
C O M P U T E | S T O R E | A N A L Y Z E

Compiler / Tools

Chapel Team, Cray Inc.
Chapel version 1.18
September 20, 2018

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2018 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2018 Cray Inc.
3

● Mason Improvements
● LLVM Back-end Improvements
● Tab Completion Improvements
● Error Message Improvements

C O M P U T E | S T O R E | A N A L Y Z E

Mason Improvements

Copyright 2018 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

Mason Improvements: Background

Copyright 2018 Cray Inc.
5

● Mason originally added in Chapel 1.16.0
● Command line tool for package management and building
● Considered under development

● No breaking changes made to date, but reserving that right until version 1.0

● Package metadata centralized in registries
● Official registry located on Github: chapel-lang/mason-registry
● Users can create their own internal or public registries

● Package source code decentralized across git repositories
● Supports any valid git address

● Github, Gitlab, local git repositories, etc.

● Has supported Chapel packages only
● This prevented many user packages from being mason packages

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort

Copyright 2018 Cray Inc.
6

Improved general usability of mason●
Added “● --no-update” flag for better offline support
Added “mason {add, ● rm} <package>” for managing dependencies
Added support for package tests and examples●
Improved documentation●

Added build● -on-last-modified behavior
Eliminates unnecessary rebuilds●

Added support for non● -Chapel packages in mason
Supports ● Spack packages (mason external)
Supports system packages (mason system)●

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – Improved Usability

Copyright 2018 Cray Inc.
7

● Added ‘mason {add, rm}’ for dependency management
● Allows managing dependencies without editing manifest file

mason add MatrixMarket@0.1.0
mason add --external hdf5@1.10.1 # Spack package
mason rm MatrixMarket

● Improved offline support
● --no-update flag added to skip registry update, which requires internet
● Many mason commands invoke a registry update by default

● this would cause connection warnings for offline users
● For example:

mason build --no-update

● Improved documentation
● Created a “Basic Usage” section

● walks through how to use mason
● includes copy/paste-friendly examples

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – Improved Usability

Copyright 2018 Cray Inc.
8

Added ‘mason test’●
Tests can be added to ‘<package>/test/’●
‘mason test’ will compile and run all tests, reporting pass/fail results●

any top● -level Chapel program in ‘test/’ assumed to be a test program
pass/fail is determined by an exit code (non● -zero means fail)
test output can be piped to ● stdout with flag: ‘mason test --show’

For example:●

$ mason test
--- Results ---
Test: myPackageTest Passed

--- Summary: 1 tests run ---
-----> 1 Passed
-----> 0 Failed

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – Improved Usability

Copyright 2018 Cray Inc.
9

● Added support for package examples
● Examples can be added to ‘<package>/example/’
● ‘mason build --example <filename>’ will compile an example

● Omitting the filename will build all examples
● ‘mason run –example <filename>’ will run an example

● Omitting the filename will list all available examples to run
● Examples can be specified in the manifest file

● compiler and execution options can also be specified
● if omitted from manifest, examples will be found automatically in ‘example/’

[examples]
examples = ["myPackageExample.chpl"]

[examples.myPackageExample]
execopts = ["--count=20"]
compopts = ["--savec tmp"]

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – Build on Last Modified

Copyright 2018 Cray Inc.
10

Mason skips compilation when project “not modified”●
Similar to ‘make’ behavior when build dependencies are unchanged●

Project considered “not modified” when:●
Target binary already exists●
Lock file already exists●
Source files have not been modified since binary last built●

this includes dependency code as well●
Manifest file has not been modified since binary last built●

this accounts for modified dependencies, versions, compilation flags, etc.●
Force flag is not thrown, ‘● --force’

this flag was added to override this feature●

User notified when skipping build:●
$ mason build
Updating mason-registry
Skipping Build... No changes to project

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – Spack Integration

Copyright 2018 Cray Inc.
11

● Spack is a system package manager
● Developed with HPC users in mind
● Developed by LLNL
● Spack has ~3000 packages in its registry
● Supports multiple configurations, platforms, and compilers

