
CHAPEL 1.23 RELEASE NOTES:
COMPILER AND TOOL IMPROVEMENTS

Chapel Team
October 15, 2020

OUTLINE

• Error Message Improvements
• Mason Improvements
• Supporting Protocol Buffers

2

ERROR MESSAGE IMPROVEMENTS

Background

• Previously, error messages in generic functions could be hard to follow

1 proc h(arg) { arg = 11; }
2 proc g(arg) { h(arg); }
3 proc f(arg) { g(arg); }
4 f("hi");

prog.chpl:1: In function 'h':
prog.chpl:1: error: Cannot assign to string from int(64)
prog.chpl:2: Function 'h' instantiated as: h(arg: string)

• This error could be more helpful
• In this case, ‘h(string)’ should probably never be called
• Could the error show what called ‘h(string)’ ?

4

ERROR MESSAGE IMPROVEMENTS

This Effort

• Extended many error messages to include a callstack for more context:

1 proc h(arg) { arg = 11; }
2 proc g(arg) { h(arg); }
3 proc f(arg) { g(arg); }
4 f("hi");

prog.chpl:1: In function 'h':
prog.chpl:1: error: Cannot assign to string from int(64)

prog.chpl:2: called as h(arg: string) from function 'g'
prog.chpl:3: called as g(arg: string) from function 'f'
prog.chpl:4: called as f(arg: string)

note: generic instantiations are underlined in the above callstack

• Errors now include bold font and underlining when outputting to a supported terminal
• ‘--print-callstack-on-error’ available to request callstack for concrete functions as well as generic

5

ERROR MESSAGE IMPROVEMENTS

Next Steps

• Print out regions of code with pointers similar to other compilers
• Consider making use of bold font and underlining in other error messages
• Consider adding color output

6

ERROR MESSAGE IMPROVEMENTS

MASON IMPROVEMENTS

Background and This Effort

Background:
• Mason is Chapel’s package manager and build tool
• Users can publish packages to chapel-lang/mason-registry on GitHub to make them accessible to other users

– they can also publish to their own internal or public registries for sharing packages

This Effort:
• Added several features and quality-of-life improvements to mason

• Implemented as a Google Summer of Code project
– Student: Ankush Bhardwaj
– Mentors: Ben Albrecht, Sam Partee, and Krishna Kumar Dey (Chapel GSoC 2019 Alum)

8

MASON IMPROVEMENTS

Interactive Package Creation

Background: Users could create mason packages with ‘mason new’ or ‘mason init’
• ‘mason new Foo’ created a bare-bones package named ‘Foo’
• ‘mason init’ created a bare-bones package in the current directory, preserving any existing package contents
• Package metadata such as name, version, and Chapel versions could be edited in ‘Mason.toml’ after creation

This Effort: Implemented interactive ‘mason new’ and ‘mason init’ commands
• ‘mason new’ with no arguments begins an interactive session where the user supplies its metadata
• ‘mason init’ begins an interactive session

– ‘mason init --default’ disables interactive mode and fills all fields with their default values

Impact: Creating a mason package is now more user-friendly

9

MASON IMPROVEMENTS

Interactive Package Creation Example

> mason new
...
Package name : Foo
Package version (0.1.0):
Chapel version (1.23.0):
License (None): Apache-2.0

[brick]
name = "Foo"
version = "0.1.0"
chplVersion = "1.23.0"
license = "Apache-2.0"

[dependencies]

Is this okay ? (Y/N): y
Created new library project: Foo

10

MASON IMPROVEMENTS

Automatic Registry Creation

Background: Using a local mason package requires “publishing” it to a local registry
• Creating the registry can be laborious for users and is prone to user errors in terms of directory structure

This Effort: Implemented ‘mason publish --create-registry’ to create a registry automatically
• ‘mason publish --create-registry <path>’ creates a local registry in the designated path
• Users can then publish their locally developed packages to this registry with: ‘mason publish <path>’

Impact: Creating a local registry and using local packages is easier
> mason publish --create-registry ~/my-registry
Initialised local registry at /Users/foo/my-registry
...

