
C O M P U T E | S T O R E | A N A L Y Z E

Benchmarks and Performance Optimizations

Chapel Team, Cray Inc.
Chapel version 1.17

April 5, 2018

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2018 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2018 Cray Inc.
3

● Ugni Improvements
● Extend and Register the Heap Dynamically
● Nonblocking Active Message Responses
● Comm Domain Limit
● Avoid ‘Bus Error’ Messages
● Scalability Improvements

● ISx Improvements
● Scalable Barrier
● Park the Main Process
● Reduce Progress Thread Interference

● Meltown and Spectre Impact
● Reductions in Memory Leaks
● Other Performance Optimizations

C O M P U T E | S T O R E | A N A L Y Z E

Ugni Improvements

Copyright 2018 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

Extend and Register the Heap Dynamically

Copyright 2018 Cray Inc.
5

C O M P U T E | S T O R E | A N A L Y Z E

Dynamic Heap: Background and Effort

Copyright 2018 Cray Inc.
6

Background: NIC-registered heap had unfortunate limitations
● Performance

● Poor NUMA memory affinity, because registration pins to NUMA node 0
● Up-front heap creation and registration increased program startup cost

● Ease of use
● Fixed-size heap cannot be extended if not large enough
● Pushed default to err toward too-large
● If default nevertheless too small, computing a better size was impractical

This Effort: Extend and register heap dynamically
● Reuses infrastructure added in 1.16 for dynamic registration of arrays

C O M P U T E | S T O R E | A N A L Y Z E

Dynamic Heap: Positive Impact

Copyright 2018 Cray Inc.
7

● Faster startup

● Better non-array NUMA affinity (don’t have a specific test)
● Improved usability: no need to estimate max heap size

C O M P U T E | S T O R E | A N A L Y Z E

Dynamic Heap: Negative Impact

Copyright 2018 Cray Inc.
8

● Two performance regressions, not yet understood

C O M P U T E | S T O R E | A N A L Y Z E

Dynamic Heap: Next Steps

Copyright 2018 Cray Inc.
9

● Look into FFT and HPL performance regressions

● Could/should we do this in other configs with registration?
● Explore options for gasnet-aries

C O M P U T E | S T O R E | A N A L Y Z E

Nonblocking Active Message Responses

Copyright 2018 Cray Inc.
10

C O M P U T E | S T O R E | A N A L Y Z E

AM Responses: Background

Copyright 2018 Cray Inc.
11

● Active Message handlers slowed by response overhead
● Waited for network to acknowledge completion responses
● Added 1-2 microseconds (i.e., 1 network round trip) per AM

handle
request

handle

request

handle

request

time

originators AM handlernetwork

AM request:
originator PUT,
network ACK

AM response:
handler PUT,
network ACK

C O M P U T E | S T O R E | A N A L Y Z E

AM Responses: This Effort

Copyright 2018 Cray Inc.
12

● Use nonblocking PUTs for AM responses
● Begin handling next request as soon as previous response is sent
● Don’t wait for response ACKs, just consume them as they arrive

handle
request

handle
request

handle
request

time

originators AM handlernetwork

AM request:
originator PUT,
network ACK

AM response:
handler PUT,
network ACK

C O M P U T E | S T O R E | A N A L Y Z E

AM Responses: Impact

Copyright 2018 Cray Inc.
13

● Performance improvements for AM heavy benchmarks

C O M P U T E | S T O R E | A N A L Y Z E

Comm Domain Limit

Copyright 2018 Cray Inc.
14

C O M P U T E | S T O R E | A N A L Y Z E

Comm Domain Limit

Copyright 2018 Cray Inc.
15

Background: Limited to at most 30 GNI comm domains on XC
● Legacy code from Gemini; Aries hardware limit is 128

This Effort: Raise limit on XC to 120 comm domains
● Can now make effective use of more than 30 cores

Impact:

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

before after

G
U

PS

ra-atomics with XC-16 perf settings
on 36-core compute nodes

C O M P U T E | S T O R E | A N A L Y Z E

Avoid ‘Bus Error’ Messages

Copyright 2018 Cray Inc.
16

C O M P U T E | S T O R E | A N A L Y Z E

Avoid ‘Bus Error’ Messages

Copyright 2018 Cray Inc.
17

Background: Running out of memory caused ‘Bus Error’ halt
● Result of SIGBUS signal if page allocation failed when first touched
● Side effect of allocation technique that improved NUMA locality

