
C O M P U T E | S T O R E | A N A L Y Z E

Benchmarks and Performance Optimizations

Chapel Team, Cray Inc.
Chapel version 1.18
September 20, 2018

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2018 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2018 Cray Inc.
3

● ugni Improvements
● ISx Background
● Block Transfer Engine (BTE)
● Active Message (AM) improvements

● Communication Optimizations
● locale.id Communication
● Barrier Optimizations

● Qthreads Improvements
● Sync Variable Serialization
● Parallel I/O Improvements
● Other Sync Variable Improvements

● Bale Case Study
● Histogram Mini-App

● Background
● Faster Blocking Atomics
● Buffered Atomics

● Memory Leak Improvements

C O M P U T E | S T O R E | A N A L Y Z E

ugni Improvements

Copyright 2018 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

ISx Background

Copyright 2018 Cray Inc.
5

C O M P U T E | S T O R E | A N A L Y Z E

ISx: Background

Copyright 2018 Cray Inc.
6

● Scalable Integer Sort benchmark
● Developed at Intel, published at PGAS 2015
● SPMD-style computation with barriers
● Punctuated by all-to-all bucket-exchange pattern

● buckets being exchanged are relatively large (100’s of MBs)
● References implemented in SHMEM and MPI

● Chapel implementation introduced in 1.13 release
● Motivation: bucket-exchange is a common distributed pattern
● Benchmark has led to several previous optimizations

● fast/scalable slicing, bulk transfer optimizations, barrier improvements, …

C O M P U T E | S T O R E | A N A L Y Z E

ISx: Background

Copyright 2018 Cray Inc.
7

● ISx performance still lagged behind reference SHMEM
● Chapel scaled well, but raw performance was up to ~30% behind

4

6

8

10

12

14

16

18

20

22

16 32 64 128 256

T
im
e
(s
ec
)

Locales (x 36 cores / locale)

ISx Time (seconds)

Chapel 1.17.1
Reference

fa
st

er

C O M P U T E | S T O R E | A N A L Y Z E

ugni: Block Transfer Engine (BTE)

Copyright 2018 Cray Inc.
8

C O M P U T E | S T O R E | A N A L Y Z E

BTE: Background and This Effort

Copyright 2018 Cray Inc.
9

Background: comm=ugni only used Fast Memory Access (FMA)
● FMA is optimized for small transfers
● uGNI library also supports Remote Direct Memory Access (RDMA)

● RDMA is initiated through the Block Transfer Engine (BTE)
● BTE is optimized for large transfers

This Effort: Use BTE for PUTs/GETs larger than 4KB
● This significantly increases sustained bandwidth for larger transfers
● 4KB threshold chosen based on tuning, and matches GASNet

C O M P U T E | S T O R E | A N A L Y Z E

BTE: Impact

Copyright 2018 Cray Inc.
10

● Significantly increased sustained transfer bandwidth
● Transfers larger than 1MB can sustain max hardware injection rate

● on par with gasnet-aries, which already used BTE for large transfers

C O M P U T E | S T O R E | A N A L Y Z E

BTE: ISx Impact

Copyright 2018 Cray Inc.
11

● ISx performance now on par with reference
● No known next steps

4

6

8

10

12

14

16

18

20

22

16 32 64 128 256

T
im
e
(s
ec
)

Locales (x 36 cores / locale)

ISx Time (seconds)

Chapel 1.17.1
Chapel 1.18.0
Reference

fa
st

er

C O M P U T E | S T O R E | A N A L Y Z E

ugni: Active Message (AM) Improvements

Copyright 2018 Cray Inc.
12

C O M P U T E | S T O R E | A N A L Y Z E

AM Improvements: Background

Copyright 2018 Cray Inc.
13

● FFT regressions in 1.17 from “AM done” indicator change
● AM done indicators are used to track whether an AM has completed
● Changed from stack-allocated to heap-allocated pool

● stack-allocated: cheap allocation, but requires memory registration lookup
● heap-allocated: contended allocation, but no registration lookup required

