
© 2019 Cray Inc.

chapel-lang.org

Benchmarks and

Performance Optimizations

Chapel version 1.19
March 21, 2019

@ChapelLanguage

chapel_info@cray.com

© 2019 Cray Inc.

• Bale Case Study
• Bale Histogram

• Bale Indexgather

• Blocking Comm Optimizations

• UnorderedCopy

• Unordered Compiler Optimization

• Parallelizing Scans
• cstdlib Atomics
• Stream Case Study

• Block Distribution Optimization

• Remote Task Spawn Optimizations

• Memory Leaks

Out l ine

© 2019 Cray Inc. 3

Bale Case Study

© 2019 Cray Inc.

• Bale is a collection of mini-applications in UPC/SHMEM

• Tests various communication idioms and patterns

• Histogram (stresses network atomics)

• Indexgather (stresses remote GETs)

• Bale also contains aggregated communication libraries

• Compares elegant/intuitive code vs. more complex aggregated code

Bale: Background

4

© 2019 Cray Inc.

Background: Focused on intuitive/elegant implementations in 1.18
• Ported elegant version of histogram and tuned performance
• Added buffered atomics to manually optimize for even better performance

• At the cost of elegance

This Effort:
• Improved elegance of manually optimized histogram
• Ported elegant version of indexgather and tuned performance
• Added compiler optimization to automatically optimize intuitive versions

Bale: Chapel Background and Effort

5

© 2019 Cray Inc.

Ba l e H i s tog r am

6

© 2019 Cray Inc.

• Optimized version of Histogram in 1.18 was fast, but not very elegant
• Revealed too much about implementation, required explicit flush

Histogram: Background

7

forall r in rindex {
A[r].add(1);

}

Default Chapel

forall r in rindex {
A[r].addBuff(1);

}
flushAtomicBuff();

Optimized Chapel

0
50

100
150
200
250
300
350
400

Default Optimized

M
B

/s
 p

er
 n

od
e

Bale Histo UPC vs Chapel 1.18

UPC
Chapel 1.18

© 2019 Cray Inc.

• Renamed BufferedAtomics to UnorderedAtomics
• For example addBuff() => unorderedAdd()
• Eventually want add(order=unordered)

• Not quite ready to commit to language-level API, but one step closer
• Added implicit fences at task/forall termination, explicit fence no longer needed

Histogram: This Effort

8

forall r in rindex {
A[r].addBuff(1);

}
flushAtomicBuff();

Optimized Chapel 1.18

forall r in rindex {
A[r].unorderedAdd(1);

}

Optimized Chapel 1.19

https://chapel-lang.org/docs/1.19/modules/packages/UnorderedAtomics.html

© 2019 Cray Inc.

• Optimized histogram implementation is more elegant
• Performance still on par with reference UPC

Histogram: Impact

9

forall r in rindex {
A[r].add(1);

}

Default Chapel

forall r in rindex {
A[r].unorderedAdd(1);

}

Optimized Chapel

0
50

100
150
200
250
300
350
400

Default Optimized

M
B

/s
 p

er
 n

od
e

Bale Histo UPC vs Chapel 1.19

UPC
Chapel 1.19

© 2019 Cray Inc.

Ba l e I ndexga the r

10

© 2019 Cray Inc.

• Indexgather does random GETs from a distributed array

Indexgather: Background

11

for(i = 0; i < T; i++) {
tgt[i] = lgp_get_int64(table, index[i]);

}

forall i in rindex.domain {
tgt[i] = A[rindex[i]];

}

Default UPC Default Chapel

for(i = 0; i < T; i++){
#pragma pgas defer_sync
tgt[i] = lgp_get_int64(table, index[i]);

}
lgp_barrier();

Optimized UPC

© 2019 Cray Inc.

• By default, remote operations in Chapel are “blocking”

• Supports Memory Consistency Model (MCM)

• “sequential consistency for data-race-free programs”

var a = 1;

on Locales[1] {

var b = a;

writeln(b); // must print 1

}

• Blocking operations limit network injection rate

• Have to wait for network round-trip instead of issuing operations back-to-back

Indexgather: Background

12

© 2019 Cray Inc.

