
C O M P U T E | S T O R E | A N A L Y Z E

Language Improvements

Chapel Team, Cray Inc.
Chapel version 1.17

May 9, 2018

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

Safe Harbor Statement

Copyright 2018 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2018 Cray Inc.
3

● Initializers
● Improvements to the Proposal
● Compiler-Generated Initializers
● Other Changes of Note
● Overall Status and Next Steps

● Error Handling

● Argument Intent Changes

● Improving Productivity of ‘delete’

● Accessing Type and Param Fields

● Numeric Coercion Improvements

● Early Exits from ‘forall’

● """Uninterpreted String Literals"""

● Other Language Improvements

C O M P U T E | S T O R E | A N A L Y Z E

Initializers

Copyright 2018 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: Background and Summary of Work

Copyright 2018 Cray Inc.
5

Background:
● Have been developing initializers to replace constructors

● Provide significantly more control over classes and records

● Extensive progress made over last few releases

● As of Chapel 1.16…

● Not all features implemented

● Some open questions remained

● Some behavior was not ideal

This Effort:
● Revisited the proposal, based on experience using initializers

● Improved support for compiler-generated initializers

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: Outline

Copyright 2018 Cray Inc.
6

● Improvements to the Proposal
● Compiler-Generated Initializers
● Other Changes of Note

● Copy Initializers
● Operations on Initialized Fields
● Select Bug Fixes

● Overall Status and Next Steps

C O M P U T E | S T O R E | A N A L Y Z E

Improvements to the Proposal

Copyright 2018 Cray Inc.
7

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: Old Proposal

Copyright 2018 Cray Inc.
8

● Given a class hierarchy:
● Classes A through D form a hierarchy: D:C:B:A

● Each class implements one or more 'init()' methods

● Body of 'init()' was divided into two phases

● In phase 1, object was uninitialized memory
● Couldn’t do much with it other than initialize its fields

● In phase 2, object was a D (for any initializer)
● Could do anything with it

C O M P U T E | S T O R E | A N A L Y Z E

Old Proposal: Phase 1, things you could do

Copyright 2018 Cray Inc.
9

class D : C {
var x: int;
var y = 2.3;
var z: real;

proc init(x: int) {
var tmp = foo(x);
this.x = x;
// this.y = 2.3;
this.z = tmp;

super.init();

this.foo();
bar(this);

}
}

Declare local variables and perform
computations that don’t refer to fields/‘this’.

Initialize fields, in order.

Omitted fields implicitly initialized.

C O M P U T E | S T O R E | A N A L Y Z E

Old Proposal: Phase 1, things you couldn’t do

Copyright 2018 Cray Inc.
10

class D : C {
var x: int;
var y = 2.3;
var z: real;

proc init(x: int) {
var tmp = foo(x);
this.x = x;
// this.y = 2.3;
this.z = tmp;

super.init();

this.foo();
bar(this);

}
}

Couldn’t call methods or refer to parent fields.
Rationale: parent fields are not initialized yet.

super.init(…) invokes the parent initializer.

C O M P U T E | S T O R E | A N A L Y Z E

Old Proposal: Phase 2, things you could do

Copyright 2018 Cray Inc.
11

Full dynamic method dispatch

Can pass ‘this’ to other functions

Entire object is initialized once super.init()
returns

class D : C {
var x: int;
var y = 2.3;
var z: real;

proc init(x: int) {
var tmp = foo(x);
this.x = x;
// this.y = 2.3;
this.z = tmp;

super.init();

this.foo();
bar(this);

}
}

C O M P U T E | S T O R E | A N A L Y Z E

Old Proposal: The Big Problem

Copyright 2018 Cray Inc.
12

class AbstractArr {
param rank: int;
proc init(param rank: int) {
this.rank = rank;
super.init();

}
}

class RectangularArr : AbstractArr {
var bounds: rank*int;

proc init(bounds...) {
// problem: can’t set or use 'bounds' field
// because 'rank' is not yet established
this.bounds = bounds;
super.init(bounds.size)

