
© 2020 Cray, a Hewlett Packard Enterprise company

chapel-lang.org

Benchmarks and

Performance Optimizations

Chapel versions 1.21 / 1.22
April 9 / 16, 2020

@ChapelLanguage

chapel_info@cray.com

© 2020 Cray, a Hewlett Packard Enterprise company

• Array Optimizations
• Distributed Array/Domain Creation

• Fast-Follower Improvements

• Parallelize PrivateDist Scan

• Resize Arrays In-Place

• Runtime Improvements
• InfiniBand Improvements

• Misaligned GET Improvements

• Remote Cache Improvements

• Serial I/O Optimization

• Unordered Operations
• Unordered Copy Improvements

• Automatic Unordered Copy

• Memory Leak Improvements

Outline

© 2020 Cray, a Hewlett Packard Enterprise company

Array
Optimizations

3

© 2020 Cray, a Hewlett Packard Enterprise company

Distributed
Array/Domain
Creation

© 2020 Cray, a Hewlett Packard Enterprise company

Background:
• Typically, array/domain creation is not part of a benchmark’s timed region

• However, use cases like Arkouda create many arrays/domains on the fly
• Creation involves a lot of all-to-all communication

• Previously, this was fine-grained and had significant overhead at scale

This Effort:
• Use bulk communication distributed during domain and array creation

var dom = {1..n} dmapped Block({1..n}); // domain creation

var arr: [dom] real; // array creation

Array/Domain Creation: Background, This Effort

5

© 2020 Cray, a Hewlett Packard Enterprise company

• Significantly faster and more scalable distributed domain creation
• At 512 locales: 85x fewer GETs, 10x faster

Domain Creation: Impact

6

 0
 20
 40
 60
 80

 100
 120
 140
 160

 32 64 128 256 512

Ti
m

e
(m

s)

Locales (x 36 cores / locale)

Distributed Domain Creation Time

Chapel 1.20
Chapel 1.21

0
500k

1M
2M
2M
2M
3M
4M
4M

 32 64 128 256 512

G
ET

s

Locales (x 36 cores / locale)

Distributed Domain Creation Communication

Chapel 1.20
Chapel 1.21

© 2020 Cray, a Hewlett Packard Enterprise company

• Significantly faster and more scalable distributed array creation
• At 512 locales: 90x fewer GETs, 15x faster

Array Creation: Impact

7

0
5

10
15
20
25
30
35

 32 64 128 256 512

Ti
m

e
(m

s)

Locales (x 36 cores / locale)

Distributed Array Creation Time

Chapel 1.20
Chapel 1.21

0
100k
200k
300k
400k
500k
600k
700k
800k

 32 64 128 256 512

G
ET

s

Locales (x 36 cores / locale)

Distributed Array Creation Communication

Chapel 1.20
Chapel 1.21

© 2020 Cray, a Hewlett Packard Enterprise company

Fast-Follower
Improvements

© 2020 Cray, a Hewlett Packard Enterprise company

Background: "Fast Followers" optimize iteration over aligned distributed arrays
• Can skip locality checks when arrays have the same distribution/alignment
• Previously, arrays had to have identical domains and element types

var A, B = newBlockArr({1..n}, real);

var C = newBlockArr({1..n}, int);

A = B + 3.0 * C; // not optimized, different types, not identical domains

This Effort: Enable optimization for equivalent domains and any element type

Fast-Follower: Background, This Effort

9

© 2020 Cray, a Hewlett Packard Enterprise company

• Fast followers now trigger in more cases
• 1.5x improvement for Stream with different element types

Fast-Follower: Impact

10

0
200

400
600

800

1000
1200

1400

1600

1.20 1.21

Pe
rfo

rm
an

ce
 (

G
B/

s)

Mismatched Stream Performance

be
tte
r

© 2020 Cray, a Hewlett Packard Enterprise company

Parallel ize
PrivateDist Scan

© 2020 Cray, a Hewlett Packard Enterprise company

Background: PrivateDist provides replicated values across all locales
• Scans over PrivateDist arrays were serialized
• Resulted in poor scalability and a compile-time serialization warning

This Effort: Parallelized scans over PrivateDist arrays
• Eliminated serialization warning

PrivateDist Scan: Background, This Effort

12

© 2020 Cray, a Hewlett Packard Enterprise company

• Significantly improved scan performance and scalability
• 100x speedup at 512 nodes

PrivateDist Scan: Impact

13

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18

16 64 128 256 512

Ti
m
e
(s
ec
)

Locales (x 36 cores / locale)