• Cray UPC/SHMEM can drop to more relaxed MCM modes
• “Use the ‘pgas defer_sync’ directive to force the next statement to be non-blocking”

Indexgather: Background

13

0

100

200

300

400

500

Default Optimized

M
B

/s
 p

er
 n

od
e

Bale Indexgather UPC
for(i = 0; i < T; i++) {
tgt[i] = lgp_get_int64(table, index[i]);

}

Default UPC

for(i = 0; i < T; i++){
#pragma pgas defer_sync
tgt[i] = lgp_get_int64(table, index[i]);

}
lgp_barrier();

Optimized UPC

© 2019 Cray Inc.

• Chapel performance lagged behind reference UPC
• ~20% off for default case, 5x off for optimized

Indexgather: Background

14

0

100

200

300

400

500

Default Optimized

M
B

/s
 p

er
 n

od
e

Bale Indexgather UPC vs Chapel 1.18

UPC
Chapel 1.18

© 2019 Cray Inc.

B l ock ing Com m
Op t im i za t i on

15

© 2019 Cray Inc.

• In 1.18 ugni yielded continuously while waiting for ACK for GETs/PUTs

• Yielding allows for comm/compute overlap

• Yield slower than expected

• Tasks often in middle of yield when ACK comes in

Blocking Comm: Background

16

cdi = post_fma(locale, post_desc) // initiate transaction (post to NIC)

do {
chpl_task_yield(); // yield every iter

consume_all_outstanding_cq_events(cdi);
} while (!atomic_load_bool(&post_done)); // blocking wait for transaction to complete

© 2019 Cray Inc.

• Optimized blocking GETs/PUTs by only yielding initially, then every 64 tries
• Still allows for comm/compute overlap when numTasks > numCores

• when not oversubscribed, can process ACK sooner
• Value chosen experimentally, longer-term solution is to optimize task yields

Blocking Comm: This Effort

17

cdi = post_fma(locale, post_desc) // initiate transaction (post to NIC)

do {
if ((iters++ & 0x3F) == 0)
chpl_task_yield(); // yield initially, then 1/64 iters

consume_all_outstanding_cq_events(cdi);
} while (!atomic_load_bool(&post_done)); // blocking wait for transaction to complete

© 2019 Cray Inc.

• Improved performance of blocking GETs/PUTs

Blocking Comm: Performance Impact

18

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8

16 32 64 128 256

G
U
PS

Locales (x 36 cores / locale)

RA-rmo Performance (GUPS)

Chapel 1.19
Chapel 1.18

be
tte

r

© 2019 Cray Inc.

• Default Indexgather performance on par with UPC

Blocking Comm: Indexgather Impact

19

0

100

200

300

400

500

Default Optimized

M
B

/s
 p

er
 n

od
e

Bale Indexgather UPC vs Chapel

UPC
Chapel 1.18
Chapel 1.19

© 2019 Cray Inc.

Uno rde redCopy

20

© 2019 Cray Inc.

• Remote copies in Chapel were always ordered/blocking

• Straightforward way to implement sequential consistency

var a = 1;

on Locales[1] {

var b = a;

writeln(b); // must print 1

}

• Blocking operations limit network injection rate

• This is why Chapel was slower than the “defer_sync” UPC version

UnorderedCopy: Background

21

© 2019 Cray Inc.

• Added UnorderedCopy to permit more relaxed copies
• Operations are not consistent with normal operations
• Implicitly fenced at task/forall termination, and can be explicitly fenced

var a = 1;

on Locales[1] {

var b: int;

unorderedCopy(b, a);

writeln(b); // can print 0 or 1

unorderedCopyFence();

writeln(b); // must print 1

}

UnorderedCopy: This Effort

22

https://chapel-lang.org/docs/1.19/modules/packages/UnorderedCopy.html

© 2019 Cray Inc.

• Permits optimized Indexgather that performs on par with optimized UPC

UnorderedCopy: Impact

23

forall i in rindex.domain {
unorderedCopy(tgt[i], A[rindex[i]]);

}

Optimized Chapel
forall i in rindex.domain {
tgt[i] = A[rindex[i]];

}

Default Chapel

0

100

200

300

400

500

Default Optimized

M
B

/s
 p

er
 n

od
e

Bale Indexgather UPC vs Chapel

UPC
Chapel 1.18
Chapel 1.19

© 2019 Cray Inc.

