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OUTLINE

• Array Optimizations
• Compilation Time Improvements
• Memory Improvements
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ARRAY OPTIMIZATIONS

• Automatic Local Access Optimization
• Improvements to Associative Types
• Array Tracking Optimization
• Constant Domain Optimization
• Parallel Array Initialization
• Parallel Array Assignment
• Array Swap Optimization
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AUTOMATIC LOCAL ACCESS 
OPTIMIZATION



• Iterating over arrays/domains using 'forall' is a very common pattern in Chapel:

var D = newBlockDom({1..N});
var A: [D] int;
forall i in D do
A[i] = calculate(i);

• For distributed arrays, every 'A[i]' checks whether it is a local access
• This check is overhead for this pattern: they are all guaranteed to be local 

• Potential workarounds:

forall (a, i) in zip(A, A.domain) do
a = calculate(i);

forall i in A.domain do
A.localAccess(i) = calculate(i);
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AUTOMATIC LOCAL ACCESS OPTIMIZATION

the array is indexed using the loop index

Background

loop is run over the domain of an array

clunky



This Effort

• Implemented a compiler analysis that replaces 'A[i]' with 'A.localAccess[i]'
• The optimization is done statically if the compiler can prove that: 

– the loop domain supports the optimization
– the array is indexed with the loop index symbol
– the loop domain matches the array's domain

• The optimization is subject to a dynamic check at execution time if:
– the first two conditions above are met, but the compiler cannot prove that the loop and array domains match

• An example where the optimization can be done statically:
var D = newBlockDom({1..10});
var A: [D] int;
forall i in D do
A[i] = calculate(i);  //  ==>   A.localAccess[i] = calculate(i);
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Arrays With Common Domains

• The optimization also applies to multiple arrays
var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;
forall i in D do
A[i] = calculate(B[i]);

• Even when the loop domain is not explicit
var D = newBlockDom({1..N});
var A: [D] int;
var B: [D] int;
forall i in A.domain do
A[i] = calculate(B[i]);
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loop is run over the domain of array(s)

array(s) indexed using the loop index

loop is run over a domain query

array(s) indexed using the loop index

array(s) have the same domain as the loop



Dynamic Checks

• If the compiler cannot determine the domain of an array:
• Equality of domains will be checked at execution time
• Depending on that, an optimized or unoptimized version of the loop will be run

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);  // currently we can't infer 'B' has the same domain as 'A'

forall i in A.domain do
A[i] = calculate(B[i]);  // B[i] is local if A.domain == B.domain

// that can only be confirmed at execution time

• Terminology
• 'A' is a static candidate
• 'B' is a dynamic candidate

• The compiler will clone loops if there are one or more dynamic candidates
• This can increase compilation time
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Dynamic Checks
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var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
param staticCheckA = canUseLocalAccess(A, A.domain);
param staticCheckB = canUseLocalAccess(B, A.domain);
if staticCheckA || staticCheckB {

const dynamicCheckB = canUseLocalAccessDyn(B, A.domain);
if dynamicCheckB then

forall i in A.domain do
A.localAccess[i] = calculate(B.localAccess[i]);

else
forall i in A.domain do

A.localAccess[i] = calculate(B[i]);
} else {

forall i in A.domain do
A[i] = calculate(B[i]);

} 

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
forall i in A.domain do

A[i] = calculate(B[i]);

Static checks are created for both arrays

Dynamic check is created only for B



Dynamic Checks
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var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
param staticCheckA = canUseLocalAccess(A, A.domain);
param staticCheckB = canUseLocalAccess(B, A.domain);
if staticCheckA || staticCheckB {

const dynamicCheckB = canUseLocalAccessDyn(B, A.domain);
if dynamicCheckB then

forall i in A.domain do
A.localAccess[i] = calculate(B.localAccess[i]);

else
forall i in A.domain do

A.localAccess[i] = calculate(B[i]);
} else {

forall i in A.domain do
A[i] = calculate(B[i]);

} 

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
forall i in A.domain do

A[i] = calculate(B[i]);

Will be executed if
• A passes static checks
• B passes static and dynamic checks

Will be executed if
• A passes static checks
• B fails static or dynamic checks

Will be executed if
• Neither array passes static checks



Dynamic Support for Subset Domains

• The optimization covers cases where the loop domain is a subset of the array domain
var D = newBlockDom({1..10});
var A, B: [D] int;
forall i in D.expand(-1) do

A[i] = calculate(B[i]);

• It also detects iteration over (a subset of) the local subdomain of a distributed array's domain
var D = newBlockDom({1..10});
var A, B: [D] int;
coforall l in Locales do on l {

forall i in D.localSubdomain() do
A[i] = calculate(B[i]);

