
© 2019 Cray, a Hewlett Packard Enterprise company

chapel-lang.org

Ongoing Efforts

Chapel version 1.20

September 19, 2019

@ChapelLanguage

chapel_info@cray.com

© 2019 Cray, a Hewlett Packard Enterprise company

• Expiring Values
• Constrained Generics

Outline

© 2019 Cray, a Hewlett Packard Enterprise company

Expiring Values

3

© 2019 Cray, a Hewlett Packard Enterprise company

• Several open questions are connected to an idea of when a value is dead

• when exactly deinit() is called for records

• eliding copies from expiring values

• ownership transfer from non-nil 'owned'

• We will consider these cases with some examples

• Then we will evaluate two candidate language rules for when a value is dead

Expiring Values

4

© 2019 Cray, a Hewlett Packard Enterprise company

• Currently, local record variables are always deinitialized at the end of the block
• However this can be surprising in some cases. For example:

proc main() {

var f = opentmp();

var A = [1,2,3,4];

var B:[A.domain] int;

f.writer().write(A);

f.reader().read(B); // file appears empty here... what happened?

// the temporary storing f.writer() is only deinited here, flushing the buffered data
}

• Should temporary record variables be deinitialized at the end of their statement?

Expiring Values: 'deinit' Example

5

© 2019 Cray, a Hewlett Packard Enterprise company

• Deinitializing all temporaries at the end of the statement would prohibit this code:

Expiring Values: 'deinit' Behavior

6

proc main() {
ref slice = makeArray()[1..10];
// during compilation, above statement becomes

temp t1:[1..100] int = makeArray();
temp t2 = createSlice(t2, 1..10);
ref slice = t2;
// deinitializing t1 or t2 here would cause memory errors below

writeln(slice);
}

proc makeArray() {
var A:[1..100] int;
return A;

}

© 2019 Cray, a Hewlett Packard Enterprise company

• The compiler already knows to elide copies for patterns like this:
record R { ... }

proc makeR() {

return new R();

}

proc acceptIn(in arg: R) { ... }

acceptIn(makeR()); // no copy initialization here

• However this rule is connected to call-expression temporaries
• The following code performs copy initialization even though it is not necessary

var x = makeR();

acceptIn(x);

Expiring Values: Copy Elision Example

7

© 2019 Cray, a Hewlett Packard Enterprise company

• We have already seen this example:
proc f() {

var x: owned C = makeC();

var y = x; // ownership transfer from x to y
g(y);

}

• Here, 'x' is not used after it is transferred out of
• Could this case be allowed when the compiler can prove such a property?

Expiring Values: Ownership Transfer Example

8

© 2019 Cray, a Hewlett Packard Enterprise company

• A local variable is dead:

• at the end of the block

• if it is a user-level variable

var x: R;

• if it is a temporary in an initialization expression

var y = f(g()); // temps storing result of f, g are deinited at the end of block

• Otherwise, it’s dead at the end of the statement in which it is created

p(q()); // temp storing result of q is deinitialized after this statement

• Global variables continue to be destroyed at the end of the program's execution

First Design for When a Value is Dead

9

© 2019 Cray, a Hewlett Packard Enterprise company

• This first design addresses the deinit example

proc main() {

var f = opentmp();

var A = [1,2,3,4];

var B:[A.domain] int;

f.writer().write(A); // temporary storing f.writer() is deinited here
f.reader().read(B); // reads the data written above

}

• Unfortunately, it is not able to address the other motivating examples

First Design: 'deinit' Example

10

© 2019 Cray, a Hewlett Packard Enterprise company

Pros:
• addresses 'deinit' example
• similar to C++ and D

Cons:
• Does not improve ownership or copy elision examples
• Relies on distinguishing between compiler temporaries and user variables
• Users might need something like C++ std::move to optimize some cases

First Design: Pros and Cons

11

© 2019 Cray, a Hewlett Packard Enterprise company

• A local variable is dead when an analysis shows it is no longer needed

• In particular:

• at the end of a block, if an alias is potentially captured

• otherwise, just after the last statement mentioning the variable

• The analysis considers mentions of 'x' to determine if it is potentially captured:

• by developing a set of potential aliases to 'x'

• then determining if any of them are potentially captured

• Inferred or explicit lifetime of called functions indicates alias capture potential

Suggested Design for When a Value is Dead

12

© 2019 Cray, a Hewlett Packard Enterprise company

• A call 'f(..., a, ...)' potentially creates an alias to 'a' if the lifetime constraint of 'f':

• allows returning something with lifetime 'a'

• For example, these calls potentially create an alias:
identity(a); proc identity(ref arg) ref { return arg; }

a[1..10]; // array slicing
a.borrow(); // borrowing

• These calls do not:

count(a); proc count(arg): int { ... }

globalTable.lookup(a); // method inferred lifetime prohibits return of arg

Suggested Design: Potential Aliases

13

© 2019 Cray, a Hewlett Packard Enterprise company

• A user variable initialization potentially captures an alias to 'b' if:

• it initializes a user variable that refers to / borrows from 'b' (e.g. 'ref x = b')

• For example, these variable initializations potentially capture an alias:

var x = b.borrow();

ref c = b;

const ref c = b;

• These do not:

var y: owned C = b;

var z: R;

var i: int = b;

Suggested Design: Potential Captures

14

© 2019 Cray, a Hewlett Packard Enterprise company

• A call 'g(..., c, ...)' potentially captures an alias to 'c'

• if the lifetime constraint of 'g' allows storing something with lifetime of 'c'

• into another formal argument, or

• into an outer / global variable

• For example, these calls potentially capture an alias:
set(localVariable, c);

saveInGlobal(c);

• These do not:
set(c, localVariable);

compare(localVariable, c);

Suggested Design: Potential Captures

15

proc set(ref lhs, const ref rhs)

lifetime lhs >= rhs {...}

proc saveInGlobal(c)

lifetime c >= global { ... }

proc compare(a, b) { ... }

© 2019 Cray, a Hewlett Packard Enterprise company

proc main() {

var f = opentmp();

var A = [1,2,3,4];

var B:[A.domain] int;

f.writer().write(A); // temporary storing f.writer() deinited here
f.reader().read(B); // reads the data written above

}

• An alias to the temporary storing f.writer() is not potentially captured

• because the 'channel.write' call cannot save an alias to the channel
• lifetime clause prevents saving it; return value not used

Suggested Design: 'deinit' Example

16

© 2019 Cray, a Hewlett Packard Enterprise company

record R { ... }

proc makeR() { return new R(); }

proc acceptIn(in arg: R) { ... }

{

var x = makeR();

f();

acceptIn(x);

g();

}

• 'x' dead after the 'acceptIn' statement, so copy elision can occur in that call
• copy elision would not be legal if 'x' could potentially be used in 'g'

Suggested Design: Copy Elision Example

17

© 2019 Cray, a Hewlett Packard Enterprise company

proc f() {

var x: owned C = makeC();

var y = x; // ownership transfer from x to y
g(y);

}

• ownership transfer from 'x' is legal since it is dead after the transfer
• no potential alias capture, and 'var y = x' is the last statement mentioning 'x'

Suggested Design: Ownership Transfer Example

18

© 2019 Cray, a Hewlett Packard Enterprise company

• The design described so far only impacts local variables

• However, we’d like the 'f.writer()' example to behave the same in global scope

• user-level global variables will always be destroyed at end of program

• as any function call could refer to these

• non-captured expression temporaries could be deallocated earlier

Suggested Design: Global Variables

19

© 2019 Cray, a Hewlett Packard Enterprise company

• Suggested design interferes with some RAII patterns used in C++:
• an RAII lock:

var l = takenLock(lock);

// automatically unlocked at end of block when l is deinitialized

• a global stack managing the current line number:
var tmp = pushLineNumber(line);

// line number automatically popped when 'tmp' is deinitalized at end of block
• Here are two ways to resolve this problem:

• Create something like 'with' in Python (see e.g. issue #12306)
• Allow record declarations to request deinitialization only at end of block

attribute(no statement deinit) record RAIILock { ... }

Suggested Design: RAII

20

https://github.com/chapel-lang/chapel/issues/12306

© 2019 Cray, a Hewlett Packard Enterprise company

Pros:

• Addresses 'deinit', copy elision, and ownership transfer examples

• Does not rely on difference between temporaries and user variables

• Avoids the need for something like C++ std::move

Cons:

• More complex than Option 1

• Different from C++ and D

• Supporting RAII patterns in Chapel will require additional work

Suggested Design: Pros and Cons

21

© 2019 Cray, a Hewlett Packard Enterprise company

Status: Two definitions of expiring values have been proposed

Next Steps: Begin implementation of one of the proposals
• Options are discussed on issue #13704
• Copy elision and ownership transfer will require further compiler support

Expiring Values: Status and Next Steps

22

https://github.com/chapel-lang/chapel/issues/13704

© 2019 Cray, a Hewlett Packard Enterprise company

Constrained
Generics

© 2019 Cray, a Hewlett Packard Enterprise company

• Today, the Chapel compiler follows the C++ strategy for generics
• generic functions are instantiated and then type-checked

• However, this approach presents several problems:
• generic code might not compile for all calls
• long compile times
• confusing point-of-instantiation rule

• Constrained generics are a strategy to:
• indicate requirements in generic function prototypes
• type-check generic functions before instantiation
• instantiate generic functions later in compilation

What are constrained generics?

24

© 2019 Cray, a Hewlett Packard Enterprise company

• C++ needs constrained generics but it has taken ~20 years to add it

• Effort started in 2000s [1]

• 'concepts' will finally be included in C++20 [2]

• Constrained generics design for Chapel developed in 2012-2013

• in partnership with Jeremy Siek and Chris Wailes

• Rust and Swift have constrained generics baked in

• including allowing an implementation with a type known only at runtime

Previous Work on Constrained Generics

25

https://isocpp.org/blog/2016/02/a-bit-of-background-for-concepts-and-cpp17-bjarne-stroustrup
https://en.wikipedia.org/wiki/C++20

© 2019 Cray, a Hewlett Packard Enterprise company

• Since generic instantiation is a relatively slow part of compilation:
• would like to get errors beforehand
• would like to optimize the compiler to avoid duplicate instantiations

• Constrained generics help with the above

• Additionally, the feature enables a type to be known only at runtime
• calls can bind dynamically to a table of function pointers

• similar to virtual dispatch on classes
• strategy can reduce compilation time but also reduces program performance

Compilation Speed and Generic Instantiations

26

© 2019 Cray, a Hewlett Packard Enterprise company

Example
Generic

27

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg: ?t): t {

writeln("2x ", arg.show());

return add(arg, arg);

}

proc int.show(): string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

double(1);

28

Unconstrained Generic

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg: ?t): t {

writeln("2x ", arg.show());

return add(arg, arg);

}

proc int.show(): string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

double(1);

// instantiates with 't' replaced by 'int'

// functions from point-of-instantiation are in scope
proc double(arg: int): int {

writeln("2x ", arg.show());

return add(arg, arg);

}

29

Unconstrained Generic

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg: ?t): t {

writeln("2x ", arg.show());

return add(arg, arg);

}

proc int.show(): string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

double(1);

// instantiates with 't' replaced by 'int'

// functions from point-of-instantiation are in scope
proc double(arg: int): int {

writeln("2x ", arg.show());

return add(arg, arg);

}

30

Unconstrained Generic

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg: ?t): t {

writeln("2x ", arg.show());

return add(arg, arg);

}

proc int.show(): string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

double(1);

// instantiates with 't' replaced by 'int'

// functions from point-of-instantiation are in scope
proc double(arg: int): int {

writeln("2x ", arg.show());

return add(arg, arg);

}

31

Unconstrained Generic

What if 'add' is private?

