
© 2019 Cray Inc.

chapel-lang.org

Library and Array Improvements

Chapel version 1.19
March 21, 2019

@ChapelLanguage

chapel_info@cray.com

© 2019 Cray Inc.

• Radix Sorting
• Hashed Distribution
• Remote Subdomain Queries
• Distribution Convenience
• Filter/Map/Consume
• 'Random' Improvements
• 'LinearAlgebra' Improvements

Out l ine

© 2019 Cray Inc.

Radix Sorting

© 2019 Cray Inc.

• Sort module is currently a package module
• Because its interface is not finalized
• Because the implementation is incomplete

• It has lacked sorting algorithms with competitive performance
• The sort() function is called from standard modules

• e.g., for associative domain's sorted() iterator
• The sort() function can accept a comparator

• Is element A less than, equal to, or greater than element B?
• Alternatively, what is the 'key' to sort by?

Radix Sorting: Background

4

© 2019 Cray Inc.

• Rails Girls Summer of Code project studied radix sorting in Chapel
• Generated several implementations
• Led to a straw-man interface proposal

• Extended the sort() comparator API to allow keyPart() for radix sorting
• Added a parallel, in-place radix sort to the Sort module
• sort() now calls radix sort if comparators allow it

Radix Sorting: This Effort

5

© 2019 Cray Inc.

use Sort;

record MyRecord { var key: int; var value: int; }

record MyKeyComparator {

proc key(element: MyRecord) {

return element.key; // now uses radix sorting for integral keys
}

}

config const n = 10000;

var A: [1..n] MyRecord = [i in 1..n] new MyRecord(i, i*i);

sort(A, new MyKeyComparator());

Radix Sorting: Example

6

© 2019 Cray Inc.

use Sort;

record MyRecord { var key: c_string; var value: int; }

record MyKeyPartComparator { }

proc keyPart(element: MyRecord, i: int) {

var byte = element.key[i-1]; // compute the current key byte
// has the end been reached? Note, c_strings have a 0 terminator

var done = if byte != 0 then 0 else -1;

return (done, byte);

} }

var A:[1..n] MyRecord = ...;

sort(A, new MyKeyPartComparator());

Radix Sorting: Example

7

© 2019 Cray Inc.

0.00

500.00

1000.00

1500.00

1 KiB 1 MiB 1 GiB

M
iB

/s

Input Data Size

Sorting Speed of Random Integers

quickSort msbRadixSort

4x

Radix Sorting: Impact

8

6x
14x

© 2019 Cray Inc.

0

5

10

15

20

25

30

1 K strings 1 M strings 128 M strings

M
 s

tr
in

gs
/s

Input Data Size

Sorting Speed of Random c_strings

quickSort msbRadixSort

10x

Radix Sorting: Impact

9

9x

© 2019 Cray Inc.

Radix Sorting: Impact

10

• Significantly improved performance for a sparse domain benchmark:

2x

© 2019 Cray Inc.

• Explore ways to achieve better performance for heavily skewed data
• Need to improve parallel load balance

• Investigate alternative parallelization strategies
• The 'count' and 'shuffle' functions are currently serial

• Support distributed radix sorting

Radix Sorting: Next Steps

11

© 2019 Cray Inc.

Hashed
Distribution

© 2019 Cray Inc.

• Distributed associative arrays are important for certain applications
• e.g. when counting or assigning unique numbers to strings in distributed data

• A prototype distribution for associative arrays was already implemented
• Used in earlier label propagation study
• Never promoted out of the test system

HashedDist: Background

13

© 2019 Cray Inc.

• Added a new module, ‘HashedDist’, and a new distribution, ‘Hashed’

• Based on the prototype that was in the testing system

• The ‘Hashed’ distribution:

• Maps an associative domain and its arrays to a set of target locales

• Maps each index to a locale based upon its value

• Can be customized by providing a mapper

HashedDist: This Effort

14

© 2019 Cray Inc.

use HashedDist;

var D: domain(string) dmapped Hashed(idxType=string);

// Now D is a distributed associative domain (set) of strings. Add some elements:
D += "one"; D += "two";

var A: [D] int;

// Now A is a distributed associative array (map) from string to int

// Let's iterate over it across all Locales
forall (key, value) in zip(D, A) {

// do something with the (key, value) pair

}

HashedDist: This Effort

15

© 2019 Cray Inc.

Impact: Distributed associative arrays and domains are now available

Next Steps:
• Get feedback from users of ‘HashedDist’ and improve the interface
• Improve the implementation

• Make the domain map implementation complete
• Support adding indices in bulk

HashedDist: Impact, Next Steps

16

© 2019 Cray Inc.

Remote
Subdomain
Queries

© 2019 Cray Inc.

Background:
• Chapel supports subdomain queries on distributed domains/arrays:

const myInds = A.getLocalSubdomain();

• However, these queries have only been for the current locale ('here')

• Thus, to query for a remote locale, on-clauses had to be used:

var remoteInds: (A.getLocalSubdomain()).type;

on remoteLocale do

remoteInds = A.getLocalSubdomain();

• Yet, many distributions can compute such queries without communicating

Remote Subdomains: Background

18

© 2019 Cray Inc.

This Effort:
• Added support for remote subdomain queries:

proc <domain>.localSubdomain(loc: locale = here);

proc <array>.localSubdomain(loc: locale = here);

iter <domain>.localSubdomains(loc: locale = here);

iter <array>.localSubdomains(loc: locale = here);

• Used an optional argument to preserve backward-compatibility

Remote Subdomains: This Effort

19

© 2019 Cray Inc.