}
}

C O M P U T E | S T O R E | A N A L Y Z E

Old Proposal: Other design Qs to revisit

Copyright 2018 Cray Inc.
13

● Phase 1 or phase 2 by default if no 'super.init()'?
● Originally chose phase 2 as default
● Needed to call 'super.init()' to initialize const/param/type fields

● 'super.init()' as phase 1 vs. 2 separator
● Records don’t inherit, so don’t have a 'super’

● Yet still required its use in order to specify phase 1 actions

● Modest interest in old-style 'initialize()' methods
● A hook called after constructor
● Convenient way to leverage compiler-generated constructor

New proposal also helps with each of these issues.

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: Overview

Copyright 2018 Cray Inc.
14

● Parent fields initialized before child fields
● Can now use parent fields to initialize child fields

var bounds : rank*int; // OK!

● Can call methods on parent type in 'init()'
● Current type's methods can be called…

… after a 'this.complete()' call or
… after a 'this.init()' call

● Introduces 'postinit()' as replacement for 'initialize()'

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: init() overview

Copyright 2018 Cray Inc.
15

● 'super.init()' called at start rather than end of phase 1
class D : C {
var x: int;
var y = 2.3;
var z: real;

proc init(x: int) {
super.init();
this.x = x;
// this.y = 2.3;
this.z = tmp;
this.foo();
bar(this);

}
}

super.init(…) invokes the parent initializer
and permits child field initialization to start

Initialize fields, in order. Can refer to
parent class fields since they’re initialized.

Omitted fields implicitly initialized.

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: init() details

Copyright 2018 Cray Inc.
16

● Details:
● If super.init(…) is omitted, compiler inserts 0-arg super.init() call at top

● Records no longer support super.init()
● They don’t need to since it’s not used as a separator anymore
● Consistent with not supporting record inheritance

proc init(x: int) {
this.x = x;
this.z = tmp;
this.foo();
bar(this);

}

Compiler inserts super.init() call here

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: init() overview

Copyright 2018 Cray Inc.
17

Can call methods, but will only
dispatch as type 'C'

Can pass ‘this’ to other functions
as type 'C'

Now a 'C'

class D : C {
var x: int;
var y = 2.3;
var z: real;

proc init(x: int) {
super.init();
this.x = x;
// this.y = 2.3;
this.z = tmp;
this.foo();
bar(this);

}
}

Can start setting fields in 'D'

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: this.complete()

Copyright 2018 Cray Inc.
18

● Support a way to initialize remaining fields

● Enables method calls within record init()s

class D : C {
proc init(x: int) {
this.x = x;
this.complete();
this.foo();
bar(this);

}
}

Transitions object from a 'C' to a 'D'

Subsequent method calls could dispatch to a
method defined on 'D' or its parents

Can pass ‘this’ to other functions;
it is a 'D' object

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: this.init()

Copyright 2018 Cray Inc.
19

● this.init(): Similar to use in the 1.16 release
● Calls another ‘init()’ defined on D

class D : C {
var x: int;
var y = 2.3;
var z: real;

proc init(x: int) {
this.init();
this.foo();
bar(this);

}
}

Initializes all fields in 'D' and its parents

Subsequent method calls could dispatch to a
method defined on 'D' or its parents

Can pass ‘this’ to other functions;
it is a 'D' object

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: Summary of init()

Copyright 2018 Cray Inc.
20

● Given a class hierarchy:
● Classes A through D form a hierarchy: D:C:B:A

● In D.init(), object starts as nothing (a blob of memory)
● Implication: You can’t do much with it yet

● After D’s call to super.init(), object is a C
● Implication: You can do anything with it that you could do with a C
● Plus, you can also assign to D fields to help turn it into a D

● Object becomes a D:
● After D’s call to D.complete(), or
● After D’s call to this.init(), or
● After D.init() returns

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: postinit() overview

Copyright 2018 Cray Inc.
21

● postinit(): A hook called after initialization
● Convenient way to leverage default initializers
● Supports virtual dispatch into child methods at object creation time

class D : C {
var x: int;