0

0.02

0.04

0.06

0.08

0.1

0.12

1.15 1.16 1.17

G
fo
p/
s

HPCC: FFT Perf (Gfop/s) n=220

gn-aries gn-mpi ugni

C O M P U T E | S T O R E | A N A L Y Z E

AM Improvements: This Effort and Impact

Copyright 2018 Cray Inc.
14

This Effort: Revert to stack-allocated AM done indicators
● Allocation contention outweighs registration lookup cost

Impact: FFT performance is better, though still behind 1.16
● Remaining hit is from switch to blocking progress thread in 1.17.1

● needed to mitigate performance hit from Spectre/Meltdown patches

C O M P U T E | S T O R E | A N A L Y Z E

Communication Optimizations

Copyright 2018 Cray Inc.
15

C O M P U T E | S T O R E | A N A L Y Z E

locale.id Communication

Copyright 2018 Cray Inc.
16

C O M P U T E | S T O R E | A N A L Y Z E

locale.id

Copyright 2018 Cray Inc.
17

Background: .id method on a locale returns the locale number
● Useful for data structures reasoning about locality

// Suppose A is block distributed and we want to aggregate updates to it.
for indexToUpdate in 1..1000 {
const dstLocale = A.domain.dist.idxToLocale(indexToUpdate);
addUpdate(dstLocale.id, indexToUpdate);

}

● However dstLocale.id was causing unnecessary communication

This Effort: Removed the unnecessary communication
● Fix suggested by Louis Jenkins

Impact: Surprising source of communication eliminated
● above example now has 0 GETs instead of thousands
● enables progress on prototype aggregation library

C O M P U T E | S T O R E | A N A L Y Z E

Barrier Optimizations

Copyright 2018 Cray Inc.
18

C O M P U T E | S T O R E | A N A L Y Z E

Barrier Optimizations

Copyright 2018 Cray Inc.
19

Background: Barrier implementation is not very scalable
● Scalable `allLocalesBarrier` added in 1.17

● but the more flexible and default barrier has not been tuned for scale

This Effort: Optimize barriers under network atomics
Impact: Performance improvements for network atomic barrier

Next Steps: Continue to tune default barrier

C O M P U T E | S T O R E | A N A L Y Z E

Qthreads Improvements

Copyright 2018 Cray Inc.
20

C O M P U T E | S T O R E | A N A L Y Z E

Qthreads: Sync Variable Serialization

Copyright 2018 Cray Inc.
21

C O M P U T E | S T O R E | A N A L Y Z E

Sync Var: Background

Copyright 2018 Cray Inc.
22

● Users ran into perf bottlenecks using sync vars as locks
● Example from “Parallel Sparse Tensor Decomposition in Chapel”

● Presented by Thomas Rolinger at CHIUW 2018

C O M P U T E | S T O R E | A N A L Y Z E

Sync Var: Background

Copyright 2018 Cray Inc.
23

● Made a simpler benchmark to investigate
● SPMD Stream triad that barriers

coforall tid in 0..#numTasks {
barrier.barrier();
for i in chunk(1..m, numTasks, tid) do
A[i] = B[i] + alpha * C[i];

}

● Discovered that sync-based barrier serialized execution

C O M P U T E | S T O R E | A N A L Y Z E

Sync Var: Background and This Effort

Copyright 2018 Cray Inc.
24

Background: Qthread syncs optimized for producer/consumer
● Unblocked sync vars scheduled tasks onto the current thread

● assumed producer would block, and consumer could reuse data in cache
● This is not ideal for sync vars used as locks/barriers

● serialized all tasks onto the same thread

This Effort: Reschedule woken task onto the original thread
● Avoids task serialization, but can hurt producer/consumer perf

● opened issue with Qthreads team, pursuing better options
● in the meantime our workaround is better overall for Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Sync Var: Impact

Copyright 2018 Cray Inc.
25

● Sync variables no longer serialize execution
● Sync-based barrier on par with atomic-based barrier for STREAM

● SPLATT performance with sync var locks is much better
Config Time
1.17.1 Sync Locks 19.1s
1.18.0 Sync Locks 5.6s

Atomic Locks 5.4s

C O M P U T E | S T O R E | A N A L Y Z E

Sync Var: Negative Impact

Copyright 2018 Cray Inc.
26

● Caused a performance regression for threadring
● Unfairly benefitted from previous serialization