PrivateDist Scan Time

Chapel 1.20
Chapel 1.21

fa
st
er

© 2020 Cray, a Hewlett Packard Enterprise company

• Significantly improved scan performance and scalability
• 100x speedup at 512 nodes

PrivateDist Scan: Impact

14

0
0.0002
0.0004
0.0006
0.0008
0.001
0.0012
0.0014
0.0016
0.0018

16 64 128 256 512

Ti
m
e
(s
ec
)

Locales (x 36 cores / locale)

PrivateDist Scan Time (zoomed)

Chapel 1.20
Chapel 1.21

fa
st
er

© 2020 Cray, a Hewlett Packard Enterprise company

Resize Arrays
In-Place

© 2020 Cray, a Hewlett Packard Enterprise company

• Chapel reallocates arrays based on indices, not memory layout

var D = {1..3};

var A: [D] int = [1, 2, 3];

D = {0..4};

writeln(A); // prints “0, 1, 2, 3, 0”, not “1, 2, 3, 0, 0”

• For this reason, rectangular arrays have traditionally been resized by:
1. allocating a new array
2. copying over elements within the intersection of Dold and Dnew
3. ensuring that any new elements are default-initialized

Resize-in-Place: Background

16

© 2020 Cray, a Hewlett Packard Enterprise company

• However, some array resizings are amenable to being done in-place
• Notably, 1D array resizings in which the low bound and stride don’t change:

var D = {1..3};

var A: [D] int = [1, 2, 3];

D = {1..5}; // D’s prefix & stride are identical, so we need not move the array

writeln(A); // prints “1, 2, 3, 0, 0”

• As a result, such cases are now handled by:
1. calling realloc() on the array’s buffer
2. ensuring that any new elements are default-initialized

• Note: realloc() can’t always resize in place; but when it can, there’s a benefit

Resize-in-Place: This Effort

17

© 2020 Cray, a Hewlett Packard Enterprise company

• CLBG reverse-complement improved by ~7.7% on UMA compute nodes
• No significant impact on NUMA compute nodes

• (challenging to do anything smart w.r.t. NUMA locality when resizing)
• Also resulted in improvements for a few other benchmarks:

Resize-in-Place: Impact

18

fa
st
er

© 2020 Cray, a Hewlett Packard Enterprise company

Status:
• A minor improvement, yet one that does no harm and is nice when it helps

Next Steps:
• As motivating examples arise:

• extend realloc-in-place to other cases (e.g., multidimensional arrays)
• tune implementation further for NUMA compute nodes

Resize-in-Place: Status and Next Steps

19

© 2020 Cray, a Hewlett Packard Enterprise company

Runtime
Improvements

20

© 2020 Cray, a Hewlett Packard Enterprise company

InfiniBand
Improvements

© 2020 Cray, a Hewlett Packard Enterprise company

Background: Started running InfiniBand performance testing last release
• Nightly configuration runs on machine with Intel processors
• Ran some experiments on AMD EPYC processors

• Saw significant performance degradations for ‘on’-heavy workloads

This Effort: Optimized on-statements for InfiniBand
• Serialized calls to on-statement handlers to reduce contention

InfiniBand: Background, This Effort

22

© 2020 Cray, a Hewlett Packard Enterprise company

• Significantly improved on-statement performance
• For RA-on using 48-core Intel Cascade Lake and AMD Rome processors

• 2x speedup on Intel, 55x speedup on AMD

InfiniBand: Impact

23

0
10
20
30
40
50
60
70
80
90
100

1.20 1.21

Ti
m

e
(s

ec
)

RA-on Time

Intel AMD

fa
st
er

© 2020 Cray, a Hewlett Packard Enterprise company

Impact: Improvements for other on-statement-heavy benchmarks

Next Steps: Better understand root cause of original degradation
• Unknown why performance was more impacted on AMD processors

InfiniBand: Impact, Next Steps

24

© 2020 Cray, a Hewlett Packard Enterprise company

Misaligned GET
Improvements

© 2020 Cray, a Hewlett Packard Enterprise company

Background: GETs on the Aries NIC must be 4-byte aligned
• When not aligned, perform GET to bounce buffer, copy to target buffer
• Previously, this code path was not well-tested

• Most Chapel benchmarks use 8-byte int(64)/real(64)
• Arkouda uses uint(8)/bool arrays, which exposed several bugs

This Effort: Improve misaligned GETs
• Fixed correctness issues and added additional tests
• Optimized large misaligned GETs

• Use 0-copy GET for aligned interior; only bounce misaligned head/tail

Misaligned GET: Background, This Effort

26

© 2020 Cray, a Hewlett Packard Enterprise company

• Improved performance for large misaligned GETs
• 4x improvement for transfers larger than 1MB

