Performance Summary

Chapel version 1.19
March 21, 2019

chapel_info@cray.com
chapel-lang.org
@ChapelLanguage
Overview

• Generally speaking, performance has improved with 1.19

• Previous slides have shown performance improvements
 … due to communication optimizations
 … due to compiler and module optimizations
 … due to runtime optimizations

• These slides contain overall 1.19 performance results and trends
 • Shows comparisons across releases
Outline

- Single Locale Performance Trends
- Multi-locale Performance Trends
- Scalability Trends
- Priorities and Next Steps
Single Locale Performance
Single Locale Performance

• No major single locale performance changes
 • No known regressions
 • Some improvements from making cstdlib atomics the default
 • Performance efforts are focused on multi-locale and scalability improvements
Multi-locale Performance Trends
Multi-locale Performance Configuration

• Hardware: 16 nodes of a Cray XC
 • 28-core, 128GB RAM
 • (2) 14-core “Broadwell” 2.6 GHz

• Software:
 • CLE 6
 • GCC 8.2.0
 • Chapel 1.17.1, 1.18.0, 1.19.0
Multi-Locale Performance

• Modest multi-locale performance improvements

![Graph showing HPCC: PTRANS Perf (GB/sec) with n=2,000, nb=100](image1)

![Graph showing HPCC: HPL Release Perf (Gflop/s) with n=255, nb=32](image2)
Multi-Locale Performance

- Minor regression for NAS Parallel Benchmarks: EP
 - Has been resolved on master, but not in 1.19 release
 - Regression was minor, not a critical benchmark for us
Multi-Locale Performance

• Discovered PRK-stencil is not on par with reference as previously reported
 • Missed setting OpenMP affinity flags for reference version
 • Remaining gap due to imperfect Chapel task-affinity between trials

![Graph showing PRK: Stencil Optimized Perf (Mflop/s) order=128,000]
Multi-Locale Performance

- Regression for Promoted Stream under GASNet with MPI conduit
 - Not an important configuration, but discovered promoted version has comm
 - Surprising, communication not expected for any stream variants

![Graph showing HPCC: Promoted STREAM Perf (GB/s) with n=5,723,827,200]
Scalability Trends
Scalability Configurations

• 256 Node Configuration:
 • 36-core, 128GB RAM
 • (2) 18-core “Broadwell” 2.1 GHz
 • CLE 7.0 UPO0
 • GCC 8.2.0, cray-mpich/cray-shmem 7.7.7.1, Chapel 1.18.0/1.19.0

• 1024 Node Configuration (Edison):
 • 24-core (48 HT), 64 GB RAM
 • (2) 12-core "Ivy Bridge" 2.4 GHz processors
 • CLE 6.0 UP07
 • GCC 8.2.0, Chapel 1.18.0/1.19.0
Scalability

- Significant scalability improvements
 - 45% improvement for RA using remote-memory-operations
Scalability

- Significant scalability improvements
 - Scans over block distributed arrays scale

Scan Strong Scaling (8MB Total)

- Time (sec)
- Locales (x 36 cores / locale)
- Faster
Scalability

- Significant scalability improvements
 - 4.5x improvement for typical remote task spawns

Task Spawn Time (seconds)
(100,000 `coforall loc in Locales do on loc`)
Scalability

• Significant scalability improvements
 • 8% speedup for Stream Global at 1,024 nodes (~25,000 cores)
Performance Priorities and Next Steps
Performance Priorities and Next Steps

• Continue with Bale-driven optimizations
 • Enable unordered compiler optimization by default
 • Flesh out unordered operation API
 • Port and tune additional Bale applications
 • Start on aggregation library and performance experiments
• Locality oriented improvements
 • Optimize slicing
 • Optimize communication for distributed fields in records/classes
 • Improve bulk transfer for distributed arrays
• Tune comm=ofi performance
Performance Priorities and Next Steps

- Switch to llvm backend by default
 - Provides more consistent and controllable performance
 - Will likely have vectorization improvements
- Eliminate communication for promoted Stream
- Implement a task-resetting policy
- Eliminate remaining memory leaks
- Improve compilation speed
SAFE HARBOR STATEMENT

This presentation may contain forward-looking statements that are based on our current expectations. Forward looking statements may include statements about our financial guidance and expected operating results, our opportunities and future potential, our product development and new product introduction plans, our ability to expand and penetrate our addressable markets and other statements that are not historical facts.

These statements are only predictions and actual results may materially vary from those projected. Please refer to Cray's documents filed with the SEC from time to time concerning factors that could affect the Company and these forward-looking statements.
THANK YOU

QUESTIONS?

chapel_info@cray.com
@ChapelLanguage
chapel-lang.org

cray.com
@cray_inc
linkedin.com/company/cray-inc-