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg: ?t): t {

writeln("2x ", arg.show());

return add(arg, arg);

}

proc int.show(): string {

return "int " + this:string;

}

private

proc add(a: int, b: int): int {

return a + b;

}

double(1);

32

Unconstrained Generic

// instantiates with 't' replaced by 'int'

// functions from point-of-instantiation are in scope
proc double(arg: int): int {

writeln("2x ", arg.show());

return add(arg, arg);

}

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg: ?t): t

where t implements Doubleable {

writeln("2x ", arg.show());

return add(arg, arg);

}

int implements Doubleable {

proc int.show(): string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

}

double(1);

33

CHIP 2 Constrained Generic

interface Doubleable {

proc self.show(): string;

proc add(a: self, b: self): self;

}

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg: ?t): t

where t implements Doubleable {

writeln("2x ", arg.show());

return add(arg, arg);

}

34

CHIP 2 Constrained Generic

implementation Doubleable(int):

[0]: show

[1]: add

interface Doubleable {

[0]: proc self.show(): string;

[1]: proc add(a: self, b: self): self;

}

int implements Doubleable {

proc int.show(): string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

}

double(1);

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg: ?t): t

where T:Doubleable {

writeln("2x ", arg.show());

return add(arg, arg);

}

impl Doubleable for int {

proc int.show():string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

}

double(1);

35

Rust-like Constrained Generic

trait Doubleable {

proc self.show(): string;

proc add(a: self, b: self): self;

}

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg: ?t): t

where T:Doubleable {

writeln("2x ", arg.show());

return arg.add(arg);

}

extension int: Doubleable {

proc int.show(): string {

return "int " + this:string;

}

proc int.add(other: int): int {

return this + other;

}

}

double(1);

36

Swift-like Constrained Generic

protocol Doubleable {

// assumed to be methods

proc show():string;

proc add(other: self): self;

}

© 2019 Cray, a Hewlett Packard Enterprise company

Design
Questions

37

© 2019 Cray, a Hewlett Packard Enterprise company

• What is the terminology, syntax, and style to use?

• Do we support both methods and function calls?

• Can one assert an interface is met separately from an 'implements' block?

• How can functions with the same name be handled?

• Can the compiler infer implementation of an interface?

• How will the language handle generic functions without constraints?

High Level Design Questions

38

© 2019 Cray, a Hewlett Packard Enterprise company

• 'interface', 'trait', 'protocol', or 'concept' ?
• 'self' is the type being implemented by the constrained generic

• Should it be explicitly named as an interface argument?
• 'self' or 'Self' ? Should interface names be UpperCase or lowerCase?

• How exactly can one write a constraint on a generic argument?
proc f(arg: ?t) where t implements MyInterface // preferred
proc f(arg: ?t) where t: MyInterface
proc f(arg: implements MyInterface)
proc f(arg: impl MyInterface)
proc f(arg: MyInterface) // preferred

Terminology, Syntax, and Style Choices

39

© 2019 Cray, a Hewlett Packard Enterprise company

• CHIP 2 proposal uses the 'self' keyword to differentiate methods and functions:
proc add(a: self, b: self): self; // non-method

proc self.show(): string; // method

• Alternatives:
• Identify methods with 'this' as the method receiver:

proc this.show(): string; // method

• Indicate methods with 'this' as the first argument:
proc show(this): string; // method

• Use universal methods like Rust does:
proc show(_:self): string; // show(1) works

proc add(a: self, b: self): self; // a.add(b) works

Method and Function Signatures in Interfaces

40

© 2019 Cray, a Hewlett Packard Enterprise company

• In Rust, 'implements' blocks always contain the implementation
• Compare with CHIP 2, which allows a statement like

int implements Doubleable;

• Even in Rust, the functions defined in an 'impl' are visible outside of the trait
• so 'impl' block requirement is not due to visibility requirements

• Even if implementations must be in an 'implements' block, one could forward:
proc myAdd(a: int, b: int): int { ... }

int implements Doubleable {

proc add(a: int, b: int): int { return myAdd(a, b); }

}

• Standalone 'implements' has low design impact, avoids duplicate methods

Asserting an interface is met

41

© 2019 Cray, a Hewlett Packard Enterprise company

interface Doubleable {

proc self.show(): string;

proc add(a: self, b:self): self;

}

proc double(arg:?t):t

where t implements Doubleable {

writeln("2x ", arg.show());

return add(arg, arg);