// ... or ...
forall i in D.localSubdomain().expand(-1) do

A[i] = calculate(B[i]);
}
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Optimized upon a dynamic check

Optimized upon a dynamic check



Queried Domains in Array Formals

• Static optimization opportunities for array formals without domain queries are limited

proc foo(A, B) {
forall i in A.domain do
A[i] = calculate(B[i]);

}

• To avoid dynamic checks and loop cloning, be more explicit when multiple arguments share a domain

proc foo(A: [?D], B: [D]) {
forall i in A.domain do
A[i] = calculate(B[i]);

}
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'A[i]' can be optimized statically

Currently, we can't determine whether B is an array 
early enough during compilation, so we use dynamic 

checks for it

We know that B is an array that has 
the same domain as the loop domain



Available Compiler Flags

• --[no-]auto-local-access
• Enable/disable this optimization
• Enabled by default

• --[no-]dynamic-auto-local-access
• Enable/disable dynamic optimization
• Enabled by default
• Dynamic optimization results in loop cloning and can increase compilation time in some codes

• --[no-]report-auto-local-access
• Enable/disable verbose output about the optimization steps
• Disabled by default
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Caveats

• The optimization is thwarted if
• The locale changes between the 'forall' and the array access

forall i in A.domain do
on Locales[X] do      // this statement can move the execution to another locale

A[i] = calculate(i);

• The array index symbol is not identical to the loop index symbol

forall i in A.domain {
const k = i;
A[k] = calculate(i);

}
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Caveats

• Zippered foralls are supported only if the loop index is expanded

forall (i,a) in zip(D, someIterator()) { }  // the loop will be analyzed further

forall idx in zip(D, someIterator()) { }    // the loop will not be analyzed further

• Indexing into shadow variables is not analyzed

forall i in D with (ref A) do

A[i] = calculate(i);

• Indexing into array views is not analyzed

var A = otherArr[2..10];

forall i in A.domain do
A[i] = calculated(i);
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Impact

• Global STREAM with array indexing:

forall i in ProblemSpace do
A[i] = B[i]+ alpha * C[i];

now essentially performs like other idioms:

forall (a, b, c) in zip(A, B, C) do
a = b + alpha * c;

or:

A = B + alpha * C;
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Impact

• Explicit 'localAccess' calls are no longer needed in NPB-FT
• Kernel with 'localAccess' calls

• Kernel without 'localAccess' calls
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forall ijk in DomT { 
const elt = V.localAccess[ijk] *

T.localAccess[ijk];

V.localAccess[ijk] = elt;
Wt.localAccess[ijk] = elt;

}

forall ijk in DomT { 
const elt = V[ijk] *

T[ijk];

V[ijk] = elt;
Wt[ijk] = elt;

}



Next Steps

• Expand static check to certain array/domain operations, e.g.:
coforall l in Locales do on l {
forall i in A.localSubdomain() do  // localSubdomain always produces a subset

A[i] = calculate(i);
forall i in A.domain[someSlice] do // slicing always produces a subset

A[i] = calculate(i)
}

• Accesses above will be optimized dynamically on Chapel 1.23, but we could optimize them statically

• Investigate how we can expand the analysis to affine accesses
forall i in A.domain do

A[i] = calculate(A[i-1], A[i], A[i+1]); 
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IMPROVEMENTS TO 
ASSOCIATIVE TYPES



Background and This Effort

Background: Historically, Chapel's lowest-level associative types were associative domains/arrays
• Hash table implementation was intertwined in domain/array implementation

– Other types like set/map were built on top of associative domains/arrays
– Wanted associative type for internal data structures, but associative domains created circular dependency 

This Effort: Factored hash table implementation into an internal standalone type
• Changed set/map types to use the standalone hash table, which enabled optimizations
• Further optimized hash table implementation, especially for repeated insertions/deletions
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ASSOCIATIVE TYPES



Impact

• Significantly improved performance for associative types
• Especially for repeated insertion/removal patterns identified by users
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ASSOCIATIVE TYPES



ARRAY TRACKING OPTIMIZATION



Background and This Effort

Background: Chapel domains track arrays declared over them
• Supports resizing arrays when their domain is modified:

var D = {1..10};
var A: [D] int;
var B: [D] int;
D = {1..20};     // this resizes 'A' and ‘B’

• Previously, domains tracked arrays with a linked list, which has O(n) removal 
• In many cases, arrays are removed in the opposite order that they are created, so O(1) in practice
• However, for arrays-of-arrays that freed their array elements in parallel, O(n) behavior occurred

– Some user codes have suffered from this

This Effort: Switched from using a linked list to a hash table to track arrays
• Hash table insertion/removal is always O(1)
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Impact

• Significantly reduced worst-case overheads for tracking arrays
• ~700x speedup for task-intents with array-of-arrays

