
CHAPEL 1.23 RELEASE NOTES:
LIBRARY IMPROVEMENTS

Chapel Team
October 15, 2020

OUTLINE

• 'Version' Module
• Collections of Classes Improvements
• Parallel-Safe API for List & Map
• New Collection Types
• Comm Diagnostics Tables
• Standard Library Namespaces
• Namespace Inspection

2

‘VERSION’ MODULE

Background and This Effort

Background:
• It can be useful for Chapel code to statically reason about the version of ‘chpl’ being used to compile it

– to ensure that certain features are available
– to make code portable across multiple versions of the compiler
param lowBound = if (chplVersion < createVersion(1,22)) then 1 else 0;

• Previously, there hadn’t been an official / easy way to do this
• Similarly, one might want to associate version numbers with library modules

This Effort:
• Added a new standard ‘Version’ module for this purpose, supporting:

– sourceVersion: a type to represent static ‘major.minor.update’ version numbers (plus an optional ‘commit’ string)
– comparison operators (<, >, <=, …): to support comparisons between version values at compile time
– chplVersion: the version of ‘chpl’ being used to compile the code
– createVersion(): a factory function for creating new version numbers

4

‘VERSION’ MODULE

Impact and Next Steps

Status:
• ‘Version’ module is available in Chapel 1.23

– See ‘Version’ documentation: https://chapel-lang.org/docs/modules/standard/Version.html

Impact:
• Chapel code can now contain and reason about version numbers
• Chapel programs can now be written to be sensitive to compiler and library versions

Next Steps:
• Get user experience with ‘Version’ module features and behavior
• Consider introducing version numbers into package modules

5

‘VERSION’ MODULE

https://chapel-lang.org/docs/modules/standard/Version.html

COLLECTIONS OF CLASSES
IMPROVEMENTS

Background

Background:
• Most collections did not support all class types (e.g., management types, nilable vs. non-nilable) in 1.22

7

COLLECTIONS OF CLASSES IMPROVEMENTS

list map set fixed array resized array assoc array sparse tuple
owned t ✅ " " ✅ " " " ✅

shared t ✅ ✅ ❌ ✅ " " " ✅

borrowed t ❌ ❌ ✅ ✅ " " " ✅

unmanaged t ✅ ✅ ❌ ✅ " " " ✅

(shared t, shared t) ❌ ❌ ❌ ❌ " " " ✅

owned t? ✅ ✅ " ✅ ✅ ✅ ✅ ✅

shared t? ✅ ✅ ❌ ✅ ✅ ✅ ✅ ✅

borrowed t? ❌ ❌ ❌ ✅ ✅ ✅ ✅ ✅

unmanaged t? ✅ ✅ ❌ ✅ ✅ ✅ ✅ ✅

(shared t?, shared t?) ✅ ✅ ❌ ✅ ✅ ✅ ✅ ✅

record ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

Key
✅Working ❌ Not yet working 🔹 Not expected to work

This Effort

This Effort: Increased support for a wider range of class types in collections
• Below are the class types supported in this release

8

COLLECTIONS OF CLASSES IMPROVEMENTS

list map set fixed array resized array assoc array sparse tuple
owned t ✅ ✅ ✅ ✅ " " " ✅

shared t ✅ ✅ ✅ ✅ " " " ✅

borrowed t ✅ ✅ ✅ ✅ " " " ✅

unmanaged t ✅ ✅ ✅ ✅ " " " ✅

(shared t, shared t) ✅ ✅ ✅ ❌ " " " ✅

owned t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

shared t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

borrowed t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

unmanaged t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

(shared t?, shared t?) ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

record ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

This Effort

This Effort: Increased support for a wider range of class types in collections
• Below are the class types supported in this release

9

COLLECTIONS OF CLASSES IMPROVEMENTS

list map set fixed array resized array assoc array sparse tuple
owned t ✅ ✅ ✅ ✅ " " " ✅

shared t ✅ ✅ ✅ ✅ " " " ✅

borrowed t ✅ ✅ ✅ ✅ " " " ✅

unmanaged t ✅ ✅ ✅ ✅ " " " ✅

(shared t, shared t) ✅ ✅ ✅ ❌ " " " ✅

owned t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

shared t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

borrowed t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

unmanaged t? ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

(shared t?, shared t?) ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

record ✅ ✅ ✅ ✅ ✅ ✅ ✅ ✅

• Bug related to default initialization of tuple array
elements containing non-nilable classes

Status and Next Steps

Status:
• Nearly all class types are now supported for each collection type

Next Steps:
• Fix support for fixed-size arrays of tuples containing non-nilable classes

10

COLLECTIONS OF CLASSES IMPROVEMENTS

PARALLEL-SAFE API
FOR LIST AND MAP

Background

• The indexing methods for ‘list’ and ‘map’ each return references to elements
• It is trivial for users to invalidate references to elements

• Particularly dangerous in parallel codes

12

PARALLEL-SAFE API FOR LIST AND MAP

use List;
var lst = new list(int, parSafe=true);
coforall i in 0..1 with (ref lst) {

lst.append(i);
ref v = lst[i];
if v == 0 then lst.pop(i);
else writeln(v);

}

The call to ‘pop()’ could end up moving
the elements of ‘lst’ around in memory.