Uno rde red Comp i l e r
Op t im i za t i on

24

© 2019 Cray Inc.

• Previous slides showed manual optimizations for Histogram and Indexgather
• But the compiler should be able to automatically optimize when …

• Inside a forall loop (no ordering requirements across iterations)
• Lifetime of operands is longer than forall loop scope
• Operations are not used for synchronization
• Result of operation is not used within the same iteration

Unordered Compiler Opt: Background

25

forall i in rindex.domain do
tgt[i] = A[rindex[i]];

Indexgather

forall r in rindex do
A[r].add(1);

Histogram

© 2019 Cray Inc.

• Added compiler optimization to automatically use unordered operations

• Off by default, can be enabled with --optimize-forall-unordered-ops

• Legal for synchronization-free loops that don’t maintain state across iterations

• Implementation strategy:

• Uses lifetime analysis to ensure operands outlive forall scope

• Skip loops with optimization hazards (atomic loops, task private vars, etc.)

• Transform operations in last statement to unordered operations

• Last statement rule ensures result it not used later in the same iteration

Unordered Compiler Opt: This Effort

26

© 2019 Cray Inc.

• Default Histogram nearly on par with performance of manually optimized version
• Compiler adds local memory fence to maintain consistency of local operations

Unordered Compiler Opt: Impact

27

80

370367 370

0

100

200

300

400

Default Manually Optimized

M
B

/s
 p

er
 n

od
e

Bale Histogram

no-opt
forall-opt

forall r in rindex do
A[r].add(1);

Default Histogram
forall r in rindex do
A[r].unorderedAdd(1);

Manually Optimized Histogram

© 2019 Cray Inc.

• Default Indexgather on par with manually optimized version

Unordered Compiler Opt: Impact

28

forall i in rindex.domain do
tgt[i] = A[rindex[i]];

Default Indexgather
forall i in rindex.domain do
unorderedCopy(tgt[i], A[rindex[i]]);

Manually Optimized Indexgather

65

380 380

0

100

200

300

400

Default Manually Optimized

M
B

/s
 p

er
 n

od
e

Bale Indexgather

no-opt
forall-opt

© 2019 Cray Inc.

• Optimization also improves atomic RA version by 4x with no source changes

Unordered Compiler Opt: Impact on HPCC RA

29

0
2
4
6
8
10
12
14

16 32 64 128 256

G
U
PS

Locales (x 36 cores / locale)

RA Performance (GUPS)

Chapel 1.19 (forall opt)
Chapel 1.19

MPI (bucketing)

be
tte

r

© 2019 Cray Inc.

• Enable compiler optimization by default
• Consider extending optimization beyond last statement in a forall

• Will require additional analysis (dataflow, alias analysis)
forall r in rindex {

A[r] = B[r];

C[r] = D[r];

}

Unordered Compiler Opt: Next Steps

30

© 2019 Cray Inc.

Ba l e Sum m ar y

31

© 2019 Cray Inc.

• Improved elegance of manually optimized Bale Histogram
• Renamed BufferedAtomics to UnorderedAtomics
• Unordered operations are flushed at task/forall termination

• Ported and improved performance of Bale Indexgather
• Improved performance of blocking GETs/PUTs
• Added UnorderedCopy to further optimize GETs/PUTs

• Added prototype compiler optimization to automatically use unordered operations
• Allows default versions to achieve same performance as manually optimized

Bale: Summary

32

© 2019 Cray Inc.

• Performance of Bale Histogram and Indexgather on par with UPC

Bale: Performance Summary

33

0

100

200

300

400

500

Default Optimized

M
B

/s
 p

er
 n

od
e

Bale Indexgather UPC vs Chapel

UPC Chapel 1.19

0
50

100
150
200
250
300
350
400

Default Optimized

M
B

/s
 p

er
 n

od
e

Bale Histogram UPC vs Chapel

UPC Chapel 1.19

© 2019 Cray Inc.

