 —

Hewlett Packard
Enterprise

CHAPEL 1.23 RELEAS'C NOTI
LIBRARY IMPROVEMENTS

Chapel Team
October 15, 2020

OUTLINE

'Version' Module

Collections of Classes Improvements
Parallel-Safe API for List & Map
New Collection Types

Comm Diagnostics Tables

Standard Library Namespaces

Namespace Inspection

MODULE

‘VERSION’

M

@t

A\

L
311

oA

AT il @

‘VERSION’ MODULE
Background and This Effort

Background:

It can be useful for Chapel code to statically reason about the version of ‘chpl’ being used to compile it
—to ensure that certain features are available
—to make code portable across multiple versions of the compiler

param lowBound = if (chplVersion < createVersion(l,22)) then 1 else O0;

Previously, there hadn’t been an official / easy way to do this
Similarly, one might want to associate version numbers with library modules

This Effort:

Added a new standard ‘Version’ module for this purpose, supporting:

—sourceVersion: a tfype to represent static ‘major.minor.update’ version numbers (plus an optional ‘commit’ string)
— comparison operators (<, >, <=,...): fo support comparisons between version values at compile time
—chplVersion: the version of ‘chpl’ being used to compile the code

- createVersion(): a factory function for creating new version numbers

—

‘VERSION’ MODULE
Impact and Next Steps

Status:

» ‘Version’ module is available in Chapel 1.23
- See ‘Version’ documentation: https://chapel-lang.org/docs/modules/standard/Version.html

Impact:
« Chapel code can now contain and reason about version numbers
o Chapel programs can now be written to be sensitive to compiler and library versions

Next Steps:

o Get user experience with ‘Version’ module features and behavior
« Consider introducing version numbers intfo package modules

https://chapel-lang.org/docs/modules/standard/Version.html

COLLECTIONS OF CLASSES

IMPROVEMENTS

COLLECTIONS OF CLASSES IMPROVEMENTS

Background

Background:

e Most collections did not support all class types (e.g., management types, nilable vs. non-nilable) in 1.22

list map set fixedarray resizedarray assoc array sparse tuple

ownedt ¢ 4 4 4 4
shared t X 4 4 4
borrowed t X X ¢ * ¢
unmanagedt X 4 ¢ ¢
(shared t, sharedt) X X X X ¢ ¢ ¢
owned 1? ¢
shared 1? X
borrowed 1? X X X
unmanaged1? X
(shared 1?, shared 1?) X
record

Key
Working X Not yet working ¢ Not expected to work

— |

COLLECTIONS OF CLASSES IMPROVEMENTS
This Effort

This Effort: Increased support for a wider range of class types in collections
« Below are the class types supported in this release

list map set fixed array resizedarray assoc array sparse tuple
ownedt 4 ¢ 4
sharedt ¢ * *
borrowed t * ¢ 4
unmanaged t ¢ ¢ ¢
(shared t, sharedt) X 4 ¢ 4
owned ?
shared 1?
borrowed 1?
unmanaged 1?
(shared 1?, shared 1?)
record

—

COLLECTIONS OF CLASSES IMPROVEMENTS
This Effort

This Effort: Increased support for a wider range of class types in collections
« Below are the class types supported in this release

list map set fixed array resizedarray assoc array sparse tuple
ownedt 4 ¢ 4
sharedt ¢ * *
borrowed t 4 ¢ 4
unmanaged t 4 ¢ ¢
(sharedt, shared 1) I X I 4 * 4
owned1? V]
shared 1?
borrowed 1?
unmanaged t? * Bug related to default initialization of tuple array
(shared 12, shared 1?) Y e, o ol
record g non-nilable Cclasses

—

COLLECTIONS OF CLASSES IMPROVEMENTS
Status and Next Steps

Status:
« Nearly all class types are now supported for each collection type

Next Steps:
« Fix support for fixed-size arrays of tuples containing non-nilable classes

— .

-SAFE API
FORLIST AND MAP

PARALLEL

PARALLEL-SAFE API FORLIST AND MAP
Background

e The indexing methods for ‘list’ and ‘map’ each return references to elements

e | is frivial for users to invalidate references to elements
The call to ‘popQ’ could end up moving
the elements of ‘Ist’ around in memory.

 Particularly dangerous in parallel codes

use List;
var lst = new list(int, parSafe=true);
coforall i in 0..1 with (ref 1st) {

lst.append (i) ;

ref v = 1st[i];
if v == 0 then lst.pop(1);

writeln (v) ;

else

This could invalidate the other task’s
reference stored in V.