● not a code we are deeply invested in

C O M P U T E | S T O R E | A N A L Y Z E

Qthreads: Parallel I/O Improvements

Copyright 2018 Cray Inc.
27

C O M P U T E | S T O R E | A N A L Y Z E

Parallel I/O: Background

Copyright 2018 Cray Inc.
28

● Saw serious performance degradation with parallel I/O
● Especially when 2 Chapel executables ran concurrently on a node

coforall t in 1..here.maxTaskPar {
for i in 1..100 do
writeln(t, ": " , i);

}
Starting first instance of ‘time –p ./io-slowdown'
0.12s
0.09s
0.30s
0.07s
Starting second concurrent instance of ‘time –p ./io-slowdown'
7.97s

7.97s
13.68s

13.68s

Output from 1st instance
Output from 2nd instance

C O M P U T E | S T O R E | A N A L Y Z E

Parallel I/O: This Effort and Impact

Copyright 2018 Cray Inc.
29

This Effort: Transitioned from spinlock to sync var lock
● Enabled by sync var serialization fixes

Impact: Improved parallel I/O performance
● Especially for concurrent runs

Starting first instance of ‘time –p ./io-slowdown'
0.07s (~0.12s previously)
0.07s
0.06s
0.03s
Starting second concurrent instance of ‘time –p ./io-slowdown'

0.27s (~10.0s previously)
0.28s

0.18s
0.18s
0.35s

C O M P U T E | S T O R E | A N A L Y Z E

Parallel I/O: Negative Impact

Copyright 2018 Cray Inc.
30

● Serial I/O performance suffered
● For uncontested access, an atomic lock is faster than a sync lock

● believe parallel I/O improvements outweigh these regressions
● advanced users can manually disable locking for serial I/O

C O M P U T E | S T O R E | A N A L Y Z E

Parallel I/O: Next Steps

Copyright 2018 Cray Inc.
31

● Transition to a hybrid lock
● Use an atomic for uncontested access, fall back to sync if contested

● Investigate compiler optimizations
● May be able to eliminate locking when access is provably serial

C O M P U T E | S T O R E | A N A L Y Z E

Qthreads: Other Sync Var Improvements

Copyright 2018 Cray Inc.
32

C O M P U T E | S T O R E | A N A L Y Z E

Sync Improvements: Background and Effort

Copyright 2018 Cray Inc.
33

Background: Qthreads has 2 sync variable implementations
● aligned_t – Full/Empty Bit state stored externally, 64 bits available

● chapel sync vars map to this type (since we need to store 64-bit types)
● syncvar_t – 3 bits to store Full/Empty Bit state, leaving 61 bits for data

● was used in runtime shim in a few places

This Effort: Change runtime shim uses of syncvar_t to aligned_t
● syncvar_t still has serialization issue (only fixed for aligned_t)
● aligned_t version is better tested (since Chapel types map to it)

C O M P U T E | S T O R E | A N A L Y Z E

Sync Improvements: Impact

Copyright 2018 Cray Inc.
34

● Performance improvements for several benchmarks

C O M P U T E | S T O R E | A N A L Y Z E

Bale Case Study

Copyright 2018 Cray Inc.
35

C O M P U T E | S T O R E | A N A L Y Z E

Bale: Background

Copyright 2018 Cray Inc.
36

● Bale is a collection of mini-applications in UPC/SHMEM
● Tests various communication idioms and patterns

● Histogram (stresses network atomics)
● Indexgather (stresses remote GETs)
● Toposort

● Bale also contains aggregated communication libraries
● Compares elegant/intuitive code vs. more complex aggregated code
● For our initial study, we focused on performance of elegant versions

● implemented versions of histogram, indexgather, and toposort
● started tuning performance of histogram first

C O M P U T E | S T O R E | A N A L Y Z E

Bale Histogram Background

Copyright 2018 Cray Inc.
37

C O M P U T E | S T O R E | A N A L Y Z E

Histogram: Background

Copyright 2018 Cray Inc.
38

● Histogram randomly updates an array of network atomics
● Idiom is similar to our atomic-based version of RandomAccess (RA)

for(i = 0; i < T; i++) {
counts[index[i]] += 1;