• Flesh out remaining unordered operation API
• Fetching Atomics (including Compare-and-Swap)

• Improve unordered compiler optimization
• Enable it by default
• Relax last statement restriction

• Port and tune more Bale Applications

• Start writing aggregated versions of benchmarks
• Current effort focused on making non-aggregated as fast as possible
• But still large speedup possible from doing aggregation

Bale: Next Steps

34

© 2019 Cray Inc.

Paral le l iz ing
Scans

© 2019 Cray Inc.

• Chapel has long supported a scan operator
• sibling to `reduce`, designed to support parallel prefix operations

var offset = + scan bytesPerElem;

• However, its implementation has always been serial and locality-oblivious
$ chpl myProg.chpl

myProg.chpl:2: warning: scan has been serialized (see issue #5760)

$./myProg # sloooow!

Parallel Scans: Background

36

© 2019 Cray Inc.

• Parallelized scans of local and block-distributed arrays
• implemented as part of a domain map’s optional interface

• Made this an opt-in feature due to its late addition to the release
• Warning updated to flag cases when it could be applied

$ chpl myProg.chpl

myProg.chpl:2: warning: scan has been serialized (see issue #5760)

myProg.chpl:2: warning: (recompile with -senableParScan to enable
a prototype parallel implementation)

$ chpl myProg.chpl -senableParScan

$./myProg # fast!

Parallel Scans: This Effort

37

© 2019 Cray Inc.

Parallel Scans: Impact

38

Local array:
• 24 cores
• ¼ memory

(~8B elements)

Block array:
• 16 locales x

28 cores
• 1M elements

© 2019 Cray Inc.

Parallel Scans: Impact (Strong Scaling)

39

• Significantly improved scalability

fa
st

er

0
0.5
1
1.5
2
2.5
3
3.5

16 32 64 128 256

T
im
e
(s
ec
)

Locales (x 36 cores / locale)

Scan Strong Scaling (8MB Total)

Chapel 1.18
Chapel 1.19

© 2019 Cray Inc.

Parallel Scans: Impact (Weak Scaling)

40

• Significantly improved scalability

fa
st

er

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

16 32 64 128 256

T
im
e
(s
ec
)

Locales (x 36 cores / locale)

Scan Weak Scaling (32GB per Locale)

Chapel 1.18 (DNF)
Chapel 1.19

© 2019 Cray Inc.

• Enable the parallel implementation by default
• Extend support to array expressions that preserve shape / domain

• e.g., const perm = + scan mask: int;
• Implement for additional distributions
• Consider making the default implementation parallel, distributed (locality-oblivious?)

Parallel Scans: Next Steps

41

© 2019 Cray Inc. 42

cstdl ib Atomics

© 2019 Cray Inc.

• Chapel has 3 atomic implementations:
• locks -- uses pthread mutexes to implement atomics

• portable but very slow, only default under PGI

• intrinsics -- uses __sync compiler intrinsics to implement atomics
• mostly fast, but memory orders ignored and read() is slow

(no read intrinsic, implemented with CAS for portability)
• fairly portable, previously default everywhere except PGI

• cstdlib -- uses C11 atomics to implement atomics
• best performance, memory orders adhered to
• becoming more portable (GCC 5, modern Clang, Intel 18, Cray 8.7.7)

cstdlib Atomics: Background

43

© 2019 Cray Inc.

• Want cstdlib atomics to be the default

• Designed to map efficiently to a wide range of hardware

• Supports relaxed memory orders

• Has well-defined semantics

• Tried to make cstdlib atomics the default in 1.14, but ran into several problems

• Performance regressions for GCC

• Portability issues for Clang and LLVM

• Lack of support from Intel and Cray compilers

cstdlib Atomics: Background

44

© 2019 Cray Inc.

• Made cstdlib atomics default for GCC >= 5, Clang with feature detection, LLVM

• Made test and set locks use acquire/release to avoid GCC performance hit

• Worked around Clang portability issue when system header is from GCC < 5

• Fixed LLVM support by avoiding macro definitions of atomic_thread_fence()

• Verified cstdlib atomics work with Intel 18, Cray 8.7.7

• Not quite ready to make it the default for these compilers

• Chapel module on Crays built with older versions (for ABI compatibility)

cstdlib Atomics: This Effort

45

© 2019 Cray Inc.