This Effort: Emit usual “out of memory” message instead
● Only for SIGBUS due to touching new memory, not others

Impact: Improved ease-of-use
● Removes an awkward special case and associated documentation

C O M P U T E | S T O R E | A N A L Y Z E

Scalability Improvements

Copyright 2018 Cray Inc.
18

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: Background

Copyright 2018 Cray Inc.
19

● 1.16 had significant performance improvements
● But there were a few ugni performance mysteries

● Stream Global scalability was worse than Stream EP

0

5000

10000

15000

20000

25000

30000

16 32 64 128 256

G
B/
s

Locales

Performance of STREAM

ref 1.15 EP 1.15 Global 1.16 EP 1.16 Global

be
tte

r

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: Background

Copyright 2018 Cray Inc.
20

● 1.16 had significant performance improvements
● But there were a few ugni performance mysteries

● PRK Stencil scalability lagged behind reference (but gn-mpi on par with ref)

0

2000

4000

6000

8000

10000

12000

16 32 64 128 256

G
Fl
op
s/
s

Locales

Performance of Stencil PRK

ref 1.15 1.16

be
tte

r

C O M P U T E | S T O R E | A N A L Y Z E

● Remote task spawning included in Global Stream timers
● EP spawns to all locales before starting timers

● Remote task spawning included in PRK Stencil as well

Scalability: Background

Copyright 2018 Cray Inc.
21

coforall loc in Locales do on loc {
var A, B, C: [1..m] elemType;
initVectors(B, C);

startTimer();

forall (a, b, c) in zip(A, B, C) do
a = b + alpha * c;

stopTimer();
}

const ProblemSpace = {1..m} dmapped …;
var A, B, C: [ProblemSpace] elemType;
initVectors(B, C);

startTimer();

forall (a, b, c) in zip(A, B, C) do
a = b + alpha * c;

stopTimer();

Stream EP Global Stream

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: Background

Copyright 2018 Cray Inc.
22

● Remote coforalls are transformed by the compiler, from:
coforall loc in Locales do on loc { body(); }

roughly into:
var endCount: atomic int;

endCount.add(Locales.size);
for loc in Locales {

executeOnNB(loc, bodyWrapper, endCount);

}
endCount.waitFor(0);

proc bodyWrapper(endCount) { body(); endCount.sub(1); }

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: Background

Copyright 2018 Cray Inc.
23

● Remote coforalls are transformed by the compiler, from:
coforall loc in Locales do on loc { body(); }

roughly into:
var endCount: atomic int;

endCount.add(Locales.size);
for loc in Locales {

// inlining the call to executeOnNB(loc, bodyWrapper, endCount):
chpl_comm_initiate_remote_fork(loc, ACK, …);
while(!received(ACK)) {

chpl_task_yield(); // problem – yielded before all remote tasks started
}

}
endCount.waitFor(0);

proc bodyWrapper(endCount) { body(); endCount.sub(1); }

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: This Effort

Copyright 2018 Cray Inc.
24

● Avoid yielding when doing NB remote forks under ugni
coforall loc in Locales do on loc { body(); }

now roughly transformed into:
var endCount: atomic int;

endCount.add(Locales.size);
for loc in Locales {

chpl_comm_initiate_remote_fork(loc, ACK, …);
while(!received(ACK)) {} // network round trip wait before next iteration

}
endCount.waitFor(0);

proc bodyWrapper(endCount) { body(); endCount.sub(1); }

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: Impact

Copyright 2018 Cray Inc.
25

● Significantly improved scalability under ugni
● Stream Global scaling close to Stream EP up to 256 nodes

0

5000

10000

15000

20000

25000

30000

16 32 64 128 256

G
B/
s

Locales

Performance of STREAM

ref 1.16 EP 1.16 Global 1.17.1 EP 1.17.1 Global

be
tte

r

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: Impact

Copyright 2018 Cray Inc.
26

● Significantly improved scalability under ugni
● PRK Stencil performance is on par with reference up to 256 nodes

0

2000

4000

6000

8000

10000

12000

16 32 64 128 256

G
Fl
op
s/
s

Locales

Performance of Stencil PRK

ref 1.16 1.17.1

be
tte

r

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: Next Steps

Copyright 2018 Cray Inc.
27

● Scalability is good for up to 256 locales
● At higher scales (1024 shown below), scalability starts to suffer