12

PARALLEL-SAFE APIFORLIST AND MAP

Potential Solutions

e Prevent reference invalidation when using lists and maps
e Some potential solutions:

Never move elements

- Pro: References can still be used

— Con: Greatly limits API, not possible for every operation

Smart references

—Pro: Prevents reference invalidation until all references are out of scope
—Con: Too easy to cause deadlock, would require compiler support
Atomic blocks

- Pro: Elegant, language-level solution

—Con: Too risky o add an unproven language feature

Disable the ‘thisQ)’ method when ‘parSafe=true’

—Pro: Prevents reference invalidation

—Con: Indexing is more elegant than named methods

—

13

PARALLEL-SAFE APIFORLIST AND MAP

Potential Solutions

e Prevent reference invalidation when using lists and maps

e Some potential solutions:

e Never move elements
- Pro: References can still be used
— Con: Greatly limits API, not possible for every operation

e Smart references
—Pro: Prevents reference invalidation until all references are out of scope
—Con: Too easy to cause deadlock, would require compiler support

o Atomic blocks
- Pro: Elegant, language-level solution
—Con: Too risky fo add an unproven language feature
—Pro: Prevents reference invalidation
—Con: Indexing is more elegant than named methods

—

This is the approach we chose

* Other approaches were either too
involved, or did not totally prevent
reference invalidation

14

PARALLEL-SAFE APIFORLIST AND MAP
This Effort

e Deprecate the ‘thisQ)’ method for lists and maps initialized with ‘parSafe=true’

var m = map (int, int, parSafe=true);
m[O0] = 0; //warning: indexing a map initialized with ‘parSafe=true’ has been deprecated

» Add methods to the ‘list’ type to work around the deprecation of ‘this()’

use List;

class C { var x = 0; }
var lst: list(shared C, parSafe=true);
lst.append (new shared C())

var b = lst.getBorrowed (0); // Use ‘getBorrowed()’ to get a borrow of a class element
var v = lst.getValue (0); // Use ‘getValue()’ to get a copy of an element
1st.set (0, new shared C(16)); //Use‘setQ’ to set the value of an element

—

15

PARALLEL-SAFE API FORLIST AND MAP
The ‘update()’ Method

e Problem: Without references, users must copy an element when they want to read it

» Reads of large elements using ‘getValue()’ become prohibitively expensive
— It also becomes impossible to update an element without making a copy

e Solution: Add a new ‘update()’ method to ‘list’ and ‘map’

e Enables users to reference an element in a task-safe manner

- Accepfts an index to update and a generic updater object
// The signature of ‘update()’ for map
proc update (const ref k: keyType, updater) throws ..

» See documentation for list and map

’

e The old ‘update()’ method for map has been renamed to ‘extend(
— Existing calls to 'update(Q)’ will produce a deprecation warning

—

16

https://chapel-lang.org/docs/modules/standard/List.html?highlight=list
https://chapel-lang.org/docs/modules/standard/Map.html

PARALLEL-SAFE API FORLIST AND MAP
The ‘update()’ Method

e Users can pass a class, record, or first-class function to the ‘update()’ method
o If a class or record is used, it must define a ‘thisQ)’ method that returns a value

// Define an updater object with a ‘thisQ)’ method that updates a // Making use of the ‘update()’ method on a map
// map value and returns ‘none’ use Map;
record myUpdater {
var newValue = 0; var m: map(int, int, parSafe=true);
m.add (0, 0);
// The ‘this()’ method accepts a key and value from a map

proc this (const ref k, ref v) { // Initialize ‘myUpdater’ as our updater object
// Update a map value with ‘newValue’ var idx = 0;
v = newValue; return none; var updater = new myUpdater (16);
}
} // Update m[0] with ‘updater’

m.update (1dx, updater);

// Prints {0: 16}

writeln (m) ;

PARALLEL-SAFE APIFORLIST AND MAP
Status

e The ‘this)’ method has been deprecated for lists and maps initialized with ‘parSafe=true’

» Users will see deprecation warnings starting with this release
- These warnings may become errors in future releases

e Users migrating to this release may need to adjust code to silence deprecation warnings
o Calls to ‘thisQ’ for parallel-safe lists and maps will need to be replaced

//1.22 //1.23

var m = new map (int, int, parSafe=true); var m = new map (int, int, parSafe=true);

// Implicitly adds (O, 0) to m and assigns the value 16 // Potentially add the key O, then assign the value 16

m[0] = 16; m.addOrSet (0, 16);

