [1..20] int; // no need to track ‘B, 1..20 is a constant

e An important case for this optimization is array-of-arrays

var A: [1..1 000 00O0][1..5] int; // no need to track 1 million arrays, 1..5 is a constant

e Add compiler analysis to detect domain creation/move/copy operations

e By only looking at variable/formal declarations
o And not doing def/use analysis

— .

CONSTANT DOMAIN OPTIMIZATION

Impact

e More than 2x faster array initialization/deinitialization on constant domains

Chapel 1.22 118 96
Chapel 1.23 51 47

e 2.5x faster initialization, 6x faster deinitialization for array-of-arrays

Array-of-Arrays Initialization Array-of-Arrays Deinitialization

3 |- == Chapel 1.23

—#— Chapel 1.23
—&— Chapel 1.22

——&— Chapel 1.22

Time (s)
N

Outer dimension size (M) Outer dimension size (M)

CONSTANT DOMAIN OPTIMIZATION
Next Steps

e Implement lighter-weight reference counting for domains

e More def/use analysis on domains and arrays can help cover some more cases
« Passing a non-constant domain to a 'const ref' formal and defining an array on that formal
« Domains that are declared 'var' but never modified

e Find answers for some semantic questions

» Should we special-case domains w.r.t copy elision rules?
- See https://github.com/chapel-lang/chapel/issues/16431

29

https://github.com/chapel-lang/chapel/issues/16431

PARALLEL ARRAY INITIALIZATION

Background: Chapel initializes large numeric (integral/real/complex) arrays in parallel

« Performance issues with tracking a domain’s arrays prevented parallelizing arrays-of-arrays
—As a simplified proxy we only parallelized integral/real/complex arrays
—-Optimizing how arrays are tracked eliminated that performance issue

This Effort: Extend parallel initialization to all arrays

Impact: Better NUMA affinity for more arrays, which improves performance of parallel operations

HPCC RA Time — RA w/atomics
—RA
0.08 \A/_\/W_\/\'/_\w—‘\/
0.06

0.04

Time (seconds)

0.02

21 Jun 28 Jun 05 Jul 12 Jul 19 Jul 26 Jul 02 Aug

[I

31

PARALLEL ARRAY ASSIGNM El

Bia

PARALLEL ARRAY ASSIGNMENT
Background and This Effort

Background:
o Large Chapel arrays are initialized in parallel
e However, array assignments were not parallel

var A: [1..n] int; //parallel default initialization
var B: [1..n] int; //parallel default initialization

A = B; // this was done sequentially

o Especially in multi-socket systems, parallel ‘'memcpy's can improve the bandwidth significantly

This Effort:
» Use parallel local copies for large array assignments if applicable

— .

PARALLEL ARRAY ASSIGNMENT
Impact

e Array copies are significantly faster

2D Array Assignment (1024x1024, faster idioms)

Idiom using
0.0015
‘for

m

€ 0.001

Q

()]

L

o} I - A\ N . .

E 0.0005 Idiom using
Idioms using A=B

‘forall' 0 T

16 Aug 23 Aug 30 Aug 06 Sep 13 Sep 20 Sep 27 Sep 04 Oct

— .

PARALLEL ARRAY ASSIGNMENT

Impact

e Arkouda performance improvements

Performance (GiB/s)

Argsort Performance

S ————

120

100

80

60

40

20

18 Sep

20 Sep 22 Sep

24 Sep

Scan Performance

27

18 Sep 20 Sep 22 Sep

24 Sep

35

PARALLEL ARRAY ASSIGNMENT
Next Steps

e Investigate making remote array copies parallel
e Initial attempts resulted in some regressions

— .

ARRAY SWAP OPTIMIZATION
Background and This Effort

Background:

o Chapel supports a swap assignment operator (‘<=>") for convenience and optimization opportunities

« Users have long requested that array swaps be performed using a pointer swap rather than per-element swaps
- historically, this wasn’t generally possible due to our implementation of array slices
—once we switched to using array views, it enabled this optimization in many cases

This Effort: Implemented array swaps using pointer swaps for some common cases:
« default rectangular arrays that:
—are the same size

—are stored on the same locale
—are not array views

o block-distributed arrays that:
—have equivalent distributions

— .