0

10000

20000

30000

40000

50000

60000

70000

80000

16 64 128 256 512 1024

G
B/
s

Locales

Performance of STREAM

1.17.1 EP 1.17.1 Global

be
tte

r

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: Next Steps

Copyright 2018 Cray Inc.
28

● Same interface is used to create 1 task or 1 million tasks
● Great for code reuse, but has scalability bottlenecks

● task spawning is serialized

endCount.add(Locales.size);
for loc in Locales {

chpl_comm_initiate_remote_fork(loc, ACK, …);
while(!received(ACK)) {} // network round trip wait before next iteration

}
endCount.waitFor(0);

● Introduce a bulk spawning interface
● Amenable to many optimizations

● Initiate multiple tasks at once, instead of one at a time
● Use an “end count” mechanism optimized for the network
● Do tree-based spawning instead of a 1-to-all spawning

C O M P U T E | S T O R E | A N A L Y Z E

ISx Improvements

Copyright 2018 Cray Inc.
29

C O M P U T E | S T O R E | A N A L Y Z E

ISx: Background

Copyright 2018 Cray Inc.
30

● Scalable Integer Sort benchmark
● Developed at Intel, published at PGAS 2015
● SPMD-style computation with barriers
● Punctuated by all-to-all bucket-exchange pattern
● References implemented in SHMEM and MPI

● Chapel implementation introduced in 1.13 release
● Motivation: bucket-exchange is a common distributed pattern

C O M P U T E | S T O R E | A N A L Y Z E

Scalable Barrier

Copyright 2018 Cray Inc.
31

C O M P U T E | S T O R E | A N A L Y Z E

Scalable Barrier: Background

Copyright 2018 Cray Inc.
32

● Previously reported ISx scalability on par with reference
● Believed we were mostly done looking at ISx

4

5

6

7

8

9

10

11

12

13

2 4 8 16 32 64

T
im
e
(s
ec
)

Locales

Optimized ISx Timings

ref 1.16

fa
st

er

C O M P U T E | S T O R E | A N A L Y Z E

Scalable Barrier: Background

Copyright 2018 Cray Inc.
33

● Unfortunately we discovered some issues
● Found a bug in our port that reported min, rather than avg, timings
● At larger scales performance drops drastically
● A bug fix for dynamic registration further hurt performance

5

10

15

20

25

30

35

40

16 32 64 128 256

T
im
e
(s
ec
)

Locales

Corrected Optimized ISx Timings

ref 1.16

fa
st

er

C O M P U T E | S T O R E | A N A L Y Z E

Scalable Barrier: Background

Copyright 2018 Cray Inc.
34

● Identified barrier implementation as scalability limiter
● Barrier used a single atomic variable on one locale

● all remote locales did active messages back to that locale
● 36-cores on 256 locales results in ~10,000 tasks on barrier locale

● huge bottleneck, and default size task-stacks led to OOMs

C O M P U T E | S T O R E | A N A L Y Z E

Scalable Barrier: This Effort

Copyright 2018 Cray Inc.
35

● Added a scalable allLocalesBarrier
● A singleton global barrier that must be called from all locales

● optionally, with multiple tasks on each locale
● Similar to shmem_barrier_all() or MPI_Barrier(MPI_COMM_WORLD)

use AllLocalesBarriers;

coforall loc in Locales do on loc {
allLocalesBarrier.barrier();

writeln("After barrier");
}

allLocalesBarrier.reset(4);
coforall loc in Locales do on loc do

coforall tid in 1..4 do
allLocalesBarrier.barrier();

C O M P U T E | S T O R E | A N A L Y Z E

Scalable Barrier: Impact

Copyright 2018 Cray Inc.
36

● allLocalesBarrier offers significantly better scalability
● Over 2,000 times faster at 256 locales (and scaling better)
● No on-stmts, so no single-node bottleneck or massive task creation

0

10

20

30

40

50

60

70

16 64 256

T
im
e
(s
ec
)

Locales

Barrier Timings (1,000 Trials)

local barrier comm barrier

fa
st

er

C O M P U T E | S T O R E | A N A L Y Z E

Scalable Barrier: Impact

Copyright 2018 Cray Inc.
37

● allLocalesBarrier offers significantly better scalability
● Over 2,000 times faster at 256 locales (and scaling better)
● No on-stmts, so no single-node bottleneck or massive task creation

0

5

10

15

20

25

30

35

16 64 256

T
im
e
(s
ec
)