}
class E : D { ... }

proc D.postinit() {
this.foo();
bar(this);

}

var e = new E();
e.foo(); // Same as calls in postinit
bar(e);

Can call methods as final dynamic type: E

Can pass ‘this’ to other functions;
it is an ‘E’ object

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: postinit() details

Copyright 2018 Cray Inc.
22

● Details:
● postinit() takes no arguments
● If postinit() is not defined for a class, compiler inserts:

proc postinit() {
super.postinit();

}

● Compiler inserts super.postinit() if omitted in user-written postinit()
proc postinit() {
this.foo();
bar(this);

}

Compiler inserts super.postinit() here

C O M P U T E | S T O R E | A N A L Y Z E

New Proposal: Summary

Copyright 2018 Cray Inc.
23

● Parent fields initialized before child fields
D.init()

C.init()
B.init()

A.init()
<Initialize A fields>

<Initialize B fields>
<Initialize C fields>

<Initialize D fields>

● Optional 'postinit()' method called after all init() methods
D.postinit()

...
A.postinit()
<run A's postinit()>

...
<run D's postinit>

C O M P U T E | S T O R E | A N A L Y Z E

Compiler-Generated Initializers

Copyright 2018 Cray Inc.
24

C O M P U T E | S T O R E | A N A L Y Z E

Compiler-Generated Initializers: Background

Copyright 2018 Cray Inc.
25

● Last release added support for compiler-generated ‘init()’
● Behavior similar to compiler-generated constructors

● Off by default, enabled via developer flag
● Only applied to classes in user-defined modules
● Never applied to types with explicit initializers

C O M P U T E | S T O R E | A N A L Y Z E

Compiler-Generated Initializers: This Effort

Copyright 2018 Cray Inc.
26

● Initial support for records in user-defined modules

● Added pragma to apply to individual types
● To support converting module types with inheritance
● Will not be needed once enabled by default

● Improved error checking for intermixed hierarchies
● Inheritance hierarchies with constructors cannot generate ‘init’

class A {
proc A (…) {

// explicit constructor
}

}

pragma “use default init”
class B : A {…}
// error: asks for compiler-generated initializer
// but inherits from type with explicit constructor

C O M P U T E | S T O R E | A N A L Y Z E

Compiler-Generated Initializers: Status

Copyright 2018 Cray Inc.
27

● Many bugs fixed, others remain:
● Some expressions cannot be used as default values for fields yet

● E.g., parallel loops, conditional expressions
● Nested types, when either type is generic, cannot be used
● Fields that are arrays of syncs can cause deadlocks
● Internal compiler errors

● Once these bugs are resolved, can generate by default
● And deprecate constructors

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: Other Changes of Note

Copyright 2018 Cray Inc.
28

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: Copy Initializers

Copyright 2018 Cray Inc.
29

● Generic 1-arg init() now recognized as potential copy init()
● Compiler warns user of this subtlety for related compilation errors
● Can avoid warnings with explicit type or a where clause

record Foo {
…
proc init(x: Foo) { ... } // Actual copy init

}

● May evolve this design further to make copy initializers clearer

● Compiler now generates copy initializer if no match found
● Open Question: When user defines copy init or assignment, should

compiler attempt to define the other based on it? Should it warn?

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: This Effort

Copyright 2018 Cray Inc.
30

● Support more operations on initialized fields
● Can reassign field once initialized

this.x = 5;
this.x *= 2; // Now allowed in 1.17

● Can pass a field as an argument to a function
this.y = "hello";
writeln(this.y);

● Still an error to initialize fields out of order
this.secondField = 5;
this.firstField = 10; // Error!