• Significantly faster reads, concurrency now results in speedup not slowdown
• 20x serial speedup, 800x parallel speedup
for 1..n do forall 1..n do
a.read(); a.read();

cstdlib Atomics: Performance Impact

46

0.55

1.68

0.028 0.002
0.00

0.50

1.00

1.50

2.00

serial parallel (24 core)

Ti
m

e
(s

ec
)

Atomic Read (n=100M)

intrinsics
cstdlib

© 2019 Cray Inc.

• Memory order optimizations possible
for 1..n { for 1..n {
while l.testAndSet() {} while l.testAndSet(acquire) {}
l.clear(); l.clear(release);

} }

cstdlib Atomics: Performance Impact

47

1.85 1.851.77

1.09

0

0.6

1.2

1.8

2.4

seq_cst acq/rel

Ti
m

e
(s

ec
)

Atomic Lock (n=100M)

intrinsics
cstdlib

© 2019 Cray Inc.

cstdlib Atomics: Performance Impact

48

• Benchmarks using relaxed atomics improved

© 2019 Cray Inc.

• Make cstdlib atomics the default for Intel and Cray compilers

• Use more relaxed memory orderings for core idioms when possible
• counters
• internal locks
• reference counting

cstdlib Atomics: Next Steps

49

© 2019 Cray Inc. 50

Stream Case
Study

© 2019 Cray Inc.

• Multiple variants of Stream benchmark exist, e.g.:
• EP: Explicit SPMD, uses local arrays, task spawning not included in time
• Global: Elegant, uses block distributed arrays, task spawning included in time

Stream: Background

51

coforall loc in Locales do on loc {
var A, B, C: [1..m] real;
initVectors(B, C);

startTimer();

forall (a, b, c) in zip(A, B, C) do
a = b + alpha * c;

stopTimer();
}

const Space = {1..m} dmapped Block({1..m});
var A, B, C: [Space] real;
initVectors(B, C);

startTimer();

forall (a, b, c) in zip(A, B, C) do
a = b + alpha * c;

stopTimer();

Stream EP Global Stream

© 2019 Cray Inc.

• In 1.18, Global Stream performance lagged at higher locale counts

Stream: Background

52

be
tte

r

0
10000
20000
30000
40000
50000
60000
70000
80000

128 256 512 1024

G
B/
s

Locales (x 24 cores / locale)

STREAM Performance (GB/s)

Stream Global (1.18)
Stream EP

© 2019 Cray Inc.

• For 1.19, Global Stream performance and scalability were improved by
• Optimizing iteration over block-distributed arrays
• Improving remote task-spawning speed

Stream: This Effort

53

© 2019 Cray Inc.

B l ock D i s t r i bu t i on
Op t im i za t i on

54

© 2019 Cray Inc.

• Iteration over block distribution was suboptimal, compiler could not prove locality
forall (a, b, c) in zip(A, B, C) do

a = b + alpha * c;

Generated:

Block Distribution: Background

55

// "local" gets (short-circuited in runtime)

chpl_gen_comm_get(local_c,
wide_c_ptr_i.locale, wide_c_ptr_i.addr);

chpl_gen_comm_get(local_b,
wide_b_ptr_i.locale, wide_b_ptr_i.addr);

// computation

tmp_comp = local_b + alpha * local_c;

// "local" put (short-circuited in runtime)

chpl_gen_comm_put(tmp_comp,
wide_a_ptr_i.locale, wide_a_ptr_i.addr);

// compute &C[i]

wide_c_ptr_i.locale = chpl_gen_getLocaleID();

wide_c_ptr_i.addr = (wide_c_ptr->addr + i3);

// compute &B[i]

wide_b_ptr_i.locale = chpl_gen_getLocaleID();

wide_b_ptr_i.addr = (wide_b_ptr->addr + i2);

// compute &A[i]

wide_a_ptr_i.locale = chpl_gen_getLocaleID();

wide_a_ptr_i.addr = (wide_a_ptr->addr + i1);

© 2019 Cray Inc.