Locales

Barrier Timings (1,000,000 Trials)

comm barrier

fa
st

er

C O M P U T E | S T O R E | A N A L Y Z E

Scalable Barrier: Impact

Copyright 2018 Cray Inc.
38

● Significantly improved scalability of ISx
● Raw performance still behind reference, but scaling well
● No longer any on-stmts in ISx

5

10

15

20

25

30

35

40

16 32 64 128 256

T
im
e
(s
ec
)

Locales

Optimized ISx Timings

ref 1.16 1.17.1

fa
st

er

C O M P U T E | S T O R E | A N A L Y Z E

Scalable Barrier: Next Steps

Copyright 2018 Cray Inc.
39

● allLocalesBarrier has some limitations
● All locales must participate
● A singleton barrier, only one instance exists

● Add more usable barrier implementations
● Ability to barrier between a subset or team of locales
● Ability to create multiple barriers

● e.g.
var teamABarrier = new LocalesBarrier(Locales[0..5]);
var teamBBarrier = new LocalesBarrier(Locales[6..10]);
var allLocBarrier = new LocalesBarrier(Locales);

C O M P U T E | S T O R E | A N A L Y Z E

Park the Main Process

Copyright 2018 Cray Inc.
40

C O M P U T E | S T O R E | A N A L Y Z E

Main Process: Background and Effort

Copyright 2018 Cray Inc.
41

Background: allLocalesBarrier hooks into chpl_comm_barrier()
● Optimized for the network and comm layer

● tree-based put barrier under ugni, dissemination barrier under gasnet-aries
● chpl_comm_barrier() was previously tied up by runtime

● Main process on non-0 locales waited for locale 0 to shutdown

This Effort: Park the main process on a condition variable
● Signaled during shutdown by an active message from locale 0
● Frees up chpl_comm_barrier() for use in user-code

C O M P U T E | S T O R E | A N A L Y Z E

Main Process: Impact

Copyright 2018 Cray Inc.
42

● Parking main process improved gasnet-aries performance

C O M P U T E | S T O R E | A N A L Y Z E

Reduce Progress Thread Interference

Copyright 2018 Cray Inc.
43

C O M P U T E | S T O R E | A N A L Y Z E

Progress Thread Interference: Background

Copyright 2018 Cray Inc.
44

● For multi-locale programs we start a “progress thread”
● Separate pthread that processes active messages (on-stmts)
● Actively checked for messages, yielding if none found

while (run_progress_thread) {
if (new_am()) process_am();
else sched_yield();

}

● Even with no on-stmts, progress thread interfered
● Context switch between progress thread and thread hosting chpl tasks
● Resulted in wide variations for tasks doing identical operations:

input-step: 0.91 avg (0.81 min .. 1.28 max)

C O M P U T E | S T O R E | A N A L Y Z E

Progress Thread Interference: This Effort

Copyright 2018 Cray Inc.
45

● Added an experimental blocking progress thread
● ugni only, enabled with CHPL_RT_COMM_UGNI_BLOCKING_CQ=y

while (run_progress_thread) {
am = block_for_am(); // kernel mediated, blocking call
process_am(am);

}

● Enabled for ISx, but not by default for 1.17
● Improves ISx and benchmarks with few active messages
● But slightly increase latency of active messages

● mostly impacts microbenchmarks, but wanted more time to investigate

● Enabled by default for 1.17.1
● See Spectre/Meltdown slides for more information

C O M P U T E | S T O R E | A N A L Y Z E

Progress Thread Interference: Impact

Copyright 2018 Cray Inc.
46

● Reduced variability for ISx steps

input-step: 0.91 avg (0.81 min .. 1.28 max)

input-step: 0.89 avg (0.81 min .. 0.95 max)

● Remaining variability due to dynamic array registration
● Kernel fault-in times for large allocations tend to vary

C O M P U T E | S T O R E | A N A L Y Z E

ISx: Summary

Copyright 2018 Cray Inc.
47

● ISx scalability on par with reference
● (raw performance is still ~25% behind, but scaling well)

4

6

8

10

12

14

16

18

20

22

16 32 64 128 256

T
im
e
(s
ec
)

Locales

Optimized ISx Timings

ref 1.17.1

fa
st

er

C O M P U T E | S T O R E | A N A L Y Z E

ISx: Next Steps

Copyright 2018 Cray Inc.
48

● Continue to improve ISx performance
● Avoid dynamic registration for arrays

● new dynamic heap extension can amortize cost of allocation/registration
● dynamic array registration helps with parallel first-touch
● but ISx runs in an SPMD manner, arrays initialized serially