// Snippet from user n-body code

const nBodies = 10000;
const D = {0..#nBodies};
var forces: [D][0..#3] real;
forall d in D with (+ reduce forces) { … }      // 486.5s -> 0.65s

• ~500x speedup for distributed array-of-arrays at 512 nodes

// Per-task timers from ISx, 9 timers in actual code

const D = newBlockDom(0..#numLocales*here.maxTaskPar);
var totalTimeSPMD, ...: [D][1..trials] real;    // 250.0s -> 0.5s
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CONSTANT DOMAIN OPTIMIZATION



Background

• Tracking the arrays declared over a domain was optimized
• However, tracking is only needed if the domain can be resized
• Unnecessary if the domain is constant
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This Effort

• Stop tracking arrays for domains declared 'const' or domain literals

const D = {1..10};
var A: [D] int;         // no need to track A, 'D’ is a constant    

var B: [1..20] int;   // no need to track 'B', 1..20 is a constant

• An important case for this optimization is array-of-arrays

var A: [1..1_000_000][1..5] int;   // no need to track 1 million arrays, 1..5 is a constant

• Add compiler analysis to detect domain creation/move/copy operations
• By only looking at variable/formal declarations
• And not doing def/use analysis
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Impact

• More than 2x faster array initialization/deinitialization on constant domains

• 2.5x faster initialization, 6x faster deinitialization for array-of-arrays
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CONSTANT DOMAIN OPTIMIZATION

Init (ns) Deinit (ns)

Chapel 1.22 118 96

Chapel 1.23 51 47



Next Steps

• Implement lighter-weight reference counting for domains

• More def/use analysis on domains and arrays can help cover some more cases
• Passing a non-constant domain to a 'const ref' formal and defining an array on that formal
• Domains that are declared 'var' but never modified

• Find answers for some semantic questions
• Should we special-case domains w.r.t copy elision rules? 

– See https://github.com/chapel-lang/chapel/issues/16431
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https://github.com/chapel-lang/chapel/issues/16431


PARALLEL ARRAY INITIALIZATION



Background: Chapel initializes large numeric (integral/real/complex) arrays in parallel
• Performance issues with tracking a domain’s arrays prevented parallelizing arrays-of-arrays

–As a simplified proxy we only parallelized integral/real/complex arrays
–Optimizing how arrays are tracked eliminated that performance issue

This Effort: Extend parallel initialization to all arrays

Impact: Better NUMA affinity for more arrays, which improves performance of parallel operations
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PARALLEL ARRAY ASSIGNMENT



Background and This Effort

Background:
• Large Chapel arrays are initialized in parallel
• However, array assignments were not parallel

var A: [1..n] int;  // parallel default initialization
var B: [1..n] int;  // parallel default initialization

A = B;    // this was done sequentially

• Especially in multi-socket systems, parallel 'memcpy's can improve the bandwidth significantly

This Effort:
• Use parallel local copies for large array assignments if applicable
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Impact

• Array copies are significantly faster
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Idioms using 
'forall'

Idiom using
'for'

Idiom using
'A = B'



Impact

• Arkouda performance improvements

35

PARALLEL ARRAY ASSIGNMENT



Next Steps

• Investigate making remote array copies parallel
• Initial attempts resulted in some regressions
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ARRAY SWAP OPTIMIZATION



Background and This Effort

Background:
• Chapel supports a swap assignment operator (‘<=>’) for convenience and optimization opportunities
• Users have long requested that array swaps be performed using a pointer swap rather than per-element swaps

– historically, this wasn’t generally possible due to our implementation of array slices
– once we switched to using array views, it enabled this optimization in many cases

This Effort: Implemented array swaps using pointer swaps for some common cases:
• default rectangular arrays that:

– are the same size
– are stored on the same locale
– are not array views

• block-distributed arrays that:
– have equivalent distributions
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Impact

Impact: Turned array swaps for many cases from an O(n) operation to O(1) or O(#targetLocales)

• Supports writing certain code patterns more productively, such as iterative stencil patterns:

var New, Old: [D] real;
do {

New = computeStencil(Old);
const delta = max reduce abs(New – Old);
Old <=> New;  // prepare for the next iteration

while delta > epsilon;
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Array size
Local Array

Before           After     Factor
Block Array (16 locales)
Before        After      Factor

100M 32ms ~0.15ms 213x 67ms 2.7ms 24.8x

1B 310ms ~0.15ms 2070x 510ms 3.4ms 150x

10B [OOM] ~0.15ms N/A 5100ms 3.2ms 1590x



Next Steps

Next Steps:
• Extend optimization to other array types and distributions

– e.g., sparse arrays, Cyclic distributions, etc.