}

forall r in rindex {
A[r].add(1);

}

Default UPC Default Chapel

for(i = 0; i < T; i++) {
#pragma pgas defer_sync
counts[index[i]] += 1;

}
lgp_barrier();

Optimized UPC

C O M P U T E | S T O R E | A N A L Y Z E

Histogram: Background

Copyright 2018 Cray Inc.
39

● By default, network operations are “blocking”
● Have to wait for an acknowledgement (ACK) from remote locales
● Required by Memory Consistency Model (MCM)

● “sequential consistency for data-race-free programs”
var a: atomic int;
on Locales[1] {
a.add(1);
writeln(a.read()); // must print 1

}

● Blocking operations limit network injection rate
● Have to wait for round-trip network ACK

● instead of issuing multiple operations back-to-back

C O M P U T E | S T O R E | A N A L Y Z E

Histogram: Background

Copyright 2018 Cray Inc.
40

● Cray UPC/SHMEM can drop to more relaxed MCM modes
● “Use the ‘pgas defer_sync’ directive to force all references in the next

statement to be non-blocking”

for(i = 0; i < T; i++) {
counts[index[i]] += 1;

}

Default UPC

for(i = 0; i < T; i++) {
#pragma pgas defer_sync
counts[index[i]] += 1;

}
lgp_barrier();

Optimized UPC

0

50

100

150

200

250

300

350

400

Default Optimized

M
B

/s
 p

er
 N

od
e

Bale Histo UPC

C O M P U T E | S T O R E | A N A L Y Z E

Histogram: Background

Copyright 2018 Cray Inc.
41

● Chapel performance was ~15% behind default
● And ~5.5x off from the optimized variant

0

50

100

150

200

250

300

350

400

Default Optimized

M
B/

s
pe

r N
od

e
Bale Histo UPC vs Chapel 1.17.1

UPC Chapel 1.17.1

C O M P U T E | S T O R E | A N A L Y Z E

Faster Blocking Atomics

Copyright 2018 Cray Inc.
42

C O M P U T E | S T O R E | A N A L Y Z E

Faster Atomics: Background

Copyright 2018 Cray Inc.
43

● Used to yield continuously while waiting for remote ACK
● Yielding allows for comm/compute overlap
● Discovered that task-yield is more expensive than expected

● tasks often in middle of yield when ACK comes in

cdi = post_fma(locale, post_desc) // initiate transaction (post to NIC)

do {
chpl_task_yield(); // yield every iter

consume_all_outstanding_cq_events(cdi);
} while (!atomic_load_bool(&post_done)); // blocking wait for transaction to complete

C O M P U T E | S T O R E | A N A L Y Z E

Faster Atomics: This Effort

Copyright 2018 Cray Inc.
44

● Switch to yielding initially, then every 64 tries
● Still allows for comm/compute overlap when numTasks > numCores

● when not oversubscribed, can process ACK sooner
● Value chosen experimentally, 32 and 128 also worked well

● chose middle ground, longer-term solution is to optimize task-yields

cdi = post_fma(locale, post_desc) // initiate transaction (post to NIC)

do {
if ((iters & 0x3F) == 0) chpl_task_yield(); // yield initially, then 1/64 iters
iters++;
consume_all_outstanding_cq_events(cdi);

} while (!atomic_load_bool(&post_done)); // blocking wait for transaction to complete

C O M P U T E | S T O R E | A N A L Y Z E

Faster Atomics: Impact

Copyright 2018 Cray Inc.
45

● Improved blocking atomic performance
● Better performance for many-to-one atomic microbenchmark

C O M P U T E | S T O R E | A N A L Y Z E

Faster Atomics: Impact

Copyright 2018 Cray Inc.
46

● Improved blocking atomic performance
● Better performance for RA-atomics benchmark

0

0.5

1

1.5

2

2.5

3

16 32 64 128 256

G
U
PS

Locales (x 36 cores / locale)

RA Performance (GUPS)

Chapel 1.18.0
Chapel 1.17.1

Reference (bucketing)

be
tte

r

C O M P U T E | S T O R E | A N A L Y Z E

Faster Atomics: Histogram Impact

Copyright 2018 Cray Inc.
47

● Chapel performance on par with default UPC
● Still ~4.5x off from the optimized variant