● Eliminate any extra communication compared to reference
● Investigate using RDMA (BTE) for large puts/gets

● currently only use FMA, but BTE should be better for large transfers

C O M P U T E | S T O R E | A N A L Y Z E

Meltdown and Spectre Impact

Copyright 2018 Cray Inc.
49

C O M P U T E | S T O R E | A N A L Y Z E

Meltdown and Spectre: Background

Copyright 2018 Cray Inc.
50

● Meltdown and Spectre exploit security vulnerabilities
● Patches to mitigate exploits were expected to hurt performance
● We had hoped that the impact on HPC/Chapel would be limited

● overhead expected to be for I/O, system calls, etc. -- not HPC kernels

C O M P U T E | S T O R E | A N A L Y Z E

Meltdown and Spectre: Background

Copyright 2018 Cray Inc.
51

● Unfortunately patches hurt multi-locale performance
● In some cases, performance regressions were significant

● ~10% hit for stream-global, ~30% hit for ra-rmo
● surprising, since stream is just memory bandwidth, RA just NIC operations

● Discovered overhead is from progress thread interference
● Patches increased cost of context switches
● Task running on core shared with progress thread slowed down

C O M P U T E | S T O R E | A N A L Y Z E

Meltdown and Spectre: This Effort

Copyright 2018 Cray Inc.
52

● Reduce interference from the progress thread
● Fortunately, ISx investigation had us looking at this recently
● Previously added an option to use a blocking progress thread

● Now we just enable that functionality by default
● Not resolved in time for 1.17 release, but is included in 1.17.1

C O M P U T E | S T O R E | A N A L Y Z E

Meltdown and Spectre: Impact

Copyright 2018 Cray Inc.
53

● Restored performance to pre-patch levels
● In some cases performance is better than before

C O M P U T E | S T O R E | A N A L Y Z E

Meltdown and Spectre: Impact

Copyright 2018 Cray Inc.
54

● Caused some performance regressions
● Using a blocking progress thread slightly increases on-stmt latency

C O M P U T E | S T O R E | A N A L Y Z E

Meltdown and Spectre: Next Steps

Copyright 2018 Cray Inc.
55

● Reduce progress thread interference for GASNet
● Will need to work with the GASNet team on a strategy

C O M P U T E | S T O R E | A N A L Y Z E

Reductions in Memory Leaks

Copyright 2018 Cray Inc.
56

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks

Copyright 2018 Cray Inc.
57

Background:
● Historically, Chapel testing has leaked a large amount of memory
● Chapel 1.15 and 1.16 closed major sources of large-scale leaks
● Remaining cases considered less concerning, but still undesirable

This Effort:
● Closed a number of additional sources of minor leaks:

● distributed sparse domains and arrays
● local caches of remote array metadata
● iterator records
● timezones in ‘DateTime’ module (using `Shared`)
● rectangular arrays whose domains had been ‘clear()’ed
● temporary strings allocated in IO routines / zero-length strings
● user-level leaks in test programs

● Also, reduced the memory footprint of non-stridable ranges

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: This Effort (October 2017)

Copyright 2018 Cray Inc.
58

cached remote array metadata

user test leaksuser test leaks

Reduced footprint of
non-stridable ranges

dist. sparse
domains/arrays
empty strings

clear() on rectangular domains

user test leaks

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: This Effort (1.17 release cycle)

Copyright 2018 Cray Inc.
59

user test leak

length-zero strings

delete-free timezones

iterator records

constructor->init() conversion

handling of default args

Impact: reduced leaks in nightly testing by ~50%

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: Remaining Leaks (as of April 10)

Copyright 2018 Cray Inc.
60

only 304 / 8398 tests still leaking

~1/3 of memory leaked
by one test (SSCA#2)

~2/3 of leaking tests
leak < 256 bytes

~1/3 of leaking tests
leak < 64 bytes

C O M P U T E | S T O R E | A N A L Y Z E

Memory Leaks: Next Steps

Copyright 2018 Cray Inc.
61

Next Steps:
● Continue working through remaining leaks as a background task

C O M P U T E | S T O R E | A N A L Y Z E

Other Performance Optimizations

Copyright 2018 Cray Inc.
62

C O M P U T E | S T O R E | A N A L Y Z E

Other Performance Optimizations

Copyright 2018 Cray Inc.
63

● Improved remote value forwarding optimization for types
with initializers

● Reduced wide-pointer overhead for domains and
distributions

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2018 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

64