ARRAY SWAP OPTIMIZATION

Impact

Impact: Turned array swaps for many cases from an O(n) operation to O(1) or O(#targetLocales)

Local Array Block Array (16 locales)
Array size Before After Factor Before After Factor
100M 32ms ~0.15ms 213x 67ms 2.7ms 24.8x
1B 310ms ~0.15ms 2070x| 510ms 3.4ms 150x
10B [OOM] ~0.15ms N/A| 5100ms 3.2ms 1590x

« Supports writing certain code patterns more productively, such as iterative stencil patterns:

var New, Old:
do {

New =

[D] real;

computeStencil (01d) ;
const delta =
0Old <=> New;

while delta > epsilon;

—

max reduce abs (New — 01d);
// prepare for the next iteration

Time (seconds)

0.7
0.6
0.5
0.4
0.3
0.2
0.1

Parboil Stencil 3D Execution Time

e —

02 Aug

09 Aug 16 Aug 23 Aug

39

ARRAY SWAP OPTIMIZATION
Next Steps

Next Steps:

« Extend optimization to other array types and distributions
- e.g., sparse arrays, Cyclic distributions, etc.
o Optimize other forms of array/sub-array swapping, for example:

Ali, ..] <=> A[3j, ..1:; [/rowswap — think about how to implement this efficiently on distributed arrays
Al.., 11 <=> A[.., 7Jl: //columnswap — (these patterns appear in PNNL’s work on CHGL)

40

COMPILATION TIME IMPR

&

"

e Single-lteration Coforalls

w.., &5
f
’

ITERATION COFOF

SINGLE

SINGLE-ITERATION COFORALLS
Background and This Effort

Background: ‘coforall’ loops create a distinct task per loop iteration

« Historically, many iterators would include special cases to avoid task creation for single-iteration coforalls
iter batch(r: range) {

const numTasks = here.maxTaskPar - here.runningTasks() + 1;
if numTasks == 1 then
for i in r do
yield 1;
else

coforall tid in 0..<numTasks do
for 1 in myChunk(tid, numTasks, r) do
yield 1;
}
This Effort: Optimize single-iteration coforalls

« Avoid task creation by having parent task run body directly
« Eliminate manipulation of atomic running tasks counter

—

43

SINGLE-ITERATION COFORALLS
Impact

e Significantly faster single-iteration coforalls

coforall 1..1 {} // ~13x faster with this optimization

coforall 1. .here.maxTaskPar do
coforall 1..1 {} // ~90x faster with this optimization

e Single-iteration coforalls have little overhead now
« Enabled removing special cases in iterators, reducing generated code size

- ~3% faster compilation on average
- ~15% faster Arkouda compilation

Lk

OTHER COMPILATION TIME

IMPROVEMENTS

COMPILATION TIME IMPROVEMENTS

» Refactored formatted string implementation

« Faster compilation for applications with lots of 'writef' and/or 'string.format’ calls
o ~30% faster Arkouda compilation

» Refactored several string/bytes operations
e Reduced inlining with iterators and casts
o ~9% faster compilation on average
o ~3% faster Arkouda compilation

» Replaced some ‘where’-clauses with formal types

« Fewer generic functions fo resolve
o ~7% faster compilation on average

— .