Status:
• Added (communication-free) implementations for most major domain maps:

• Default / local layouts

• Key distributions: Block, Stencil, Cyclic, Replicated, HashedDist
• Array views

Next Steps:
• Extend to remaining domain maps: BlockCyclic, Block-Sparse, Dimensional

• Decide whether to retire the procedure forms of the queries
• Realized that it’s broken when a locale is oversubscribed in 'targetLocales'

• This would permit 'hasSingleLocalSubdomain()' to be retired as well

Remote Subdomains: Status, Next Steps

20

© 2019 Cray Inc.

Distr ibut ion
Convenience
Routines

© 2019 Cray Inc.

Background: Creating distributed domains/arrays can be repetitive
• Block domains frequently declared over same indices as boundingBox

const D = {1..m, 1..n} dmapped Block(boundingBox={1..m, 1..n});

var A: [D] real;

• Cyclic domains frequently declared with startIdx == domain’s low bound

This Effort: Provide convenience routines for Block and Cyclic domains/arrays
• Simplify the common cases

Distribution Routines: Background, This Effort

22

© 2019 Cray Inc.

Impact: The common cases for Block and Cyclic are simplified
var BlkDom = newBlockDom({1..n, 1..m});

var CycDom = newCyclicDom({1..n, 1..m});

var BlkArr = newBlockArr({1..n, 1..m});

var CycArr = newCyclicArr({1..n, 1..m});

Next Steps:
• Look for common usage patterns in other distributions

• Provide similar convenience functions in those cases
• Continue to refine and improve these helper routines

Distribution Routines: Impact, Next Steps

23

© 2019 Cray Inc.

Fi l ter, Map,
Consume on
I terators

© 2019 Cray Inc.

Background: Filter, Map, Consume are common patterns on stream-like data
• These operations are commonly supported in other languages, e.g. Python
• Would be useful for iterators since they yield streams of data

This Effort: Define methods on iterators implementing Filter, Map, and Consume
iter iterator.map(function): function.type

iter iterator.filter(function): iterator.type

iter iterator.consume(function): void

Filter, Map, Consume: Background, This Effort

25

© 2019 Cray Inc.

Status: Functional style operations are available for iterators
• Currently requires calling 'these()' to get an iterator from an iterable object

var r = 1..17 by 3;
proc even(i: int) return i % 2 == 0;
for i in r.these().filter(even) do … // 4, 10, 16

Next Steps:
• Add 'foldL' and 'foldR'
• Add parallel versions of these operations
• Make the functions directly available on iterable objects

Filter, Map, Consume: Status, Next Steps

26

© 2019 Cray Inc.

Random
Module
Improvements

© 2019 Cray Inc.

Background: Random sampling was not available in ‘Random’ module
This Effort: Implemented choice() method for sampling from a 1D array

• Supports weighted sampling (prob) with or without replacement (replace)
• Supports returning a single value, or an N-dimensional array (size)

use Random;
var stream = makeRandomStream(int);
var ret = stream.choice([1,2,3], prob=[0.1, 0.3, 0.6],

size={1..2, 1..2}, replace=true);
• Improved getNext() in order to support 'choice':

• Added 'getNext(resultType, min, max)' overload to PCG random stream
• Added bounds-checking to getNext() overloads with min/max arguments

Random Module: Background, This Effort

28

© 2019 Cray Inc.

Impact: Improved Random module

• Random sampling is now supported in the Random module

• Extended getNext() functionality and added bounds checking

Next Steps: Extend sampling functionality and provide distribution sampling

• Support sampling from an N-dimensional array

• Support sampling bigint, imaginary, and complex types

• Optimize implementation for sampling from local and distributed arrays

• Support distribution-sampling like Gaussian, Binomial, Poisson, etc.

Random Module: Impact, Next Steps

29

© 2019 Cray Inc.

LinearAlgebra
Module
Improvements

© 2019 Cray Inc.

Background: LinearAlgebra module provides linear algebra routines in Chapel
This Effort: Made some quality of life improvements to the module

• Added checks for distributed arrays which are not yet supported
• Renamed eigvals() to eigs() since it returns eigenvalues and eigenvectors

• Kept eigvals() for eigenvalues only
• Stopped transitively using BLAS and LAPACK with LinearAlgebra

• Prevents a potential collision with 'BLAS.dot()'
• Removed previously deprecated features

LinearAlgebra Module: Background, This Effort

31

© 2019 Cray Inc.

Status:
• LinearAlgebra module is improved

• Fewer confusing errors
• Easier to use

Next Steps:
• Continue to improve LinearAlgebra module

• Distributed support
• GPU support
• More linear algebra routines (native and BLAS/LAPACK)

LinearAlgebra Module: Status, Next Steps

32

© 2019 Cray Inc. 33

For More Information

For a more complete list of library and array
changes in the 1.19 release, refer to

'Standard Modules / Library', 'Package
Modules' and 'Standard Domain Maps'

sections in the CHANGES.md file.

https://github.com/chapel-lang/chapel/blob/release/1.19/CHANGES.md

© 2019 Cray Inc.

S A F E H A R B O R
S TAT E M E N T

This presentation may contain forward-looking
statements that are based on our current
expectations. Forward looking statements may
include statements about our financial
guidance and expected operating results, our
opportunities and future potential, our product
development and new product introduction
plans, our ability to expand and penetrate our
addressable markets and other statements
that are not historical facts.

These statements are only predictions and
actual results may materially vary from those
projected. Please refer to Cray's documents
filed with the SEC from time to time
concerning factors that could affect the
Company and these forward-looking
statements.

34

THANK YOU
Q U E S T I O N S ?

@ChapelLanguage

chapel-lang.org

chapel_info@cray.com

@cray_inc

linkedin.com/company/cray-inc-

cray.com