This could invalidate the other task’s
reference stored in ‘v’.

Potential Solutions

• Prevent reference invalidation when using lists and maps
• Some potential solutions:

• Never move elements
– Pro: References can still be used
– Con: Greatly limits API, not possible for every operation

• Smart references
– Pro: Prevents reference invalidation until all references are out of scope
– Con: Too easy to cause deadlock, would require compiler support

• Atomic blocks
– Pro: Elegant, language-level solution
– Con: Too risky to add an unproven language feature

• Disable the ‘this()’ method when ‘parSafe=true’
– Pro: Prevents reference invalidation
– Con: Indexing is more elegant than named methods

13

PARALLEL-SAFE API FOR LIST AND MAP

Potential Solutions

• Prevent reference invalidation when using lists and maps
• Some potential solutions:

• Never move elements
– Pro: References can still be used
– Con: Greatly limits API, not possible for every operation

• Smart references
– Pro: Prevents reference invalidation until all references are out of scope
– Con: Too easy to cause deadlock, would require compiler support

• Atomic blocks
– Pro: Elegant, language-level solution
– Con: Too risky to add an unproven language feature

• Disable the ‘this()’ method when ‘parSafe=true’
– Pro: Prevents reference invalidation
– Con: Indexing is more elegant than named methods

14

PARALLEL-SAFE API FOR LIST AND MAP

This is the approach we chose
• Other approaches were either too

involved, or did not totally prevent
reference invalidation

This Effort

• Deprecate the ‘this()’ method for lists and maps initialized with ‘parSafe=true’

var m = map(int, int, parSafe=true);
m[0] = 0; // warning: indexing a map initialized with ‘parSafe=true’ has been deprecated

• Add methods to the ‘list’ type to work around the deprecation of ‘this()’
use List;

class C { var x = 0; }
var lst: list(shared C, parSafe=true);
lst.append(new shared C());

var b = lst.getBorrowed(0); // Use ‘getBorrowed()’ to get a borrow of a class element
var v = lst.getValue(0); // Use ‘getValue()’ to get a copy of an element

lst.set(0, new shared C(16)); // Use ‘set()’ to set the value of an element

15

PARALLEL-SAFE API FOR LIST AND MAP

The ‘update()’ Method

• Problem: Without references, users must copy an element when they want to read it
• Reads of large elements using ‘getValue()’ become prohibitively expensive

– It also becomes impossible to update an element without making a copy

• Solution: Add a new ‘update()’ method to ‘list’ and ‘map’
• Enables users to reference an element in a task-safe manner

- Accepts an index to update and a generic updater object
// The signature of ‘update()’ for map

proc update(const ref k: keyType, updater) throws …

• See documentation for list and map

• The old ‘update()’ method for map has been renamed to ‘extend()’
– Existing calls to ’update()’ will produce a deprecation warning

16

PARALLEL-SAFE API FOR LIST AND MAP

https://chapel-lang.org/docs/modules/standard/List.html?highlight=list
https://chapel-lang.org/docs/modules/standard/Map.html

The ‘update()’ Method

• Users can pass a class, record, or first-class function to the ‘update()’ method
• If a class or record is used, it must define a ‘this()’ method that returns a value

17

PARALLEL-SAFE API FOR LIST AND MAP

// Making use of the ‘update()’ method on a map

use Map;

var m: map(int, int, parSafe=true);
m.add (0, 0);

// Initialize ‘myUpdater’ as our updater object

var idx = 0;
var updater = new myUpdater(16);

// Update m[0] with ‘updater’

m.update(idx, updater);

// Prints {0: 16}

writeln(m);

// Define an updater object with a ‘this()’ method that updates a

// map value and returns ‘none’

record myUpdater {
var newValue = 0;

// The ‘this()’ method accepts a key and value from a map

proc this (const ref k, ref v) {
// Update a map value with ‘newValue’

v = newValue; return none;
}

}

Status

• The ‘this()’ method has been deprecated for lists and maps initialized with ‘parSafe=true’
• Users will see deprecation warnings starting with this release

– These warnings may become errors in future releases

• Users migrating to this release may need to adjust code to silence deprecation warnings
• Calls to ‘this()’ for parallel-safe lists and maps will need to be replaced