}

proc int.show():string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

int implements Doubleable;

double(1);

42

CHIP 2 Constrained Generic: Separate Clause

© 2019 Cray, a Hewlett Packard Enterprise company

interface Doubleable {

proc self.show(): string;

proc add(a: self, b:self): self;

}

proc double(arg:?t):t

where t implements Doubleable {

writeln("2x ", arg.show());

return add(arg, arg);

}

proc int.show():string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

int implements Doubleable;

double(1);

43

CHIP 2 Constrained Generic: Separate Clause

© 2019 Cray, a Hewlett Packard Enterprise company

• Sometimes generic code might use interfaces using the same function names
interface Addable {

proc self.accum(other: self): self;

}

interface AccumAble {

proc self.accum(other: self): self;

}

proc double(arg: ?t)

where t implements Addable && t implements AccumAble {

arg.accum(arg); // ambiguous: which accum?
}

Handling Duplicate Function Names

44

© 2019 Cray, a Hewlett Packard Enterprise company

• How can one resolve the ambiguity?
• Could decorate functions with interface name, e.g. 'Doubleable.add(arg, 1)'
• Could allow renaming in 'implements' statements, e.g.

where t implements Addable with accum as accumA, Sumable

• Could allow a cast syntax, e.g. '(arg:Addable).accum()'
• Or could require a wrapper method:

proc doubleableShow(arg: Doubleable) { arg.show(); }

doubleableShow(arg);

• Universal method syntax helps to enable this in Rust
• 'arg.show()' can be written as 'show(arg)' - so e.g. 'Doubleable.show(arg)'

Handling Duplicate Function Names

45

© 2019 Cray, a Hewlett Packard Enterprise company

• Should the compiler be able to infer whether a type implements an interface?

• e.g. if all of the methods/functions are available, it meets the interface

• 'explicit' keyword would be available to opt out

• Swift and Rust do not allow this form of inference; but Go does

• Allowing the inference has some advantages:

• more understandable to Python programmers

• generics still behave similarly to duck typing

• less code changes required to migrate generic code

• reduces knowledge required to use generic libraries

• e.g. 'implements' not required to specify a sort order

Inferring Implementation of an Interface

46

© 2019 Cray, a Hewlett Packard Enterprise company

interface Doubleable {

proc self.show(): string;

proc add(a: self, b: self): self;

}

proc double(arg:?t):t

where t implements Doubleable {

writeln("2x ", arg.show());

return add(arg, arg);

}

proc int.show():string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

// compiler infers

// int implements Doubleable;

// it would not do so if Doubleable it were declared

// explicit interface Doubleable { ... }
double(1);

47

CHIP 2 Constrained Generic: Inferred

© 2019 Cray, a Hewlett Packard Enterprise company

• Inferring that a type implements an interface is not appropriate for all interfaces
• cannot infer semantic properties like multiplication on this type is commutative

• CHIP 2 proposes allowing inference for interfaces not marked 'explicit'
• aiming for best of both worlds
• 'explicit' necessary when the interface communicates some property

• beyond the existence of the functions or methods

• It is possible that the inference could add to compile times
• In that event, compiler could warn about the compile time

• and suggest adding 'implements' statements

Inferring Implementation of an Interface

48

© 2019 Cray, a Hewlett Packard Enterprise company

• How will the language handle generic functions without constraints?

• Such generic code is very common in Chapel today

proc f(arg) { return arg + arg; }

• Potential strategies for resolving constrained and unconstrained generics:

1. Resolve them both late — after instantiation

2. Use separate strategies

3. Resolve them both early — before instantiation

Unconstrained Generics

49

© 2019 Cray, a Hewlett Packard Enterprise company

• In this idea, a constraint on a generic would merely serve as extra type-checking
• It would not affect which functions are resolved
• \

Pros:
• Easier to implement
• No language changes for unconstrained generics
• Constrained and unconstrained generics have similar visibility rules

Cons:
• does not help with complete type-checking of generic code
• does not replace the point-of-instantiation rule
• will not improve compile speed or reduce the amount of type-checking