// Use indexing to read and write elements // Replace reads with ‘getValue(Q’ and writes with ‘set()’

if m.contains (0) && (m[0] % 2) == 0 { if m.contains(0) && (m.getValue(0) $ 2)
m[0] *= 2; m.set (0, m.getValue(0) * 2);

} }

—

0 {

|18

PARALLEL-SAFE API FORLIST AND MAP
Impact

e Users may make use of new methods to write code that is not susceptible to reference invalidation

e Preventing references from being returned gives us more flexibility in implementation choice

o More complicated lock-free data structures may be used
— This lock-free map is one example: Issue #14409

— .

https://github.com/chapel-lang/chapel/pull/14409

PARALLEL-SAFE APIFORLIST AND MAP
Next Steps

e Consider adding new types designed to be parallel-safe and removing the ‘parSafe’ parameter

e The semantics of list and map now vary greatly depending on the value of their ‘parSafe’ parameter

— Collections added this release may also require ‘update()’ methods and accessor methods
— This is complex to document and hard for users to keep track of

« Adding new collections designed to be parallel-safe would promote separation of concerns
— These new types would be designed to prevent reference invalidation from the outset

o We could deprecate the ‘parSafe’ parameter on list and map
— This would simplify the implementation requirements for these collections

—

20

PARALLEL-SAFE APIFORLIST AND MAP
Next Steps

e Consider improving the capabilities of first-class functions and formalizing their design

o The ‘update()’ method has been designed to accept first-class functions
- Updater records with a generic ‘thisQ)’ method are currently preferred

e Explore unguarded collections wrapped in locks as an alternative strategy for parallel-safety

 Collections wrapped in locks could make use of the ‘this(Q)’ indexing method safely
— This strategy could be pursued independently of our ‘parSafe=true’ collection story

— .

NEW COLLECTION TYPES
Background and This Effort

Background:
e Chapel 1.22 had several collections:
—list
-map
—set

This Effort:
o Add new collection modules

» Implemented as a Google Summer of Code project
—Student: Yujia Qiao
—Mentors: Krishna Kumar Dey (Chapel GSoC 2019 Alum), Paul Cassella, Engin Kayraklioglu

— .

NEW COLLECTION TYPES
‘Heap’ Standard Module

» ‘heap’ can be used to store data in a way that enables fast sorted retrieval and consumption

use Heap;
var h = new heap (int); //createsamax-heap
for i in someRandomIntStream() do
h.push (1) ;
for i in h.consume () do
writeln (i) ; //printitems in sorted order

e Different comparators can be used to define ordering

var h = new heap(int, comparator=myComparator);

e Like other collections, parallel-safety can be enabled

var h = new heap(int, parSafe=true);

e See ‘Heap’ documentation: https://chapel-lang.org/docs/modules/standard/Heap.html

—

24

https://chapel-lang.org/docs/1.23/modules/standard/Heap.html

NEW COLLECTION TYPES
‘OrderedSet’ Package Module

e ‘orderedSet’ represents a set that maintains its items in a sorted order

use OrderedSet;
var s = new orderedSet (int) ;

for 1 in someRandomIntStream() do

s.add (1) ;
for item in s do
writeln (s); // unique elements will be printed in order

e Different comparators can be used to define ordering

var s = new orderedSet (int, comparator=myComparator):;

» Similar tfo other collections, parallel-safety can be enabled

var s = new orderedSet (int, parSafe=true);

e See ‘OrderedSet’ documentation: https://chapel-lang.org/docs/modules/packages/OrderedSet.himl

—

https://chapel-lang.org/docs/modules/packages/OrderedSet.html

NEW COLLECTION TYPES
Next Steps

 Collections stabilization
o Adjust parallel-safe interface (see “Ongoing Efforts” slides)
e Review standard collections for interface consistency, naming
e Design questions
« Should we parametrize different implementations, or are they different collections?
—See: https://github.com/chapel-lang/chapel/issues/15913
e Merge open pull requests for additional collections
e ‘OrderedMap’ module
—See: https://github.com/chapel-lang/chapel/pull/16271
e ‘UnrolledLinkedList’ module
—See: https://github.com/chapel-lang/chapel/pull/16244
e Promote ‘vector’ from a test-only type to standard modules:
« See: https://github.com/chapel-lang/chapel/pull/16048

— .

https://github.com/chapel-lang/chapel/issues/15913
https://github.com/chapel-lang/chapel/pull/16271
https://github.com/chapel-lang/chapel/pull/16244
https://github.com/chapel-lang/chapel/pull/16048

COMM DIAGNOSTICS TABLES
Background and This Effort

Background:
o ‘CommDiagnostics’ is a module for counting communication events
« Traditionally, users have printed out the array of records that is returned:

writeln (getCommDliagnostics()) ;

(put = 999, execute on fast =

(execute on nb = 2997) (put = 999, execute on fast = 999)
999) (put = 999, execute on fast = 999)

This Effort:

« Improve readability by supporting a new ‘printCommDiagnosticsTable’ routine:

printCommDiagnosticsTable () ;
execute on fast execute on nb

o An optional argument says to print “empty” columns too (those that are all-zero, like the ‘get’ column here)

— .