• Optimize other forms of array/sub-array swapping, for example:
A[i, ..] <=> A[j, ..];  // row swap       — think about how to implement this efficiently on distributed arrays
A[.., i] <=> A[.., j];  // column swap — (these patterns appear in PNNL’s work on CHGL)
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COMPILATION TIME IMPROVEMENTS

• Single-Iteration Coforalls
• Other Compilation Time improvements
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SINGLE-ITERATION COFORALLS



Background and This Effort

Background: ‘coforall’ loops create a distinct task per loop iteration
• Historically, many iterators would include special cases to avoid task creation for single-iteration coforalls

iter batch(r: range) { 
const numTasks = here.maxTaskPar - here.runningTasks() + 1;
if numTasks == 1 then

for i in r do
yield i;

else
coforall tid in 0..<numTasks do

for i in myChunk(tid, numTasks, r) do
yield i;

}

This Effort: Optimize single-iteration coforalls
• Avoid task creation by having parent task run body directly 
• Eliminate manipulation of atomic running tasks counter
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Impact

• Significantly faster single-iteration coforalls

coforall 1..1 {}                  // ~13x faster with this optimization

coforall 1..here.maxTaskPar do
coforall 1..1 {}                // ~90x faster with this optimization

• Single-iteration coforalls have little overhead now
• Enabled removing special cases in iterators, reducing generated code size

– ~3% faster compilation on average 
– ~15% faster Arkouda compilation
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OTHER COMPILATION TIME 
IMPROVEMENTS



• Refactored formatted string implementation
• Faster compilation for applications with lots of 'writef' and/or 'string.format' calls
• ~30% faster Arkouda compilation

• Refactored several string/bytes operations
• Reduced inlining with iterators and casts
• ~9% faster compilation on average 
• ~3% faster Arkouda compilation

• Replaced some ‘where’-clauses with formal types
• Fewer generic functions to resolve
• ~7% faster compilation on average
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• Multi-locale Arkouda build time on Cray XC
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~ 1200 seconds with 1.22

~ 750 seconds with 1.23

7 minutes faster 
compilation



• Single locale Arkouda build time
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~ 460 seconds with 1.22

~ 220 seconds with 1.23

4 minutes shorter 
compilation



Next Steps

• More opportunities to reduce the generated code size and compilation time
• We can stop inlining several array support functions

–Need to investigate potential performance regressions

• Iterator outlining
–There are some large iterators that we inline even with '—no-fast'
–Currently, non-inlined iterators generate even more code and are very slow
–Investigate whether we can outline such iterators’ bodies into helpers and inline smaller bodies
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MEMORY IMPROVEMENTS

• Memory Fragmentation Improvements
• Memory Leak Improvements
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MEMORY FRAGMENTATION 
IMPROVEMENTS



Background and This Effort

Background: ‘jemalloc’ per-thread arenas can cause memory fragmentation
• Each thread allocates from a different arena to improve concurrent allocation performance 
• Freed memory is not immediately returned to the system, but retained for later use to reduce system calls
• This leads to cross-thread fragmentation, which limits available memory for large allocations—for example:

– thread/arena 0 allocates/frees a large array – had to grab memory from system, retains for future use
– thread/arena 1 then does the same operation – cannot use arena 0 memory, must grab more from system

• This impacted configurations that allocate large arrays through ‘jemalloc’
– Did not impact ugni, which uses a different allocation scheme for large arrays

This Effort: Use a single arena to satisfy large allocations
• Increases contention for large allocations, but concurrent large allocations are rare
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Impact

• Reduced memory fragmentation and improved performance for repeated array creation
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Used to run 
out of memory 



MEMORY LEAK IMPROVEMENTS



Background, This Effort and Next Steps
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MEMORY LEAKS

Background: 
• Memory leaks have historically been tracked in graphs

–Made sense when hundreds of tests leaked
–Makes it cumbersome to triage leaks now that there are only a few leaking tests

This Effort: 
• Converted multi-locale leak testing to a correctness test now that it has 0 leaks
• Classified remaining single-locale leaks into distinct bugs with smaller reproducers

–We believe 24 leaking tests are coming from 8 different bugs
–See https://github.com/chapel-lang/chapel/issues/15623

Next Steps:
• Investigate turning single-locale testing into correctness tests

–Will require some adjustments for current known/expected leaks
• Close remaining single-locale leaks

https://github.com/chapel-lang/chapel/issues/15623


OTHER PERFORMANCE 
IMPROVEMENTS



For a more complete list of performance optimizations in the 1.23 release, refer to the following 
sections in the CHANGES.md file:

• ‘Performance Optimizations’

• ‘Memory Improvements’
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https://github.com/chapel-lang/chapel/blob/release/1.23/CHANGES.md


THANK YOU
https://chapel-lang.org
@ChapelLanguage