Resolving Them Both Late

50

© 2019 Cray, a Hewlett Packard Enterprise company

• Idea: use different strategies for constrained and unconstrained generics

• A constrained generic would resolve and type-check before instantiation

• An unconstrained generic would resolve and type-check after instantiation

• Note: mixing the two will require special attention for these cases:

• functions with some arguments constrained and some unconstrained

• constrained generics calling unconstrained generics

• unconstrained generics calling constrained generics

Separate Strategies

51

© 2019 Cray, a Hewlett Packard Enterprise company

Pros:
• Limits changes for existing generic code

Cons:
• Mixing constrained and unconstrained generics will require special attention
• Misses opportunities to improve compilation speed for unconstrained generics
• Different visibility rules between the two might be confusing

Separate Strategies

52

© 2019 Cray, a Hewlett Packard Enterprise company

• Here, unconstrained and constrained generics would both resolve early
• Constrained generics would behave as described earlier
• Unconstrained generics would become more similar to constrained generics

• compiler would infer both interface and 'implements' statements
• then use constrained generic rules for function visibility

Resolving Them Both Early

53

© 2019 Cray, a Hewlett Packard Enterprise company

proc double(arg:?t):t {

writeln("2x ", arg.show());

return add(arg, arg);

}

• Could compiler infer from the above that the
argument to 'double' needs to have a 'show'
method and work with an 'add' function?

• Could it furthermore type-check while building
up this list of constraints?

proc int.show(): string {

return "int " + this:string;

}

proc add(a: int, b: int): int {

return a + b;

}

double(1);

• Could it infer here that the constraint is met?

54

Revisiting the Earlier Unconstrained Example

© 2019 Cray, a Hewlett Packard Enterprise company

• Supporting common patterns in generic code will require additional effort
• compile-time conditionals, e.g. 'if t == string then ...'
• inferred variable and return types

• One possibility: construct a graph combining constraints and type inference

Resolving Them Both Early

55

© 2019 Cray, a Hewlett Packard Enterprise company

Pros:
• Clear path for mixing constrained, unconstrained arguments/functions
• Potential to improve compilation speed for unconstrained generics

Cons:
• Unknown impact on compilation speed
• Supporting type inference will require additional implementation effort
• Changes visibility rules for unconstrained generics (see next slides)

Resolving Them Both Early

56

© 2019 Cray, a Hewlett Packard Enterprise company

Function
Visibility in
Generic
Functions

57

© 2019 Cray, a Hewlett Packard Enterprise company

• Function visibility in generic functions is tricky
• Relies on the point-of-instantiation rule today

• Constrained generics would not use point-of-instantiation rule
• It is replaced by 'implements' information

• Should unconstrained generics visibility rules match constrained generics?
• Changes here can break existing code

• but might not affect many programs in practice

Function Visibility in Generic Functions

58

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc foo(arg:int) {

writeln("Lib.foo(int)");

}

proc genericFunction(arg) {

foo(arg);

}

}

module Main {

use Lib;

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
59

Visibility Example

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

proc genericFunction(arg) {

foo(arg);

}

}

module Main {

use Lib;

proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc foo(arg:int) {

writeln("Lib.foo(int)");

}

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
60

Visibility Example

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

proc genericFunction(arg) {

foo(arg);

}

}

module Main {

use Lib;

proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc foo(arg:int) {

writeln("Lib.foo(int)");

}

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
61

Visibility Example

point-of-instantiation rule

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

proc foo(arg:int) {

writeln("Lib.foo(int)");

}

proc genericFunction(arg) {

foo(arg); // overload sets error

}

}

module Main {

use Lib;

proc foo(arg:int(8)) {

writeln("Main.foo(int(8))");

}

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
62

Visibility Example

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc genericFunction(arg) {

foo(arg); // ok

}

}

module Main {

use Lib;

proc foo(arg:int) {

writeln("Main.foo(int)");

}

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
63

Visibility Example

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc genericFunction(arg) {

foo(arg); // ok

}

}

module Main {

use Lib;

proc foo(arg:int) {

writeln("Main.foo(int)");

}

proc main() {

var x = 1:int(8);

genericFunction(x);

foo(x); // overload sets error
}

}
64

Visibility Example

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

interface I {

proc foo(arg: self);

}

proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc genericFunction(arg: ?t)

where t implements I {

foo(arg);

}

}

module Main {

use Lib;

proc foo(arg:int) {

writeln("Main.foo(int)");

}

int implements I;

int(8) implements I; // overload sets error?