COMPILATION TIME IMPROVEMENTS

e Multi-locale Arkouda build time on Cray XC

Time (sec)

Build Time

1500

1000

500

0

Apr 2020 May 2020 Jun 2020 Jul 2020 Aug 2020 Sep 2020 Oct 2020

— Compile Time (release)
-=- Compile Time (nightly)

~ 1200 seconds with 1.22
Y s~ 750 seconds with 1.23

7 minutes faster
compilation

47

COMPILATION TIME IMPROVEMENTS

e Single locale Arkouda build time

Build Time — Compile Time (release)
700 -- Compile Time (nightly)
/
600 }
|
500 i T .
| ~ seconds with 1.22
8 400 [/_—-—-v\,_/J"/""“‘\V\"vA\—"// b I"‘,‘\
2 \
g 300 \
|_

N e < ~ 220 seconds with 1.23

100

0 []
Apr2020 May2020 Jun2020 Jul2020 Aug2020 Sep2020 Oct 2020 4 UL sl.mrter
compilation

COMPILATION TIME IMPROVEMENTS
Next Steps

e More opportunities to reduce the generated code size and compilation time
e We can stop inlining several array support functions
—Need to investigate potential performance regressions

e [terator outlining
—There are some large iterators that we inline even with '—no-fast'
—Currently, non-inlined iterators generate even more code and are very slow
—Investigate whether we can outline such iterators’ bodies into helpers and inline smaller bodies

49

MEMORY IMPROVEMENTS

i

e Memory Leak Improvements

MEMORY FRAGMENTATION
IMPROVEMENTS

MEMORY FRAGMENTATION
Background and This Effort

Background: ‘jemalloc’ per-thread arenas can cause memory fragmentation
« Each thread allocates from a different arena to improve concurrent allocation performance
o Freed memory is not immediately returned to the system, but retained for later use to reduce system calls
« This leads to cross-thread fragmentation, which limits available memory for large allocations—for example:

—thread/arena O allocates/frees a large array — had to grab memory from system, retains for future use
—thread/arena 1 then does the same operation — cannot use arena O memory, must grab more from system

« This impacted configurations that allocate large arrays through ‘jemalloc’
- Did not impact ugni, which uses a different allocation scheme for large arrays

This Effort: Use a single arena to satisfy large allocations
« Increases contention for large allocations, but concurrent large allocations are rare

MEMORY FRAGMENTATION
Impact

e Reduced memory fragmentation and improved performance for repeated array creation

Set Operations Performance -- Intersect GiB/s (nightly)
-= Xor GiB/s (nightly)
20 -- Union GiB/s (nightly)
SSSSSSSSSSSSSSSSSSESSSSSSSST oo Diff GiBls (nightly)

_ Used to run
(2
o Sl out of memory =P
o
8
c “W— EEe————
©
£
(o]
E 0.5
o

0

26 Jun 28 Jun 30 Jun 02 Jul 04 Jul 06 Jul
Argsort Performance --Argsort GiB/s (nightly)

| e
Q)
m
g 3
[]
[&]
S 2
£
£
g 1

0

26 Jun 28 Jun 30 Jun 02 Jul 04 Jul 06 Jul

[I

MEMORY LEAKIMPROVEM

MEMORY LEAKS
Background, This Effort and Next Steps

Background:
o Memory leaks have historically been tracked in graphs
—Made sense when hundreds of tests leaked
—Makes it cumbersome to triage leaks now that there are only a few leaking tests

This Effort:
« Converted multi-locale leak testing to a correctness test now that it has O leaks
« Classified remaining single-locale leaks into distinct bugs with smaller reproducers
—-We believe 24 leaking tests are coming from 8 different bugs
—See https://github.com/chapel-lang/chapel/issues/15623

Next Steps:
e Investigate turning single-locale testing into correctness tests
—Will require some adjustments for current known/expected leaks
e Close remaining single-locale leaks

— .

https://github.com/chapel-lang/chapel/issues/15623

OTHER PERFORMANCE

IMPROVEMENTS

OTHER PERFORMANCE IMPROVEMENTS

For a more complete list of performance optimizations in the 1.23 release, refer to the following
sections in the CHANGES.md file:

e ‘Performance Optimizations’

e ‘Memory Improvements’

— .

https://github.com/chapel-lang/chapel/blob/release/1.23/CHANGES.md

THANK YOU

https://chapel-lang.org
@ChapelLanguage