Misaligned GET: Impact

27

© 2020 Cray, a Hewlett Packard Enterprise company

Remote Cache
Improvements

© 2020 Cray, a Hewlett Packard Enterprise company

• Chapel has a cache for remote data that can be enabled with --cache-remote
• Can provide significant speedups for suboptimal communication patterns
• Supports read-ahead and write-behind, can eliminate repeated communication

var A, B:[1..n] int;

on Locales[1] do

for i in 1..n do

B[i] = A[i];

// A[i] normally 8-byte GET, done in 1024-byte chunks with cache read-ahead

// B[i] normally 8-byte PUT, done in 1024-byte chunks with cache write-behind
// Normally repeated GETs for array metadata, only 1 GET with cache

Remote Cache: Background

29

© 2020 Cray, a Hewlett Packard Enterprise company

• Can provide large speedups for real workloads, especially on slower networks
• 3x speedup for MiniMD on Aries, 100x on FDR InfiniBand
• 20x speedup for PTRANS on Aries, 500x on FDR InfiniBand

• Previously, there were several issues that prevented it from being recommended
• Large performance regressions for some workloads
• Hangs or crashes under comm=ugni
• Not regularly tested

Remote Cache: Background

30

© 2020 Cray, a Hewlett Packard Enterprise company

• Addressed --cache-remote correctness issues
• Fixed several hangs and crashes under ugni
• Fixed support for unorderedCopy
• Fixed support for guard pages

• Eliminated known performance overheads
• Bypass cache for large transfers

• Added nightly testing across all communication implementations

Remote Cache: This Effort

31

© 2020 Cray, a Hewlett Packard Enterprise company

Status: --cache-remote is stable enough to recommend to users
• Can provide substantial improvements for suboptimal communication patterns

Next Steps: Explore enabling --cache-remote by default
• Want to explore synthetic benchmarks to better tune
• Need to evaluate performance and memory overhead at scale

Remote Cache: Status, Next Steps

32

© 2020 Cray, a Hewlett Packard Enterprise company

Serial I/O
Optimization

© 2020 Cray, a Hewlett Packard Enterprise company

Background: Chapel I/O is parallel-safe by default
• 1.18 changed I/O to use a sync lock to improve parallel performance
• However, this hurt the performance of serial I/O

This Effort: Switched to an optimized atomic spinlock for I/O
• Has minimal serial overhead while maintaining good parallel performance

Serial I/O: Background, This Effort

34

© 2020 Cray, a Hewlett Packard Enterprise company

• Resolved previous serial I/O regressions

Serial I/O: Impact

35

© 2020 Cray, a Hewlett Packard Enterprise company

Unordered
Operations

36

© 2020 Cray, a Hewlett Packard Enterprise company

Unordered Copy
Improvements

© 2020 Cray, a Hewlett Packard Enterprise company

Background: 'unorderedCopy(dst, src)' is a faster, non-sequential consistent copy
• Previously, it was only implemented for numeric and bool types

This Effort: Extended support to all trivially copyable types
• numeric/bool
• numeric/bool tuples
• numeric/bool records with no copy-init, deinit, or assignment overload

Unordered Copy: Background, This Effort

38

© 2020 Cray, a Hewlett Packard Enterprise company

• Faster copies for trivially copyable types
• 4.5x speedup for 2*int tuple, 2.5x for 16*int

Unordered Copy: Impact

39

© 2020 Cray, a Hewlett Packard Enterprise company

Automatic
Unordered Copy

© 2020 Cray, a Hewlett Packard Enterprise company

Background: Unordered operations provide a significant performance speedup
• But they are an advanced feature that break the memory consistency model
• 1.20 enabled an optimization to automatically use unordered ops

• Triggered for array indexing (e.g. 'A[i]'), but not other iteration idioms

This Effort: Extended compiler optimization
• Handles promotion, zippered iteration, direct array iteration

Auto Unordered Copy: Background, This Effort

41

© 2020 Cray, a Hewlett Packard Enterprise company

• More idioms can be optimized by compiler
• Bale indexgather variants automatically optimized

Auto Unordered Copy: Impact

42

© 2020 Cray, a Hewlett Packard Enterprise company

Memory Leak
Improvements

© 2020 Cray, a Hewlett Packard Enterprise company

Background:
• Recent releases closed many major memory leaks

• However, we monitored only single-locale leaks
• A few important configurations were not tested for memory leaks

• e.g. multi-locale, LLVM backend
This Effort:

• Track and close multi-locale leaks
• Different set of leaks that we do not catch in single-locale runs

• Verified that there are no leaks specific to using LLVM back-end
• Reduction in single-locale leaks