18

PARALLEL-SAFE API FOR LIST AND MAP

// 1.22

var m = new map(int, int, parSafe=true);
// Implicitly adds (0, 0) to m and assigns the value 16

m[0] = 16;

// Use indexing to read and write elements

if m.contains(0) && (m[0] % 2) == 0 {
m[0] *= 2;

}

// 1.23

var m = new map(int, int, parSafe=true);
// Potentially add the key 0, then assign the value 16

m.addOrSet(0, 16);

// Replace reads with ‘getValue()’ and writes with ‘set()’

if m.contains(0) && (m.getValue(0) % 2) == 0 {
m.set(0, m.getValue(0) * 2);

}

Impact

• Users may make use of new methods to write code that is not susceptible to reference invalidation

• Preventing references from being returned gives us more flexibility in implementation choice
• More complicated lock-free data structures may be used

– This lock-free map is one example: Issue #14409

19

PARALLEL-SAFE API FOR LIST AND MAP

https://github.com/chapel-lang/chapel/pull/14409

Next Steps

• Consider adding new types designed to be parallel-safe and removing the ‘parSafe’ parameter

• The semantics of list and map now vary greatly depending on the value of their ‘parSafe’ parameter
– Collections added this release may also require ‘update()’ methods and accessor methods
– This is complex to document and hard for users to keep track of

• Adding new collections designed to be parallel-safe would promote separation of concerns
– These new types would be designed to prevent reference invalidation from the outset

• We could deprecate the ‘parSafe’ parameter on list and map
– This would simplify the implementation requirements for these collections

20

PARALLEL-SAFE API FOR LIST AND MAP

Next Steps

• Consider improving the capabilities of first-class functions and formalizing their design
• The ‘update()’ method has been designed to accept first-class functions

– Updater records with a generic ‘this()’ method are currently preferred

• Explore unguarded collections wrapped in locks as an alternative strategy for parallel-safety
• Collections wrapped in locks could make use of the ‘this()’ indexing method safely

– This strategy could be pursued independently of our ‘parSafe=true’ collection story

21

PARALLEL-SAFE API FOR LIST AND MAP

NEW COLLECTION TYPES

Background and This Effort

Background:
• Chapel 1.22 had several collections:

–list
–map
–set

This Effort:
• Add new collection modules

• Implemented as a Google Summer of Code project
–Student: Yujia Qiao
–Mentors: Krishna Kumar Dey (Chapel GSoC 2019 Alum), Paul Cassella, Engin Kayraklioglu

23

NEW COLLECTION TYPES

‘Heap’ Standard Module

• ‘heap’ can be used to store data in a way that enables fast sorted retrieval and consumption
use Heap;
var h = new heap(int); // creates a max-heap

for i in someRandomIntStream() do
h.push(i);

for i in h.consume() do
writeln(i); // print items in sorted order

• Different comparators can be used to define ordering
var h = new heap(int, comparator=myComparator);

• Like other collections, parallel-safety can be enabled
var h = new heap(int, parSafe=true);

• See ‘Heap’ documentation: https://chapel-lang.org/docs/modules/standard/Heap.html

24

NEW COLLECTION TYPES

https://chapel-lang.org/docs/1.23/modules/standard/Heap.html

‘OrderedSet’ Package Module

• ‘orderedSet’ represents a set that maintains its items in a sorted order
use OrderedSet;
var s = new orderedSet(int);
for i in someRandomIntStream() do

s.add(i);
for item in s do

writeln(s); // unique elements will be printed in order

• Different comparators can be used to define ordering
var s = new orderedSet(int, comparator=myComparator);

• Similar to other collections, parallel-safety can be enabled
var s = new orderedSet(int, parSafe=true);

• See ‘OrderedSet’ documentation: https://chapel-lang.org/docs/modules/packages/OrderedSet.html

25

NEW COLLECTION TYPES

https://chapel-lang.org/docs/modules/packages/OrderedSet.html

Next Steps

• Collections stabilization
• Adjust parallel-safe interface (see “Ongoing Efforts” slides)
• Review standard collections for interface consistency, naming

• Design questions
• Should we parametrize different implementations, or are they different collections?

– See: https://github.com/chapel-lang/chapel/issues/15913

• Merge open pull requests for additional collections
• ‘OrderedMap’ module

– See: https://github.com/chapel-lang/chapel/pull/16271
• ‘UnrolledLinkedList’ module

– See: https://github.com/chapel-lang/chapel/pull/16244

• Promote ‘vector’ from a test-only type to standard modules:
• See: https://github.com/chapel-lang/chapel/pull/16048

26

NEW COLLECTION TYPES

https://github.com/chapel-lang/chapel/issues/15913
https://github.com/chapel-lang/chapel/pull/16271
https://github.com/chapel-lang/chapel/pull/16244
https://github.com/chapel-lang/chapel/pull/16048