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: This Effort

Copyright 2018 Cray Inc.
31

● Other bug fixes
● Enabled support for promotion over types with initializers

● 'new D(...)' only calls 'D.init(...)'
● Won’t dispatch to parent class initializer with similar argument list
● Avoids hiding compiler-generated initializer when parent has explicit ‘init()’

● Allow fields to infer their type when default value is a ‘new’ expression
var myField = new D();

● Many others (see CHANGES.md file for details)

https://github.com/chapel-lang/chapel/blob/release/1.17/CHANGES.md

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: Overall Status and Next Steps

Copyright 2018 Cray Inc.
32

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: Status

Copyright 2018 Cray Inc.
33

● Most library/internal modules converted to initializers
● Exceptions:

● Arrays, domains, distributions: issue with using inherited field, now resolved
● Owned, Shared, strings: special initCopy/autoCopy functions
● Reductions: compiler still generates constructors by default

● Most tests converted to initializers
● Out of ~8,500 tests...

... 26 remain unconverted due to bugs or unimplemented features

... 28 others will be removed once constructors are deprecated

C O M P U T E | S T O R E | A N A L Y Z E

Initializers: Next Steps

Copyright 2018 Cray Inc.
34

● Finish compiler-generated initializers
● Fix bugs

● Nested types when at least one of the types is generic
● Generic instantiation when generic fields initialized in conditional
● …

● Deprecate constructors
● Finalize design decisions:

● Finalize copy initializers
● Finalize type initializer story
● Allow users to opt into retaining compiler’s default ‘init()’?

● Currently squashed by user’s ‘init()’

● Support incomplete initialization when explicitly requested
● Also known as the 'noinit' feature

C O M P U T E | S T O R E | A N A L Y Z E

Error Handling

Copyright 2018 Cray Inc.
35

C O M P U T E | S T O R E | A N A L Y Z E

Error Handling: Background

Copyright 2018 Cray Inc.
36

● Error handling helps users with exceptional cases
● For example, handling a failure when opening a file:

var f: file;
try {
f = open(f1, iomode.r); // if open() raises an error, jump to the catch block
writeln("everything is fine");

} catch {
writeln("an error occurred"); // catch blocks are used to handle errors

}

C O M P U T E | S T O R E | A N A L Y Z E

Error Handling: Background

Copyright 2018 Cray Inc.
37

● Greatly improved in previous releases
● Supported in parallel and multi-node code
● Fine-grained error checking modes
● 'SystemError' hierarchy provided for common error cases

● But as of 1.16, standard modules still halt in many cases
● Highly problematic for users and library writers

C O M P U T E | S T O R E | A N A L Y Z E

Error Handling: This Effort

Copyright 2018 Cray Inc.
38

● Exclude throwing from 'defer', 'deinit()'
● Use error handling more in the standard library
● Bug fixes

C O M P U T E | S T O R E | A N A L Y Z E

Exclude throwing from 'defer', 'deinit()'

Copyright 2018 Cray Inc.
39

● Initially considered throwing from 'defer', 'deinit()'
var f: file = open(...);
defer try f.close();

● But that could prevent other 'defer', 'deinit()' from running
defer thisNeedsToHappen(); // will this run if f.close() throws?
defer try f.close(); // what is the handling context of this block?

● Also, no clear way to handle such an error

C O M P U T E | S T O R E | A N A L Y Z E

Exclude throwing from 'defer', 'deinit()'

Copyright 2018 Cray Inc.
40

● 'defer', 'deinit()' must now handle errors internally
defer {
try {
f.close();

} catch e { // suggested pattern: complete handling, logging
logError(e.message());

}
}

C O M P U T E | S T O R E | A N A L Y Z E

Use error handling in internal and library code

Copyright 2018 Cray Inc.
41

● Before, illegal cast operations would halt:
var s = "brad";

var i = s: int;

> error: Unexpected character when converting from
string to int(64): 'b'

C O M P U T E | S T O R E | A N A L Y Z E

Use error handling in internal and library code

Copyright 2018 Cray Inc.
42

● Now it throws an 'IllegalArgumentError’:
var s = "brad";
try! {
var i = s: int;

} catch e: IllegalArgumentError {
writeln("caught cast error");

}

● Addressed several other halts in standard library modules

> caught cast error

C O M P U T E | S T O R E | A N A L Y Z E

Bug fixes

Copyright 2018 Cray Inc.
43

● Correctly enforced error handling rules in 'coforall' loops
proc test() {
coforall i in 1..10 {
throwme(); // throwme() is unhandled and 'test()' does not throw
try! { } // but this empty try! made it pass error checking