Memory Leaks: Background, This Effort

44

© 2020 Cray, a Hewlett Packard Enterprise company

Memory Leaks: Multi-locale Leaks

45

Started tracking in the
most recent release cycle

zooming in…

© 2020 Cray, a Hewlett Packard Enterprise company

Memory Leaks: Multi-locale Leaks (zoomed)

46

closed multilocale-specific
string/bytes leaks for 1.22

closed leaks in Sparse Block
and Hashed distributions

closed leaks in user code

© 2020 Cray, a Hewlett Packard Enterprise company

Memory Leaks: Multi-locale Leaks (zoomed)

47

closed a leak in Private
distribution

closed leaks in multi-locale
string/bytes interoperability

closed a leak in variables
initialized with loops

© 2020 Cray, a Hewlett Packard Enterprise company

Memory Leaks: Multi-locale Leaks (volume)

48

at time of release:
~440K leaked of ~37G allocated

at time of release notes:
no leaks in ~37G allocated

© 2020 Cray, a Hewlett Packard Enterprise company

Memory Leaks: Single-locale Leaks

49

very active release cycle in
terms of memory changes

• Compiler changes
• Split initialization
• Copy elision
• Early deinitizalization

• Test changes
• Start tracking mason

© 2020 Cray, a Hewlett Packard Enterprise company

Memory Leaks: Single-locale Leaks

50

Number of tests with leaks
reduced from 125 to 34

release-over-release

Accidental introduction of
a leak in a test, will not

affect any user code

© 2020 Cray, a Hewlett Packard Enterprise company

Impact:
• Closed all known multi-locale memory leaks
• Reduced single-locale memory leaks
• Confirmed that there is no additional leak when using LLVM backend

Next Steps:
• Eliminate remaining single-locale leaks
• Make new leaks a correctness error

Memory Leaks: Impact, Next Steps

51

© 2020 Cray, a Hewlett Packard Enterprise company 52

For More Information
For a more complete list of related changes in the
1.21 and 1.22 releases, refer to the 'Performance
Improvements' and 'Memory Improvements'
sections in the CHANGES.md file

https://github.com/chapel-lang/chapel/blob/release/1.22/CHANGES.md

© 2020 Cray, a Hewlett Packard Enterprise company

FORWARD LOOKING
STATEMENTS

53

This presentation may contain forward-looking statements that involve risks, uncertainties
and assumptions. If the risks or uncertainties ever materialize or the assumptions prove
incorrect, the results of Hewlett Packard Enterprise Company and its consolidated
subsidiaries ("Hewlett Packard Enterprise") may differ materially from those expressed or
implied by such forward-looking statements and assumptions. All statements other than
statements of historical fact are statements that could be deemed forward-looking
statements, including but not limited to any statements regarding the expected benefits and
costs of the transaction contemplated by this presentation; the expected timing of the
completion of the transaction; the ability of HPE, its subsidiaries and Cray to complete the
transaction considering the various conditions to the transaction, some of which are outside
the parties’ control, including those conditions related to regulatory approvals; projections of
revenue, margins, expenses, net earnings, net earnings per share, cash flows, or other
financial items; any statements concerning the expected development, performance, market
share or competitive performance relating to products or services; any statements regarding
current or future macroeconomic trends or events and the impact of those trends and events
on Hewlett Packard Enterprise and its financial performance; any statements of expectation
or belief; and any statements of assumptions underlying any of the foregoing. Risks,
uncertainties and assumptions include the possibility that expected benefits of the transaction
described in this presentation may not materialize as expected; that the transaction may not
be timely completed, if at all; that, prior to the completion of the transaction, Cray’s business
may not perform as expected due to transaction-related uncertainty or other factors; that the
parties are unable to successfully implement integration strategies; the need to address the
many challenges facing Hewlett Packard Enterprise's businesses; the competitive pressures
faced by Hewlett Packard Enterprise's businesses; risks associated with executing Hewlett
Packard Enterprise's strategy; the impact of macroeconomic and geopolitical trends and
events; the development and transition of new products and services and the enhancement
of existing products and services to meet customer needs and respond to emerging
technological trends; and other risks that are described in our Fiscal Year 2018 Annual
Report on Form 10-K, and that are otherwise described or updated from time to time in
Hewlett Packard Enterprise's other filings with the Securities and Exchange Commission,
including but not limited to our subsequent Quarterly Reports on Form 10-Q. Hewlett Packard
Enterprise assumes no obligation and does not intend to update these forward-looking
statements.

Q U E S T I O N S ?

@ChapelLanguage

chapel_info@cray.com

@cray_inc

linkedin.com/company/cray-inc-/

cray.com

THANK YOU

chapel-lang.org