● Mason uses Spack to manage non-Chapel dependencies

● Relying on a single package manager has tradeoffs:
● Using only Spack means Mason’s success is tied to Spack’s success
● Using only Spack enables version resolution for external packages

● Mason offloads version resolution of external packages onto Spack

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – Spack Integration

Copyright 2018 Cray Inc.
12

Accessed through ‘mason external’ command●
Users are required to install ● Spack backend to use this feature:

$ mason external install openssl@1.0.2k
To use `mason external` call `mason external --setup`
$ mason external --setup

Spack● is installed within $MASON_HOME

Provides subcommands, which call down to ● Spack:
‘mason external search <search● -string>’

searches packages on ● Spack registry

‘mason external info <package>’●
shows information about external package●

‘mason external compiler’●
lists available compilers on system●

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – Spack Integration

Copyright 2018 Cray Inc.
13

● External packages require explicit installation
● This behavior differs from how mason packages are installed

● external packages tend to have a long installation time
● we decided that this should be explicitly opted into to avoid surprise

● Subcommands available for installing/uninstalling:
● ‘mason external install <spack spec expression>’
● ‘mason external uninstall <package>’

● “Spack spec expressions” allow specifying constraints
● For example: ‘<package>@<version>%<compiler>’
● Compiler defaults to ‘CHPL_TARGET_COMPILER’ if unspecified
● Spec expression documentation shown with ‘mason external --spec’

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – Spack Integration

Copyright 2018 Cray Inc.
14

Manifest files distinguish external packages in [external]●

[brick] name = "myPackage"
version = "0.1.0"
chplVersion = "1.18.0"

[external]
openSSL = "1.0.2k”

External packages can be managed with ‘mason add/● rm’

$ mason add --external openSSL@1.0.2k
Adding external dependency with spec openssl@1.0.2k
$ mason rm openSSL

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – System Packages

Copyright 2018 Cray Inc.
15

● Mason uses pkg-config to access packages on system
● Feature intended for prototyping purposes

● only available for top-level packages
● allows quick and easy access to the libraries available on the system
● cannot publish packages with system dependencies

● Pkg-config provides compiler flags for linking to the provided library

● Accessed through “mason system” command
● Provides subcommands, which call down to pkg-config:

● ‘mason system search <search-string>’
● searches packages installed on system

● ‘mason system pc <package>’
● prints pkg-config file of package

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort – System Packages

Copyright 2018 Cray Inc.
16

Manifest files distinguish system packages in [system]●
For example:●

[brick] name = "myPackage"
version = "0.1.0"
chplVersion = "1.18.0"

[system]
openSSL = "0.9.8zh”

System packages can be added/removed with mason add/● rm:
$ mason add --system openSSL@0.9.8zh
Adding system dependency openSSL version 0.9.8zh
$ mason rm openSSL

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Impact & Status

Copyright 2018 Cray Inc.
17

● Mason is becoming more mature and feature-rich

● Many Chapel repositories on Github can now be packaged
● Supporting non-Chapel dependencies was a prerequisite for many

● Mason is still considered under development
● Still gathering feedback on features before locking down 1.0

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Next Steps

Copyright 2018 Cray Inc.
18

Implement essential package manager features●
Support licensing●
Support signed packages (GPG)●
Support a more secure way to pin package versions●
Support packages as applications●
Improve process for publishing packages●

Continue to improve offline support●
Support environment variable for “offline mode”●

Handle package collisions better●
Current namespace rules will cause many package incompatibilities●

Cache packages on a server●
Ensures availability of packages in the registry●

More next steps tracked in ● #7106

https://github.com/chapel-lang/chapel/issues/7106

C O M P U T E | S T O R E | A N A L Y Z E

LLVM Back-end Improvements

Copyright 2018 Cray Inc.
19

C O M P U T E | S T O R E | A N A L Y Z E

LLVM: Background

Copyright 2018 Cray Inc.
20

● LLVM is a compiler optimization framework
● actively developed and constantly improving

● The Chapel compiler generates C code by default
● runs a C compiler to compile the generated code
● but can generate LLVM Intermediate Representation instead

● We want the Chapel compiler to use LLVM by default
● to reduce maintenance vs. depending on many C compilers
● to improve optimization and enable communication optimization

C O M P U T E | S T O R E | A N A L Y Z E

Chapel compilation flow

Copyright 2018 Cray Inc.
21

b.chpl

a.chpl a.c

b.c

Executable

... ...