} // now a compilation error as intended
}

● Fixed garbage memory returns from 'try'/'catch'
proc minusOne(x: int) {
try {
return minusOneThrows(x);

} catch {
writeln("caught error"); // this branch used to return garbage memory

} // now a compilation error
}

C O M P U T E | S T O R E | A N A L Y Z E

Error Handling: Status and Next Steps

Copyright 2018 Cray Inc.
44

Status:
● Error handling is increasingly ready for production code

Next Steps:
● Implement missing features

● Throwing from 'init()'
● Throwing from non-inlined iterators

● Use error handling where appropriate in library modules
● Deprecate 'out error' pattern
● Wherever reasonable, remove 'halt()’

● Explore lower-overhead implementations of error-handling
● E.g., avoid conditionals for non-error cases

C O M P U T E | S T O R E | A N A L Y Z E

Argument Intent Changes

Copyright 2018 Cray Inc.
45

C O M P U T E | S T O R E | A N A L Y Z E

Argument Intent Changes

Copyright 2018 Cray Inc.
46

This Effort: Improved several kinds of argument intents
● 'in' intent for functions
● 'in' intent for tasks
● range default intent
● 'type' intent

Impact: Intents are more flexible and consistent
Status: Improvements implemented and specified
Next steps:

● adjust default initializers to use 'in' intent and avoid copies
● improve 'out' and 'inout' intents

C O M P U T E | S T O R E | A N A L Y Z E

'in' Intent: Background

Copyright 2018 Cray Inc.
47

● 'in' intent always created a copy
● contrast with variable initialization

var x = g(); // does not create a copy if g returns record by value

// before 1.17
record R { var x: int }
var globalR: R;
proc f(in x) { }
f(new R(1));
f(globalR);

proc f(in x) {
var x_tmp = copy-init x;
deinit x_tmp;

}
var call_tmp = new R(1);
f(call_tmp);
deinit call_tmp;
f(globalR);

This copy is not necessary
for 'f(new R(1))'

C O M P U T E | S T O R E | A N A L Y Z E

'in' Intent: This Effort

Copyright 2018 Cray Inc.
48

● Make 'in' intent more similar to variable initialization

// before 1.17
record R { var x: int }
var globalR: R;
proc f(in x) { }
f(new R(1));
f(globalR);

// after 1.17
record R { var x: int }
var globalR: R;
proc f(in x) { }
f(new R(1));
f(globalR);

proc f(in x) {
var x_tmp = copy-init x;
deinit x_tmp;

}
var call_tmp = new R(1);
f(call_tmp);
deinit call_tmp;
f(globalR);

proc f(ref x) {
deinit x;

}
var call_tmp = new R(1);
f(call_tmp);
var x_tmp = copy-init globalR;
f(x_tmp);

C O M P U T E | S T O R E | A N A L Y Z E

'in' Intent: Impact

Copyright 2018 Cray Inc.
49

● 'in' intent better optimized
● addresses an issue with 'Owned'

// before 1.17
record R { var x: int }
var globalR: R;
proc f(in x) { }
f(new R(1));
f(globalR);

// after 1.17
record R { var x: int }
var globalR: R;
proc f(in x) { }
f(new R(1));
f(globalR);

proc f(in x) {
var x_tmp = copy-init x;
deinit x_tmp;

}
var call_tmp = new R(1);
f(call_tmp);
deinit call_tmp;
f(globalR);

proc f(ref x) {
deinit x;

}
var call_tmp = new R(1);
f(call_tmp);
var x_tmp = copy-init globalR;
f(x_tmp);

Copy no longer generated
for 'f(new R(1))'

C O M P U T E | S T O R E | A N A L Y Z E

'in' Intent for Tasks

Copyright 2018 Cray Inc.
50

Background: 'in' task intent was handled after task launch
● Causing the potential for race conditions when combining:

● record copy initializer
● 'begin'
● 'in' task intent

This Effort: Handle 'in' task intent during task setup
● Resolves the potential for race condition in a case like the following:

record R { /* includes class fields */ }
R.init(from: R) { /* copy initialize copies class fields */ }
var r: R;
begin with (in r) {
f(r);

}
mutate(r); // mutation races with copy from 'in' intent

Impact: Potential race condition addressed

C O M P U T E | S T O R E | A N A L Y Z E

Range Default Intent

Copyright 2018 Cray Inc.
51

Background: Before 1.17, range default intent was inconsistent
● for tasks, it was 'const in'
● for functions, it was 'const ref'

This Effort: Changed range default intent to 'const in'
● range now behaves more like 'int'

Impact: Range semantics simplified and more optimizable

C O M P U T E | S T O R E | A N A L Y Z E

'type' intent

Copyright 2018 Cray Inc.
52

Background: Combining 'type' intent with type specifier allowed
● e.g.

proc f(type t: integral) { }
● but behavior of such code was neither specified nor consistent

This Effort: Specify the behavior and address bugs
● 'type' intents with type specifier:

● limits the 'type' arguments that can be passed in
● does not allow coercion

Impact: 'type' intent with specified type now usable

C O M P U T E | S T O R E | A N A L Y Z E

Improving Productivity of 'delete'

Copyright 2018 Cray Inc.
53

C O M P U T E | S T O R E | A N A L Y Z E

Productive 'delete': Background and This Effort

Copyright 2018 Cray Inc.
54

Background:
● Previously, 'delete' could only be applied to a single class object
● This made certain patterns verbose:

● deleting multiple objects:
delete C1;
delete C2;
delete C3;

● deleting arrays of objects:
forall c in Arr do
delete c;

This Effort: Improved 'delete' to support…
…comma-separated expressions
…arrays

C O M P U T E | S T O R E | A N A L Y Z E

Productive 'delete': Impact and Next Steps

Copyright 2018 Cray Inc.
55

Impact:
● Can now write these patterns more succinctly:

● deleting multiple objects:
delete C1; delete C1, C2, C3;
delete C2;
delete C3;

● deleting arrays of objects:
forall c in Arr do delete Arr;
delete c;

Next Steps:
● Add support for users to define types that can promote, like arrays

● ensure that this feature works for such cases

C O M P U T E | S T O R E | A N A L Y Z E

Accessing Type and Param Fields

Copyright 2018 Cray Inc.
56

C O M P U T E | S T O R E | A N A L Y Z E

Accessing Type and Param Fields

Copyright 2018 Cray Inc.
57

Background: classes/records can have 'type' or 'param' fields
● Such fields make the class/record generic
● They are part of the generic type’s instantiation
● But, they could not be accessed from a type variable

This Effort: Enable accessing such fields from a type variable
record Element { param p; type t; }
type MyElement = Element(1, int);
param MyElementP = MyElement.p;
type MyElementT = MyElement.t;
writeln(MyElementP, " ", MyElementT:string);
// now outputs: 1 int(64)

Impact: Type variables and arguments are more capable
● Can now call '.size' on a tuple type

C O M P U T E | S T O R E | A N A L Y Z E

Numeric Coercion Improvements

Copyright 2018 Cray Inc.
58

C O M P U T E | S T O R E | A N A L Y Z E

Numeric Coercions

Copyright 2018 Cray Inc.
59

Background: There are coercions between some numeric types
● But the implementation presented usability issues with 'real(32)'
● For example, each of these lines caused a compilation error:

var a: real(32) = 0.0;
var b: real(32) = 1;
var half: real(32) = 1 / (2.0:real(32));

This Effort: Improved numeric coercions
● Above 'real(32)' examples now compile and run, as does this example:

param x: int(16) = 0;
var y: int(8) = x;

Impact: Numeric types of non-default sizes are easier to use

C O M P U T E | S T O R E | A N A L Y Z E

Early Exits from 'forall'

Copyright 2018 Cray Inc.
60

C O M P U T E | S T O R E | A N A L Y Z E

Early Exits from 'forall'