COMM DIAGNOSTICS TABLES
Impact and Next Steps

Impact:

« Makes it much easier to see communication patterns using ‘CommDiagnostics’
o Output format is compatible with markdown (e.g., for use on GitHub issues and PRs)

locale put execute_on_fast execute_on_nb
0 0 0 2997
1 999 999 0
2 999 999 0
3 999 999 0

Next Steps:

« Review the ‘CommDiagnostics’ module as part of the library stabilization effort
- e.g., roufine names seem unnecessarily verbose

—

STANDARD LIBRARY NAMESPACES
Background and This Effort

Background:

o Chapel programs have been able to access certain standard module symbols without a ‘use’/import’ statement
—In some cases, this is by design—e.g., ‘writeln(“Hello, world!”);
— Others have been unintentional

const myPtr: c ptr(c int); //this has compiled, but ought to require ‘use CPtr, SysCTypes;’
- root cause: presence of ‘public use’ statements within internal modules

e Recent releases have improved this situation
- However, a few cases remained due to internal module entanglement

This Effort:

« Eliminated remaining cases of internal modules unintentionally leaking standard module symbols
—Made ‘use’ / ‘import’ private by default within internal modules, as in user code
—Rewrote internal modules to avoid ‘public use’ of standard modules

» Related to this effort, also moved two modules to more appropriate locations
- ‘CPtr’ (was ‘internal’, now ‘standard’) and ‘LinkedLists’ (was ‘standard’ now ‘packages’)

— |

31

STANDARD LIBRARY NAMESPACES
Impact and Next Steps

Impact:

e Code must now explicitly ‘use’ / ‘import’ standard modules
—key cases that are no longer auto-available: ‘Sys’, ‘SysBasic’, ‘SysCTypes’, ‘CPtr’, ‘DSIUtil’

Next Steps:
» review public symbols defined by internal modules
—make them ‘private’ when possible
- prefix them with ‘chpl_’ otherwise
o review standard library interfaces as part of the “Chapel 2.0” effort

 infroduce a way for Chapel code to opt out of auto-available standard modules (e.g., ‘Math’)

32

NAMESPACE INSPECTION
Background and This Effort

Background: Desired a way to know what symbols are visible in a given scope

This Effort: Add a primitive to print the visible symbols from any point in the code

use Sort;

___primitive("get visible symbols",

ignoreBuilltinModules=true) ;

$CHPL HOME/modules/packages/Sort.
$CHPL HOME/modules/packages/Sort.
$CHPL HOME/modules/packages/Sort.
$CHPL HOME/modules/packages/Sort.
$CHPL HOME/modules/packages/Sort.

chpl:
chpl:
chpl:
chpl:
chpl:

getVisible.chpl:3: Printing symbols visible from here:
$CHPL HOME/modules/packages/Sort.chpl:265: defaultComparator

472: sort

504: isSorted

541: sorted

3060: DefaultComparator
3211: ReverseComparator

34

NAMESPACE INSPECTION
Status and Next Steps

Status:
e The new primitive can dump a list of symbols visible from any point in the code
« Named arguments are used to filter the list

ignoreInternalModules //default = true
ignoreBuiltinModules //default = false

o Currently more of a feature for Chapel developers than users

Next Steps:
o Extend the implementation fo make it more of a user feature
—Make it into a function instead of a primitive
— Add the function to the Reflection module
—Return an array of symbol names instead of printing them at compile time
o Optimize the implementation (currently O(#GlobalSymbols))
e Consider how it should work w.r.t. overloaded functions (within a module / across modules)

—

35

OTHER LIBRARY IMPROVE

OTHER LIBRARY IMPROVEMENTS

For a more complete list of library changes and improvements in the 1.23 release, refer to the
following sections in the CHANGES.md file:

« ‘Standard Library Modules’
 ‘Package Modules’

e ‘Bug Fixes’
e ‘Deprecated / Removed Library Features’

— .

https://github.com/chapel-lang/chapel/blob/release/1.23/CHANGES.md

THANK YOU

https://chapel-lang.org
@ChapelLanguage