Chapel
runtime
(.h, .a)

chpl CC

C O M P U T E | S T O R E | A N A L Y Z E

Chapel --llvm compilation flow

Copyright 2018 Cray Inc.
22

b.chpl

a.chpl LLVM
module

Executable

...

linker

runtime .h
extern { }

clang

runtime .a

LLVM
Optschpl

C O M P U T E | S T O R E | A N A L Y Z E

LLVM: This Effort

Copyright 2018 Cray Inc.
23

● Broadened LLVM support for assorted use cases
● improved ARM support
● made LLVM work with dynamic linking on Cray XC systems
● updated llvm.invariant.start emission for records using initializers
● enabled ‘chpl’ to build with LLVM 7 pre-release

C O M P U T E | S T O R E | A N A L Y Z E

LLVM: Next Steps

Copyright 2018 Cray Inc.
24

● Improve ABI compatibility for non-x86 architectures
● particularly ARM

● Integrate Chapel alias analysis metadata with that for C
● improves optimization opportunities with imported/exported functions

● Allow --llvm to link user programs statically
● Improve performance for code generated with --llvm
● Make --llvm the default

C O M P U T E | S T O R E | A N A L Y Z E

Tab Completion Improvements for Chapel Options

Copyright 2018 Cray Inc.
25

C O M P U T E | S T O R E | A N A L Y Z E

Tab Completion Improvements

Copyright 2018 Cray Inc.
26

Background: Tab completion of 'chpl' options was added in 1.17
● Tab completion searched against all compiler options

…including developer options
● Tab completion completed paths looking for .chpl files

…but mishandled paths that included the home directory marker '~'
% chpl ~/test.ch<tab> % chpl \~/test.chpl

This Effort: Fix the issues listed above
● Only complete non-developer options unless developer mode is on

● Paths including '~' complete successfully
% chpl ~/test.ch<tab> % chpl ~/test.chpl

% chpl –-g<tab>
--gasnet-segment --gmp

% chpl --devel –-g<tab>
--gasnet-segment --gdb --gen-ids --gmp

C O M P U T E | S T O R E | A N A L Y Z E

Error Message Improvements

Copyright 2018 Cray Inc.
27

C O M P U T E | S T O R E | A N A L Y Z E

Error Messages: Background + This Effort

Copyright 2018 Cray Inc.
28

Background:
● The Chapel compiler’s error messages have often been lacking

● confusing, not written with end-users in mind, internal errors, …
● we’ve been focused more on supporting correct code than incorrect
● however, as we work to attract new users, this becomes a bigger problem

This Effort:
● Striving to improve error message problems for reported cases

C O M P U T E | S T O R E | A N A L Y Z E

Error Message Improvements

Copyright 2018 Cray Inc.
29

● Applying '.type' to a type is consistently an error

● Bad accesses to type-tuples result in compile-time errors

writeln(uint.type: string);

uintType.chpl:1: error: can't apply '.type' to a type (uint(64))

type t = (int, real);

writeln(t(3): string);
writeln(t(2, 1): string);

t.chpl:3: error: type index expression '3' out of bounds
t.chpl:4: error: too many arguments to type index expression

C O M P U T E | S T O R E | A N A L Y Z E

Error Message Improvements (continued)

Copyright 2018 Cray Inc.
30

● Recursive records result in compile-time errors

● And many others…

record R {
var x : R;

}
var r = new R();

r.chpl:2: error: record 'R' cannot contain a recursive field 'x' of type 'R'

C O M P U T E | S T O R E | A N A L Y Z E

For More Information

For a more complete list of compiler and tool
changes in the 1.18 release, refer to the ‘New
Tools / Tool Changes’, ‘Compiler Flags’, ‘Error
Messages’, and ‘Bug Fixes’ sections in the
CHANGES.md file.

Copyright 2018 Cray Inc.
31

https://github.com/chapel-lang/chapel/blob/release/1.18/CHANGES.md

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2018 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

32