• Manually narrowed local array in iterator, significantly improved generated code
forall (a, b, c) in zip(A, B, C) do
a = b + alpha * c;

Now generates:
c_ptr_i = (c_ptr + i3);
b_ptr_i = (b_ptr + i2);
a_ptr_i = (a_ptr + i1);
*(a_ptr_i) = (*b_ptr_i) + alpha * (*c_ptr_i);

• 2% performance improvement for Stream Global at 256 locales

Block Distribution: Effort and Impact

56

© 2019 Cray Inc.

u gn i : Remo te Task
Spawn Op t im i za t i ons

57

© 2019 Cray Inc.

• Task creation and on-statements are used to create remote tasks
• A common idiom is to create a task on each locale

coforall loc in Locales do on loc { body(args); }

Blocking Task Spawn: Background

58

© 2019 Cray Inc.

• Under ‘ugni’ in 1.18, remote-coforalls were translated into something like:
var endCount: atomic int = Locales.size;

for loc in Locales {

var ACK = startRemoteTask(loc, bodyWrap, args, endCount,);

while (!received(ACK)) {}

}

endCount.waitFor(0);

proc bodyWrap(args, endCount) { body(args); endCount.sub(1); }

Blocking Task Spawn: Background

59

© 2019 Cray Inc.

• Under ‘ugni’ in 1.18, remote-coforalls were translated into something like:
var endCount: atomic int = Locales.size;

for loc in Locales {

var ACK = startRemoteTask(loc, bodyWrap, args, endCount,);

while (!received(ACK)) {} // problem, network round trip wait

}

endCount.waitFor(0);

proc bodyWrap(args, endCount) { body(args); endCount.sub(1); }

Blocking Task Spawn: Background

60

© 2019 Cray Inc.

• They are now translated into something like:
var endCount: atomic int = Locales.size;

for loc in Locales {

var ACK = startRemoteTask(loc, bodyWrap, args, endCount,);

ackBuff[ackIndex()] = ACK;

if ackBuff.full() then // normally not full, so no waiting

retireAtLeastOneTX(); // fast, usually a few ready to retire

}

endCount.waitFor(0);

proc bodyWrap(args, endCount) { body(args); endCount.sub(1); }

Blocking Task Spawn: This Effort

61

© 2019 Cray Inc.

• ‘ugni’ starts remote tasks by issuing a network PUT containing task metadata

• Task arguments (“arg bundles”) need to be available on the remote node
• Small arg bundles can be sent with initiating PUT, no extra comm required
• Large arg bundles require additional work and comm

• Initiating node copies, remote node GETs and then spawns task to free

Argument Size: Background

62

© 2019 Cray Inc.

• Increased threshold for small arg bundles
• Increased from 64 Bytes to 1,024 Bytes
• Typical payload is ~512 Bytes, largest in all benchmarks is 784 Bytes

• Most remote tasks can now be initiated with a single PUT

• Memory footprint for task spawning space increased:
• 128 MB per locale at 1,024 locales (acceptable)
• 2048 MB per locale at 8,096 locales (high, but no users at this scale yet)

Argument Size: Effort and Impact

63

© 2019 Cray Inc.

• Remote task spawning is significantly faster with these optimizations
• 4.5x speedup for a typical task

Remote Task Spawn: Performance Impact

64

fa
st

er

0
10
20
30
40
50
60
70
80
90

16 32 64 128 256

T
im
e
(s
ec
)

Locales (x 36 cores / locale)

Task Spawn Time (seconds)
(100,000 `coforall loc in Locales do on loc`)

512B bundle (1.18)
512B bundle (1.19)

© 2019 Cray Inc.

• Speedups for task-heavy benchmarks at small scale (16 locales)

Remote Task Spawn: Performance Impact

65

0

0.5

1

1.5

2

2.5

1.17 1.18 1.19

T
im
e
(s
ec
on
ds
)

DOE: Lulesh Dense Time (sec) sedov15oct

ugni

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

1.17 1.18 1.19

T
im
e
(s
ec
on
ds
)

HPCC: HPL Release Time (sec) n=255, nb=32

ugni

© 2019 Cray Inc.

• Scalability improvements for benchmarks at larger scales (1,024 locales)

Remote Task Spawn: Performance Impact

66

be
tte

r

0
10000
20000
30000
40000
50000
60000
70000
80000

128 256 512 1024

G
B/
s

Locales (x 24 cores / locale)

STREAM Performance (GB/s)

Stream Global (1.18)
Stream Global (1.19)

© 2019 Cray Inc.