//

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
65

Visibility Example

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc genericFunction(arg) {

foo(arg);

}

}

module Main {

use Lib;

proc foo(arg:int) {

writeln("Main.foo(int)");

}

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
66

Visibility Example

What if 'foo(int(8))' is private?

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

private proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc genericFunction(arg) {

foo(arg);

}

}

module Main {

use Lib;

proc foo(arg:int) {

writeln("Main.foo(int)");

}

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
67

Visibility Example

Historically, failed to compile.
Started working in 1.18.

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

interface I {

proc foo(arg: self);

}

private proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc genericFunction(arg: ?t)

where t implements I {

foo(arg);

}

}

module Main {

use Lib;

proc foo(arg:int) {

writeln("Main.foo(int)");

}

int implements I;

int(8) implements I;

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
68

Visibility Example

© 2019 Cray, a Hewlett Packard Enterprise company

module Lib {

interface I {

proc foo(arg: self);

}

private proc foo(arg:int(8)) {

writeln("Lib.foo(int(8))");

}

proc genericFunction(arg: ?t)

where t implements I {

foo(arg);

}

}

module Main {

use Lib;

proc foo(arg:int) {

writeln("Main.foo(int)");

}

int implements I;

int(8) implements I;

proc main() {

var x = 1:int(8);

genericFunction(x);

}

}
69

Visibility Example

Fails with constrained
generic visibility

© 2019 Cray, a Hewlett Packard Enterprise company

• The point of instantiation rule has a further wrinkle
• The compiler will arbitrarily select an instantiation with particular substitutions
• Usually OK for 'type' arguments
• Can be very confusing with 'param' arguments

• From the language specification:
• When resolving function calls made within generic functions, there is an

additional source of visible functions. Besides functions visible to the generic
function’s point of declaration, visible functions are also taken from one of the
call sites at which the generic function is instantiated for each particular
instantiation. The specific call site chosen is arbitrary and it is referred to as
the point of instantiation.

Further Issue With Point of Instantiation

70

© 2019 Cray, a Hewlett Packard Enterprise company

Consider an application using two libraries which use a generic library

Point of Instantiation and Multiple Call Sites

71

module GenericLibrary {

proc callFoo(param x) {

foo(x);

}

}

module LibraryOne {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

module LibraryTwo {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

module Application {

use LibraryOne;

use LibraryTwo;

}

© 2019 Cray, a Hewlett Packard Enterprise company

Consider an application using two libraries which use a generic library

Point of Instantiation and Multiple Call Sites

72

module GenericLibrary {

proc callFoo(param x) {

foo(x);

}

}

module LibraryOne {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

module LibraryTwo {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

module Application {

use LibraryOne;

use LibraryTwo;

}

A generic function is used
by two other libraries

© 2019 Cray, a Hewlett Packard Enterprise company

Consider an application using two libraries which use a generic library

Point of Instantiation and Multiple Call Sites

73

module GenericLibrary {

proc callFoo(param x) {

foo(x);

}

}

module LibraryOne {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

module LibraryTwo {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

module Application {

use LibraryOne;

use LibraryTwo;

}

'callFoo' implementation
expects 'foo' to be

provided by the caller

© 2019 Cray, a Hewlett Packard Enterprise company

module LibraryOne {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

module GenericLibrary {

proc callFoo(param x) {

foo(x);

}

// instantiates as:

proc callFoo(param 1) {

foo(1);

}

}

74

Point of Instantiation and Multiple Call Sites

module LibraryTwo {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

© 2019 Cray, a Hewlett Packard Enterprise company

module LibraryOne {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

module GenericLibrary {

proc callFoo(param x) {

foo(x);

}

// instantiates as:

proc callFoo(param 1) {

foo(1);