Copyright 2018 Cray Inc.
61

Background: early exit errors were incomplete and unclear
This Effort: completed checking with clear error messages

label outer for ... {
forall ... {

continue; // OK: skips the current iteration of ‘forall’
break; // Error: cannot exit a ‘forall’ from its loop body
return …; // Error: cannot exit a ‘forall’ from its loop body
continue outer; // Error: cannot exit a ‘forall’ from its loop body
yield …; // OK only within the definition of a parallel iterator

for ... {
break; // OK: exits the inner for-loop, stays in the forall-loop
return; // Still an Error: cannot exit a ‘forall’ from its loop body

...

C O M P U T E | S T O R E | A N A L Y Z E

"""Uninterpreted String Literals"""

Copyright 2018 Cray Inc.
62

C O M P U T E | S T O R E | A N A L Y Z E

Uninterpreted Strings: Background, This Effort

Copyright 2018 Cray Inc.
63

Background: String literals are interpreted
● e.g. "\n" translates into a newline
● Applies to both 'single' and "double" quote variants
● Literal newlines are not allowed

This Effort: Add triple-quoted uninterpreted string literals
● Uninterpreted – e.g. """\n""" is two characters
● Applies to both '''single''' and """double""" quote variants
● Literal newlines are allowed inside them

C O M P U T E | S T O R E | A N A L Y Z E

Uninterpreted Strings: Impact, Next Steps

Copyright 2018 Cray Inc.
64

Impact: Uninterpreted multi-line strings are available

Next Steps:
● Consider support for multi-line traditional strings
● Add library functions to trim leading whitespace

var query = """
SELECT
a_column

, another_column
FROM
{%s}

WHERE
{%s} = {%s};""";

var helpMsg = """
Usage: ./parallelProg <options>
--option1 : Do option1 things
--option2 : Do option2 things
--option3 : Do option3 things""";

capturing code as a string general purpose multiline messages

C O M P U T E | S T O R E | A N A L Y Z E

Other Language Improvements

Copyright 2018 Cray Inc.
65

C O M P U T E | S T O R E | A N A L Y Z E

Other Language Improvements

Copyright 2018 Cray Inc.
66

● Arrays
● 'clear()' on an array of records now calls the records' deinitializers
● Improved support for casting arrays to strings

● Domains
● Associative domains may use index types containing ranges
● 'isEmpty()' method on domains

● Subtype queries on distributions now supported

● Alignment of non-stridable range is low bound
● Used to always be 0

C O M P U T E | S T O R E | A N A L Y Z E

Other Language Improvements

Copyright 2018 Cray Inc.
67

● Forwarding
● Error-handling propagates through forwarded methods
● Support for forwarding methods on arrays, domains, and distributions
● See documentation

● Owned and Shared
● ‘Owned(C)’ and ‘Shared(C)’ coerce to type ‘C’
● ‘Owned(D)’ coerces to ‘Owned(C)’ when D is a subclass of C
● Writing out an ‘Owned(C)’ simply prints the ‘C’ object

https://chapel-lang.org/docs/1.17/technotes/dsi.html
https://chapel-lang.org/docs/1.17/modules/packages/OwnedObject.html
https://chapel-lang.org/docs/1.17/modules/packages/OwnedObject.html

C O M P U T E | S T O R E | A N A L Y Z E

Other Language Improvements

Copyright 2018 Cray Inc.
68

● Miscellaneous
● Recursive parallel iterators may be invoked via 'forall' loop
● Improved support for enums with non-trivial init expressions
● Improved default argument handling
● Support for defining multiple config types in a single statement
● Enabled wide pointers to be cast to 'c_void_ptr'

C O M P U T E | S T O R E | A N A L Y Z E

Other Language Improvements

Copyright 2018 Cray Inc.
68

● Miscellaneous
● Recursive parallel iterators may be invoked via 'forall' loop
● Improved support for enums with non-trivial init expressions
● Improved default argument handling
● Support for defining multiple config types in a single statement
● Enabled wide pointers to be cast to 'c_void_ptr'

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2018 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

69