• One-to-many spawning is nearly as fast as possible for small argument sizes

• 85% of time spent in uGNI call

• Rest spent serializing/deserializing arguments and manipulating end count

• Future optimizations will require hierarchical spawning (e.g. tree-based spawns)

• However, current scheme should be fast enough for at least 4,096 locales

• At higher scales will also have to tune memory footprint

• Likely optimizing how tasks with large payloads are created

Remote Task Spawn: Next Steps

67

© 2019 Cray Inc.

S t r eam Sum m ar y

68

© 2019 Cray Inc.

• Optimized iteration over block-distributed arrays
• Made remote-coforall task spawning non-blocking
• Increased size threshold for small remote tasks

• Most remote tasks can now be initiated with only a single network PUT

Stream: Summary

69

© 2019 Cray Inc.

• Stream Global performance now on par with EP at 1,024 locales

Stream: Performance Impact

70

be
tte

r

0
10000
20000
30000
40000
50000
60000
70000
80000

128 256 512 1024

G
B/
s

Locales (x 24 cores / locale)

STREAM Performance (GB/s)

Stream Global (1.18)
Stream Global (1.19)

Stream EP

© 2019 Cray Inc.

Memory Leaks

© 2019 Cray Inc.

Background:
• Historically, Chapel’s test system has leaked a large amount of memory

• Chapel 1.15 and 1.16 closed major sources of large-scale leaks

• Chapel 1.17 and 1.18 closed additional memory leaks

This Effort:
• Closed additional sources of Chapel-introduced leaks, most notably:

• sparse domains

• module scope arrays-of-arrays

• Also closed some user-level leaks in the tests themselves

Memory Leaks: Background, This Effort

72

© 2019 Cray Inc.

Memory Leaks: This Effort (major fixes)

73

fixed a leak in sparse domains

fixed a leak in block-sparse domains

fixed leaks in module-scope
arrays-of-arrays

fixed leaks in user-level code

fixed leaks in tuple-of-string routines,
reductions, nested task errors, and

user code

© 2019 Cray Inc.

Memory Leaks: Impact

74

new global minimum:
~13k leaked of ~81.2G allocated

© 2019 Cray Inc.

Memory Leaks: Impact

75

new global minimum:
only 157 leaking tests remain

© 2019 Cray Inc.

Memory Leaks: Remaining Leaks (as of 1.17)

76

© 2019 Cray Inc.

Memory Leaks: Remaining Leaks (as of 1.18)

77

© 2019 Cray Inc.

Memory Leaks: Remaining Leaks (as of 1.19)

78

© 2019 Cray Inc.

Memory Leaks: Remaining Leaks (as of 1.19)

79

only 157 / 9560 tests still leaking

only 9 tests leaking > 256 bytes

70% of tests leak < 64 bytes

© 2019 Cray Inc.

Status:
• From 1.18–1.19, leaks reduced by 92% in testing (w/ ~423 new tests added)

• Primary causes of remaining leaks in testing:

• user-level leaks

• certain uses of tuples

• certain managed class instances

• certain loop idioms (e.g., breaking out of a non-inlined loop)

• certain error / defer cases

• certain runtime type expressions

• ‘Private’ distributions and ‘Dimensional’ distributions (prototype-grade)

• first-class functions (not yet officially supported)

Memory Leaks: Status

80

© 2019 Cray Inc.

Memory Leaks: Next Steps

81

Next Steps:
• Close remaining leaks
• Cause new leaks to generate errors in nightly testing

© 2019 Cray Inc. 82

For More Information

For a more complete list of related changes
in the 1.19 release, refer to the 'Performance
Optimizations/Improvements' and 'Memory

Improvements' sections in the
CHANGES.md file.

https://github.com/chapel-lang/chapel/blob/release/1.19/CHANGES.md

© 2019 Cray Inc.

S A F E H A R B O R
S TAT E M E N T

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements
that are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time
concerning factors that could affect the
Company and these forward-looking
statements.

83

THANK YOU
Q U E S T I O N S ?

@ChapelLanguage

chapel-lang.org

chapel_info@cray.com

@cray_inc

linkedin.com/company/cray-inc-

cray.com