}

}

75

Point of Instantiation and Multiple Call Sites

In LibraryTwo, callFoo(1)
invokes LibraryOne.foo() ! module LibraryTwo {

use GenericLibrary;

proc foo(i: int) { }

callFoo(1);

}

© 2019 Cray, a Hewlett Packard Enterprise company

Problem is solved by constrained generic visibility

module LibraryOne {

use GenericLibrary;

proc foo(i: int) { }

int implements Foo;

callFoo(1);

}

module GenericLibrary {

proc callFoo(param x)

where implements Foo {

foo(x);

}

}

76

Point of Instantiation and Multiple Call Sites

module LibraryTwo {

use GenericLibrary;

proc foo(i: int) { }

int implements Foo;

callFoo(1);

}

© 2019 Cray, a Hewlett Packard Enterprise company

Next Steps for
Constrained
Generics

77

© 2019 Cray, a Hewlett Packard Enterprise company

• These slides focus on possible directions and language compatibility

• A constrained generics feature will likely also need:
• Associated types

• Interfaces with multiple arguments
• Support for generic methods and functions

• A form of interface type supporting run-time typing
• Similar to virtual dispatch, but for interfaces
• Expect this to be syntactically identified, e.g. 'any Doubleable'

Further Features

78

© 2019 Cray, a Hewlett Packard Enterprise company

• Discuss and resolve open language design questions

• Decide whether or not to accept breaking language changes
• especially around visibility in generic functions

• Begin implementation effort to aid in resolving design questions
• especially regarding what is possible or practical

Constrained Generics in Chapel: Next Steps

79

© 2019 Cray, a Hewlett Packard Enterprise company

FORWARD LOOKING
STATEMENTS

80

This presentation may contain forward-looking statements that involve risks, uncertainties
and assumptions. If the risks or uncertainties ever materialize or the assumptions prove
incorrect, the results of Hewlett Packard Enterprise Company and its consolidated
subsidiaries ("Hewlett Packard Enterprise") may differ materially from those expressed or
implied by such forward-looking statements and assumptions. All statements other than
statements of historical fact are statements that could be deemed forward-looking
statements, including but not limited to any statements regarding the expected benefits and
costs of the transaction contemplated by this presentation; the expected timing of the
completion of the transaction; the ability of HPE, its subsidiaries and Cray to complete the
transaction considering the various conditions to the transaction, some of which are outside
the parties’ control, including those conditions related to regulatory approvals; projections of
revenue, margins, expenses, net earnings, net earnings per share, cash flows, or other
financial items; any statements concerning the expected development, performance, market
share or competitive performance relating to products or services; any statements regarding
current or future macroeconomic trends or events and the impact of those trends and events
on Hewlett Packard Enterprise and its financial performance; any statements of expectation
or belief; and any statements of assumptions underlying any of the foregoing. Risks,
uncertainties and assumptions include the possibility that expected benefits of the transaction
described in this presentation may not materialize as expected; that the transaction may not
be timely completed, if at all; that, prior to the completion of the transaction, Cray’s business
may not perform as expected due to transaction-related uncertainty or other factors; that the
parties are unable to successfully implement integration strategies; the need to address the
many challenges facing Hewlett Packard Enterprise's businesses; the competitive pressures
faced by Hewlett Packard Enterprise's businesses; risks associated with executing Hewlett
Packard Enterprise's strategy; the impact of macroeconomic and geopolitical trends and
events; the development and transition of new products and services and the enhancement
of existing products and services to meet customer needs and respond to emerging
technological trends; and other risks that are described in our Fiscal Year 2018 Annual
Report on Form 10-K, and that are otherwise described or updated from time to time in
Hewlett Packard Enterprise's other filings with the Securities and Exchange Commission,
including but not limited to our subsequent Quarterly Reports on Form 10-Q. Hewlett Packard
Enterprise assumes no obligation and does not intend to update these forward-looking
statements.

Q U E S T I O N S ?

@ChapelLanguage

chapel_info@cray.com

@cray_inc

linkedin.com/company/cray-inc-/

cray.com

THANK YOU

chapel-lang.org