0

50

100

150

200

250

300

350

400

Default Optimized

M
B/

s
pe

r N
od

e
Bale Histo UPC vs Chapel

UPC Chapel 1.17.1 Chapel 1.18.0

C O M P U T E | S T O R E | A N A L Y Z E

Buffered Atomics

Copyright 2018 Cray Inc.
48

C O M P U T E | S T O R E | A N A L Y Z E

Buffered Atomics: Background and Effort

Copyright 2018 Cray Inc.
49

Background: Chapel had no way to drop to more relaxed MCM
● Foundation/placeholder in the spec: “Unordered Memory Operations”

● but no implementation, source of optimized performance gap

This Effort: Added “buffered” atomics to express unordered ops
● Operations are not sequentially consistent, must be explicitly flushed
● Implemented in a package module:

● https://chapel-lang.org/docs/1.18/modules/packages/BufferedAtomics.html
● Allowed for fast prototype without language/spec changes

var a: atomic int;
a.addBuff(1);
writeln(a); // can print 0 or 1
flushAtomicBuff();
writeln(a); // must print 1

https://chapel-lang.org/docs/1.18/modules/packages/BufferedAtomics.html

C O M P U T E | S T O R E | A N A L Y Z E

Buffered Atomics: This Effort

Copyright 2018 Cray Inc.
50

● Wrote a buffered version of histogram:

● Under the hood: operations stored in thread-local buffers
● Buffers are flushed when full or on calls to ‘flushAtomicBuff()’
● We initiate transactions all at once with:

● ugni “chained” transactions for CLE 5.2UP04 and up (up to 5x perf gain)
● non-blocking transactions for older versions of CLE (up to 2.5x perf gain)

forall r in rindex {
A[r].add(1);

}

Default Chapel

forall r in rindex {
A[r].addBuff(1);

}
flushAtomicBuff();

Optimized Chapel

C O M P U T E | S T O R E | A N A L Y Z E

Buffered Atomics: Impact

Copyright 2018 Cray Inc.
51

● Better performance for codes that can use buffered ops
● ~1.5x improvement for many-to-one microbenchmark

C O M P U T E | S T O R E | A N A L Y Z E

Buffered Atomics: Impact

Copyright 2018 Cray Inc.
52

● Better performance for codes that can use buffered ops
● ~4.5x improvement for buffered RA-atomics benchmark

0

2

4

6

8

10

12

14

16 32 64 128 256

G
U
PS

Locales (x 36 cores / locale)

RA Performance (GUPS)

Chapel 1.18.0 (buffered)
Chapel 1.18.0

Reference (bucketing)

be
tte

r

C O M P U T E | S T O R E | A N A L Y Z E

Buffered Atomics: Histogram Impact

Copyright 2018 Cray Inc.
53

● Chapel performance on par with default UPC
● And for the optimized variant

0

50

100

150

200

250

300

350

400

Default Optimized

M
B/

s
pe

r N
od

e
Bale Histo UPC vs Chapel

UPC Chapel 1.17.1 Chapel 1.18.0

C O M P U T E | S T O R E | A N A L Y Z E

Bale Histogram Summary

Copyright 2018 Cray Inc.
54

C O M P U T E | S T O R E | A N A L Y Z E

Histogram: Summary

Copyright 2018 Cray Inc.
55

● In 1.17.1 blocking performance was ~15% behind UPC
● Optimized performance was ~5.5x off

0

50

100

150

200

250

300

350

400

Default Optimized

M
B/

s
pe

r N
od

e
Bale Histo UPC vs Chapel 1.17.1

UPC Chapel 1.17.1

C O M P U T E | S T O R E | A N A L Y Z E

Histogram: Summary

Copyright 2018 Cray Inc.
56

● In 1.18.0 performance is on par with UPC
● Result of optimizing blocking atomics and adding buffered atomics

