
C O M P U T E | S T O R E | A N A L Y Z E

Compiler / Tools

Chapel Team, Cray Inc.
Chapel version 1.17

April 5, 2018

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2018 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2018 Cray Inc.
3

● Mason Improvements
● Bash Tab Completion For chpl
● Compiler Flag Suggestions
● Default Executable Name Change
● LLVM Back-end Improvements
● Communication Optimization with --llvm-wide-opt
● Other Compiler/Tool Improvements

C O M P U T E | S T O R E | A N A L Y Z E

Mason Improvements

Copyright 2018 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Background

Copyright 2018 Cray Inc.
5

● Mason is the Chapel package manager
● Supports commands for completing different tasks

new Create a new mason project
update Update/Generate Mason.lock
build Compile the current project
run Build and execute src/<project name>.chpl
search Search the registry for packages
env Print environment variables recognized by mason
clean Remove the target directory
doc Build this project's documentation

● Uses a registry containing “Bricks” describing packages
● Default registry is publicly hosted at github.com/chapel-lang/mason-registry
● MASON_REGISTRY environment variable overrides the default location
● Only one registry can be used at a time

https://github.com/chapel-lang/mason-registry

C O M P U T E | S T O R E | A N A L Y Z E

Mason: This Effort

Copyright 2018 Cray Inc.
6

● Added support for multiple mason registries
● MASON_REGISTRY is now a comma separated list of registries

● Each registry has an optional “name|” prefix to name a local directory to use
● “name” defaults to the text following the final slash in the location
export MASON_REGISTRY="loc|/path/to/reg1,http://reg2.com/reg"

● Added two new mason commands
help Display a help message
version Display the mason version number

● Added “make install” support
● After building mason it can be installed next to the “chpl” binary

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Impact

Copyright 2018 Cray Inc.
7

● Mason can now use multiple registries
● Bricks are searched for in left-to-right order of MASON_REGISTRY
● Registries can be local and include local, private packages
● Each registry can be named locally using MASON_REGISTRY

● Mason can easily be installed next to the chpl binary
make install

● Show help/version messages with mason commands
mason help
mason version

C O M P U T E | S T O R E | A N A L Y Z E

Mason: Next Steps

Copyright 2018 Cray Inc.
8

Next Steps: Continue to add and harden Mason features
● Add mason commands for additional functions

add add a dependency
rm remove a dependency
init create a project in an existing directory
test run project tests
...

● Add support for C dependencies
● Simplify creation of registries and adding new Bricks
● Improve error messages
● Add continuous integration testing for the package ecosystem

C O M P U T E | S T O R E | A N A L Y Z E

Bash Tab-completion for chpl

Copyright 2018 Cray Inc.
9

C O M P U T E | S T O R E | A N A L Y Z E

Tab-completion for chpl

Copyright 2018 Cray Inc.
10

Background: There are many verbosely-named chpl options
● Finding the right option requires searching help output or man pages

chpl --help
man chpl

This Effort: Add a bash tab-completion script for chpl
● Script knows about all compiler options and can autocomplete them
● For multiple matches, prints them and completes as much as possible

Impact: Bash users can autocomplete chpl options
● Bash users can use tab-completion for chpl compiler options

source $CHPL_HOME/util/chpl-completion.bash

Next steps: Developer vs. non-developer options
● Only autocomplete developer options when in developer mode

C O M P U T E | S T O R E | A N A L Y Z E

Compiler Flag Suggestions

Copyright 2018 Cray Inc.
11

C O M P U T E | S T O R E | A N A L Y Z E

Flag Suggestions

Copyright 2018 Cray Inc.
12

Background: Compiler gave a generic error for misspelled flags
$ chpl -fast
Unrecognized flag: '-f' (use '-h' for help)
$ chpl --ieee
Unrecognized flag: '--ieee' (use '-h' for help)

This Effort: Compiler suggests a flag in simple cases
$ chpl -fast
Unrecognized flag: '-f' (use '-h' for help)

Did you mean --fast ?
$ chpl --ieee
Unrecognized flag: '--ieee' (use '-h' for help)

Did you mean --ieee-float ?

Impact: Compiler is more friendly

C O M P U T E | S T O R E | A N A L Y Z E

Default Executable Name Change

Copyright 2018 Cray Inc.
13

C O M P U T E | S T O R E | A N A L Y Z E

Executable Name: Background

Copyright 2018 Cray Inc.
14

Background:
● Historically, compiling `foo.chpl` resulted in the executable `a.out`
● In 1.16, executable started being named after the main module

● Why?
● because every program has a single main module (vs. multiple files and modules)
● because in practice the main module typically takes its name from its file

● However, this led to confusion in certain cases:
myProgram.chpl:

module M1 {
writeln(“Hello!”);

}
> chpl myProgram.chpl
> ./myProgram
./myProgram: No such file or directory

● Users are accustomed to executables taking the name of some file

C O M P U T E | S T O R E | A N A L Y Z E

Executable Name: This Effort and Impact

Copyright 2018 Cray Inc.
15

This Effort:
● 1.17 names the executable after the file containing the main module

● Why?
● still uses something unique about the program
● avoids the surprising cases that 1.16 had
● returns to normal situation of naming executables after files
● still supports the common case of the main module taking its name from its file

Impact:
myProgram.chpl:

module M1 {
writeln(“Hello!”);

}
> chpl myProgram.chpl
> ./myProgram
Hello!