In a mason package

> mason publish ~/my-registry
Successfully published package to /Users/foo/my-registry

11

MASON IMPROVEMENTS

Bash Completion

Background: Bash completion was supported for the Chapel compiler but not for mason

This Effort: Implemented bash completion for mason
• Completion commands are generated by parsing the ‘mason --help’ output to increase maintainability

Impact: Mason is now easier to use
> source util/devel/mason-completion.bash
> mason <tab>
add clean env init publish run system update
build doc external new rm search test
> mason build --<tab>

--example --force --help --no-update --release --savec --show
--update
> mason external <tab>

compiler find info install search uninstall

12

MASON IMPROVEMENTS

Manifest License Field

Background: Mason packages use a manifest file to specify package metadata
• License feature was not yet officially supported in ‘Mason.toml’ manifest file

This Effort: Added a required license field to mason packages
• Uses license identifiers from Software Package Data Exchange (SPDX) license list
• Field is required, but ‘none’ is a valid value if no license has been chosen yet
• mason-registry CI tests will reject any package without a license field or with an invalid license value
• Packages published prior to this feature are not impacted, but new versions will require a license field

Impact: Users can now specify a license in their mason packages
> cat Mason.toml
[brick]
name = "Foo"
version = "0.1.0"
chplVersion = "1.23.0"
license = "Apache-2.0”

13

MASON IMPROVEMENTS

Registry CI Testing Improvements

Background: Chapel’s mason registry runs several checks within CI testing on mason-registry PRs
• Checks included:

– verifying existence of manifest file: ‘Mason.toml’
– verifying existence of package source file: ‘src/<package>.chpl’

This Effort: Added more CI testing checks
• Checks now include:

– verifying that all required manifest fields are present and valid
– validating the license with SPDX
– validating the version is formatted correctly in git tag
– checking for namespace collisions with other packages

Impact: Verifying correctness of published packages is more automated

14

MASON IMPROVEMENTS

Impact and Next Steps

Impact: Several features and quality-of-life improvements have been added to mason

Next Steps:
• Convert Chapel’s package modules (and possibly standard modules) to mason packages
• Formalize and document package acceptance criteria for chapel-lang/mason-registry
• Add ‘mason bench’ for benchmarking Chapel programs
• Address other known bug fixes and feature requests

15

MASON IMPROVEMENTS

SUPPORTING PROTOCOL BUFFERS

Background and This Effort

Background:
• Protocol Buffers are a language-neutral, platform-neutral, extensible mechanism for serializing structured data
• The protocol buffer language supports specifying the schema for structured data
• This schema is compiled into language-specific bindings
• The protobuf compiler ‘protoc’ uses plugins to generate code for many languages
• Protocol Buffers can enable many interoperability scenarios

This Effort: Implement Protocol Buffer support in Chapel
• Developed a ‘protoc’ plugin to generate Chapel code
• Developed a module containing runtime support for encoding and decoding Protocol Buffer formats

• Implemented as a Google Summer of Code project
– Student: Aniket Mathur
– Mentors: Audrey Pratt, Michael Ferguson, Lydia Duncan

17

SUPPORTING PROTOCOL BUFFERS

https://developers.google.com/protocol-buffers

This Effort

18

SUPPORTING PROTOCOL BUFFERS

// addressbook.proto

syntax = "proto3";
package addressbook;
message Person {

string name = 1; // 1 here is a field number
int32 id = 2; // Unique ID number for this person.
string email = 3;
enum PhoneType {

MOBILE = 0; HOME = 1; WORK = 2;
}
message PhoneNumber {

string number = 1;
PhoneType phntype = 2;

}
repeated PhoneNumber phones = 4;

}

// dst/addressbook.chpl

/*
Generated by the protocol buffer compiler. DO NOT EDIT!
source: addressbook.proto

*/

module addressbook {
use ProtobufProtocolSupport;
use List;
use Map;

// Messages
record Person {

// Fields
var name: string; …
proc serialize(ch) throws {…}
proc deserialize(ch) throws {…}

}
}

protoc

This Effort

19

SUPPORTING PROTOCOL BUFFERS

// addressProgram.chpl
use addressbook; // use the generated message module
use IO;

// create a message
var messageObj: Person;
messageObj.name = "John";
var phoneNumber: Person_PhoneNumber;
phoneNumber.number = "555-4321";
phoneNumber.phntype = Person_PhoneType.HOME;
messageObj.phones.append(phoneNumber);

// output message to file
var file = open("out", iomode.cw);
var writingChannel = file.writer()
messageObj.serialize(writingChannel);

compile a .proto file to a Chapel module
protoc --chpl_out=dst addressbook.proto

Impact and Next Steps

Impact: Chapel users can now easily use a powerful interoperability tool

Next Steps: Improve based upon user feedback

20

SUPPORTING PROTOCOL BUFFERS

OTHER COMPILER AND
TOOL IMPROVEMENTS

For a more complete list of compiler and tool improvements in the 1.23 release, refer to the
following sections in the CHANGES.md file:

• ‘Mason Improvements’

• ‘New Tools/ Tool Changes’

• ‘Error Messages / Semantic Checks’

22

OTHER COMPILER AND TOOL IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.23/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