0

50

100

150

200

250

300

350

400

Default Optimized

M
B/

s
pe

r N
od

e
Bale Histo UPC vs Chapel 1.18.0

UPC Chapel 1.18.0

C O M P U T E | S T O R E | A N A L Y Z E

Histogram: Next Steps

Copyright 2018 Cray Inc.
57

● Improve elegance of optimized histogram code
● `addBuff()` reveals too much about the implementation

● explicit flush is cumbersome
forall r in rindex do
A[r].addBuff(1);

flushAtomicBuff();

● Add a more general syntax for super-relaxed operations
● Current implementation only supports atomic operations
deferSync do forall r in rindex do // ‘deferSync’ as a proposed syntax
A[r].add(1);

● Add compiler optimization to automatically perform transformation
● Not always possible, but cases like this should be straightforward

C O M P U T E | S T O R E | A N A L Y Z E

Bale: Summary and Next Steps

Copyright 2018 Cray Inc.
58

Summary: Ported Bale mini-apps to Chapel
● Optimized histogram to match UPC performance

Next Steps:
● Optimize indexgather and toposort

● indexgather tuning is already underway
● Improve elegance

● need a cleaner way to express unordered operations
● Start investigating buffered/aggregated examples

● aggregation buffers updates to remote locales, permits bulk communication

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leak Improvements

Copyright 2018 Cray Inc.
59

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: Background + This Effort

Copyright 2018 Cray Inc.
60

Background:
● Historically, Chapel testing has leaked a large amount of memory
● Chapel 1.15 and 1.16 closed major sources of large-scale leaks
● Chapel 1.17 reduced leaked memory in testing by another 50%

This Effort:
● Closed several classes of leaks reported by nightly testing:

● leaks caused by using constructors rather than initializers
● minor leaks in several library modules:

● RegExp, DateTime, CPtr, List, FileSystem
● leaks in tests that were fixed when converting to managed class types

● Just after cutting the 1.18 branch, closed a leak in CS sparse domains
● (reflected in these notes, but not included in the release)

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks for Examples in Release

Copyright 2018 Cray Inc.
61

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks for Examples in Release

Copyright 2018 Cray Inc.
62

converted domain maps
to use initializers

closed leak in test by
converting to managed classes

closed leaks in RegExp libraryclosed leaks in RegExp library

reduced size of
leaked record

switched from compiler-generated
constructors to initializers

added new test involving
sparse domains

closed sparse domain leak

C O M P U T E | S T O R E | A N A L Y Z E

● Considering all tests, a similar story but noisier
● Spikes typically due to new tests with user-level leaks being added

Memory Leaks for All Tests

Copyright 2018 Cray Inc.
63

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: Remaining Leaks (as of 1.17)

Copyright 2018 Cray Inc.
64

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: Remaining Leaks (as of 1.18)

Copyright 2018 Cray Inc.
65

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: Remaining Leaks (as of Sept 19)

Copyright 2018 Cray Inc.
66

only 264 / 9137 tests still leaking

~1/3 of memory leaked by
three tests using distributed

sparse block arrays

~3/4 of leaking tests
leak < 256 bytes

~45% of leaking tests
leak < 64 bytes

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: Status

Copyright 2018 Cray Inc.
67

Status:
● From 1.17–1.18, leaks reduced by 25% in testing (w/ ~750 new tests)

● leaks reduced by 60% compared to 1.17 with sparse domain fix
● Primary known cases of remaining leaks:

● certain distributed sparse block cases
● compiler-generated iterator classes in certain cases
● aspects of global arrays of arrays
● certain domain map meta-data
● certain first-class-functions
● user-level leaks in tests themselves

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: Next Steps

Copyright 2018 Cray Inc.
68

Next Steps:
● Continue working through remaining leaks as a background task
● Once no leaks remain, make addition of new leaks a failure mode

April 2018 memory leaks

Sept 2018 memory leaks

C O M P U T E | S T O R E | A N A L Y Z E

For More Information

For additional optimization and benchmark
changes in the 1.18 release, refer to the
‘Performance Optimizations’, ‘Cray-specific
Performance Optimizations’, ‘Memory
Improvements’, and ‘Example Codes’ sections
in the CHANGES.md file.

Copyright 2018 Cray Inc.
69

https://github.com/chapel-lang/chapel/blob/release/1.18/CHANGES.md

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2018 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

70