C O M P U T E | S T O R E | A N A L Y Z E

LLVM Back-end Improvements

Copyright 2018 Cray Inc.
16

C O M P U T E | S T O R E | A N A L Y Z E

LLVM Back-end Improvements: Background

Copyright 2018 Cray Inc.
17

● LLVM is a compiler optimization framework
● actively developed and constantly improving

● We want LLVM to become our default back end
● to focus our attention instead of dividing it among C compilers
● to improve optimization
● to enable communication optimization

C O M P U T E | S T O R E | A N A L Y Z E

LLVM Back-end Improvements: This Effort

Copyright 2018 Cray Inc.
18

● Ported Chapel to LLVM 6.0

● Removed support for LLVM versions older than 4.0

● CHPL_LLVM=system now supports Mac Homebrew

● Improved precision of LLVM alias analysis metadata

● Improved --llvm compilation speed

● Addressed problems with --llvm-wide-opt
● See: next section

C O M P U T E | S T O R E | A N A L Y Z E

LLVM: Impact: Compilation Time

Copyright 2018 Cray Inc.
19

● --llvm compilation time has improved
● now competitive with C backend

C O M P U T E | S T O R E | A N A L Y Z E

● --llvm performance has improved with LLVM 6

LLVM: Impact: Performance

Copyright 2018 Cray Inc.
20

C O M P U T E | S T O R E | A N A L Y Z E

LLVM Back-end Improvements

Copyright 2018 Cray Inc.
21

Impact:
● LLVM 6.0 vectorizes more cases when llvm-wide-opt is used
● code kept maintainable by removing obsolete version support
● users and developers can start quickly with CHPL_LLVM=system

Status:
● --llvm and --llvm-wide-opt are tested nightly
● performance is improving and generally competitive with C backend

● occasionally beating C compilers

Next Steps:
● continue to push towards using --llvm by default
● port Chapel’s LLVM interface to ARM

● match ABI characteristics that differ from x86-64

C O M P U T E | S T O R E | A N A L Y Z E

Communication Optimization with --llvm-wide-opt

Copyright 2018 Cray Inc.
22

C O M P U T E | S T O R E | A N A L Y Z E

Comm Opt: Background

Copyright 2018 Cray Inc.
23

● Idea is to use LLVM passes to optimize GET and PUT

● Enabled with --llvm-wide-opt compiler flag

● First appeared in Chapel 1.8

● Unfortunately was not working in 1.15 and 1.16 releases

24

// x is possibly remote
var sum = 0;
for i in 1..100 {
%1 = get(x);
sum += %1;

}

var sum = 0;
for i in 1..100 {
%1 = load <100> %x
sum += %1;

}

var sum = 0;
%1 = get(x);
for i in 1..100 {
sum += %1;

}

TO GLOBAL
MEMORY

TO DISTRIBUTED
MEMORY

var sum = 0;
%1 = load <100> %x
for i in 1..100 {
sum += %1;

}
EXISTING LLVM
OPTIMIZATION

LICM

load <100> %x = load i64 addrspace(100)* %x

Comm Opt: in a Picture

C O M P U T E | S T O R E | A N A L Y Z E

Comm Opt: Details

Copyright 2018 Cray Inc.
25

● Uses existing LLVM passes to optimize GET and PUT
● GET/PUT represented as load/store with special pointer type
● normal LLVM optimizations run and optimize load/store as usual
● an LLVM pass lowers them back to calls to the Chapel runtime

● Optimization gains from this strategy can be significant
● See "LLVM-based Communication Optimizations for PGAS Programs"

● Historically, needed packed wide pointers as workaround
● wide pointer normally stored as a 128-bit struct: {node id, address}
● bugs in LLVM prevented using 128-bit pointers
● packed wide pointers store node id in high bits of a 64-bit address
● led to scalability constraints — maximum of 65536 nodes
● sometimes made --llvm-wide-opt code slower than C backend

C O M P U T E | S T O R E | A N A L Y Z E

Comm Opt: This Effort, Impact

Copyright 2018 Cray Inc.
26

This Effort: Fix --llvm-wide-opt for 1.17
● remove packed wide pointer workaround
● remove CHPL_WIDE_POINTERS configuration variable
● resolve other bugs, including 2 bugs in LLVM itself
● perform initial performance study

Impact: --llvm-wide-opt is much closer to production quality
● Design now supports more than 100,000 nodes
● Overhead is reduced
● No longer reduces performance relative to the C backend
● Significant performance improvement for some benchmarks

C O M P U T E | S T O R E | A N A L Y Z E

Comm Opt: Impact

Copyright 2018 Cray Inc.
27

0

0.5

1

1.5

2

2.5

3

3.5

4

HPCC
PTRANS

NPB EP miniMD HPCC HPL HPCC FFT NPB MG Lulesh CoMD

T
im

es
 F

as
te

r

Speedup of –llvm and --llvm-wide-opt vs C on 16 nodes XC

C llvm llvm-wide-opt

C O M P U T E | S T O R E | A N A L Y Z E

Comm Opt: Next Steps

Copyright 2018 Cray Inc.
28

● Perform more testing
● Contribute bug fixes for 128-bit pointers upstream
● Enable --llvm-wide-opt by default with --fast
● Reduce compile time spent in this optimization

C O M P U T E | S T O R E | A N A L Y Z E

Other Compiler/Tool Improvements

Copyright 2018 Cray Inc.
29

C O M P U T E | S T O R E | A N A L Y Z E

Other Compiler/Tool Improvements

Copyright 2018 Cray Inc.
30

● Extern blocks now support #defines with casted literals
● Rewrote and improved the `printchplenv` tool
● Rewrote and improved the `compileline` tool
● Added error handling constructs to syntax highlighters
● Added `prototype` modules to syntax highlighters

https://chapel-lang.org/docs/1.17/technotes/extern.html

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2018 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

31