COMM DIAGNOSTICS TABLES

Background and This Effort

Background:
• ‘CommDiagnostics’ is a module for counting communication events
• Traditionally, users have printed out the array of records that is returned:

writeln(getCommDiagnostics());
(execute_on_nb = 2997) (put = 999, execute_on_fast = 999) (put = 999, execute_on_fast =
999) (put = 999, execute_on_fast = 999)

This Effort:
• Improve readability by supporting a new ‘printCommDiagnosticsTable’ routine:

printCommDiagnosticsTable();
locale	put	execute_on_fast	execute_on_nb
0	0	0	2997
1	999	999	0
2	999	999	0
3	999	999	0

• An optional argument says to print “empty” columns too (those that are all-zero, like the ‘get’ column here)

28

COMM DIAGNOSTICS TABLES

Impact and Next Steps

Impact:
• Makes it much easier to see communication patterns using ‘CommDiagnostics’
• Output format is compatible with markdown (e.g., for use on GitHub issues and PRs)

Next Steps:
• Review the ‘CommDiagnostics’ module as part of the library stabilization effort

– e.g., routine names seem unnecessarily verbose

29

COMM DIAGNOSTICS TABLES

STANDARD LIBRARY NAMESPACES

Background and This Effort

Background:
• Chapel programs have been able to access certain standard module symbols without a ‘use’/‘import’ statement

– In some cases, this is by design—e.g., ‘writeln(“Hello, world!”);’
– Others have been unintentional
const myPtr: c_ptr(c_int); // this has compiled, but ought to require ‘use CPtr, SysCTypes;’
– root cause: presence of ‘public use’ statements within internal modules

• Recent releases have improved this situation
– However, a few cases remained due to internal module entanglement

This Effort:
• Eliminated remaining cases of internal modules unintentionally leaking standard module symbols

– Made ‘use’ / ‘import’ private by default within internal modules, as in user code
– Rewrote internal modules to avoid ‘public use’ of standard modules

• Related to this effort, also moved two modules to more appropriate locations
– ‘CPtr’ (was ‘internal’, now ‘standard’) and ‘LinkedLists’ (was ‘standard’ now ‘packages’)

31

STANDARD LIBRARY NAMESPACES

Impact and Next Steps

Impact:
• Code must now explicitly ‘use’ / ‘import’ standard modules

– key cases that are no longer auto-available: ‘Sys’, ‘SysBasic’, ‘SysCTypes’, ‘CPtr’, ‘DSIUtil’

Next Steps:
• review public symbols defined by internal modules

– make them ‘private’ when possible
– prefix them with ‘chpl_’ otherwise

• review standard library interfaces as part of the “Chapel 2.0” effort
• introduce a way for Chapel code to opt out of auto-available standard modules (e.g., ‘Math’)

32

STANDARD LIBRARY NAMESPACES

NAMESPACE INSPECTION

Background and This Effort

Background: Desired a way to know what symbols are visible in a given scope

This Effort: Add a primitive to print the visible symbols from any point in the code

34

NAMESPACE INSPECTION

use Sort;

__primitive("get visible symbols",
ignoreBuiltinModules=true);

getVisible.chpl:3: Printing symbols visible from here:
$CHPL_HOME/modules/packages/Sort.chpl:265: defaultComparator
…
$CHPL_HOME/modules/packages/Sort.chpl:472: sort
$CHPL_HOME/modules/packages/Sort.chpl:504: isSorted
$CHPL_HOME/modules/packages/Sort.chpl:541: sorted
$CHPL_HOME/modules/packages/Sort.chpl:3060: DefaultComparator
$CHPL_HOME/modules/packages/Sort.chpl:3211: ReverseComparator

Status and Next Steps

Status:
• The new primitive can dump a list of symbols visible from any point in the code
• Named arguments are used to filter the list

ignoreInternalModules // default = true
ignoreBuiltinModules // default = false

• Currently more of a feature for Chapel developers than users

Next Steps:
• Extend the implementation to make it more of a user feature

– Make it into a function instead of a primitive
– Add the function to the Reflection module
– Return an array of symbol names instead of printing them at compile time

• Optimize the implementation (currently O(#GlobalSymbols))
• Consider how it should work w.r.t. overloaded functions (within a module / across modules)

35

NAMESPACE INSPECTION

OTHER LIBRARY IMPROVEMENTS

For a more complete list of library changes and improvements in the 1.23 release, refer to the
following sections in the CHANGES.md file:

• ‘Standard Library Modules’
• ‘Package Modules’

• ‘Bug Fixes’
• ‘Deprecated / Removed Library Features’

37

OTHER LIBRARY IMPROVEMENTS

https://github.com/chapel-lang/chapel/blob/release/1.23/CHANGES.md

THANK YOU
https://chapel-lang.org
@ChapelLanguage

