
C O M P U T E | S T O R E | A N A L Y Z E

Locale Models

Chapel Team, Cray Inc.

Chapel version 1.16

October 5, 2017

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

Safe Harbor Statement

Copyright 2017 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2017 Cray Inc.
3

● APU Locale Model

● Locale Model deinit()

● Numa Locale Model

C O M P U T E | S T O R E | A N A L Y Z E

APU Locale Model
(contributed by Mike Chu, AMD)

Copyright 2017 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

APU Locale Model

Copyright 2017 Cray Inc.
5

Background:
● APU: Accelerated Processing Unit

● AMD term for co-packaged CPU and GPU

● GPU can access CPU’s virtual memory through MMU and cache
● allows shared pointers

● avoids copying data

● AMD is interested in having Chapel support APUs

This Effort:
● Added an APU locale model, consistent with other locale models

C O M P U T E | S T O R E | A N A L Y Z E

APU Locale Model

Copyright 2017 Cray Inc.
6

Impact:
● Foundation of APU support is in place

Status:
● Tested at AMD

● The first of a series of contributions to support APUs
● needs runtime additions to interface with Radeon Open Compute Platform

● needs compiler changes to generate GPU executable code

● both additions function in AMD fork, currently working on merging to master

Next Steps:
● Incorporate AMD runtime and compiler changes

● Establish regular testing

● Consider GPU-related language extensions (CHIP 22)
● allow users to specify the natural width of a forall loop

C O M P U T E | S T O R E | A N A L Y Z E

Locale Model deinit()

Copyright 2017 Cray Inc.
7

C O M P U T E | S T O R E | A N A L Y Z E

Locale Model deinit()

Copyright 2017 Cray Inc.
8

Background:
● Locale model data structures were not torn down upon Chapel exit

● existing locale models had no special clean-up requirements

● Some GPUs require tear-down to leave hardware in a sane state

This Effort:
● Started deleting locale model data structures on exit

● added deinit() to existing cases (flat, numa, knl)

Impact:
● Supplies a hook for any special hardware actions at exit

● Used by the APU locale model
● provides a place to reset the GPU hardware

Next steps:
● Ensure that any future locale models supply deinit()

C O M P U T E | S T O R E | A N A L Y Z E

Numa Locale Model

Copyright 2017 Cray Inc.
9

C O M P U T E | S T O R E | A N A L Y Z E

Numa: Background

Copyright 2017 Cray Inc.
10

● Introduced ‘multi-ddata’ arrays for locModel=numa in 1.15
● Achieved perfect affinity (i.e. matched execution locality) for arrays

● Performance was great for some iteration styles

● Horrible for others

● Not addressed: pre-existing locality
● Memory with undesirable NUMA localization before being allocated

(previously allocated and thus localized, then freed, then re-allocated)

● Only option seems to be migration (copying) to desired NUMA domain

● Prompted a step back to review options and paths forward

C O M P U T E | S T O R E | A N A L Y Z E

Numa: This Effort (quoting 1.15 ‘Next Steps’)

Copyright 2017 Cray Inc.
11

● Major 1.16 decision: stay with multi-ddata?

● If retaining multi-ddata:
● reduce array access overhead; how much can we achieve?

● provide for programmer specification re: single- vs. multi-ddata

● If reverting to single-ddata:
● how (whether) to handle pre-existing locality?

● how to handle NIC-registered heaps?

● Improve NUMA-aware memory allocation
● do more sublocale-aware allocation (task stacks, etc.)

● reduce migration by allocating memory with proper locality

C O M P U T E | S T O R E | A N A L Y Z E

Numa: This Effort (quoting 1.15 ‘Next Steps’)

Copyright 2017 Cray Inc.
12

● Major 1.16 decision: stay with multi-ddata?

● If retaining multi-ddata:
● reduce array access overhead; how much can we achieve?

● provide for programmer specification re: single- vs. multi-ddata

● If reverting to single-ddata:
● how (whether) to handle pre-existing locality?

● how to handle NIC-registered heaps?

● Improve NUMA-aware memory allocation
● do more sublocale-aware allocation (task stacks, etc.)

● reduce migration by allocating memory with proper locality

Not very much

✘

C O M P U T E | S T O R E | A N A L Y Z E

Numa: This Effort (quoting 1.15 ‘Next Steps’)

Copyright 2017 Cray Inc.
13

● Major 1.16 decision: stay with multi-ddata?

● If retaining multi-ddata:
● reduce array access overhead; how much can we achieve?

● provide for programmer specification re: single- vs. multi-ddata

● If reverting to single-ddata:
● how (whether) to handle pre-existing locality?

● how to handle NIC-registered heaps?

● Improve NUMA-aware memory allocation
● do more sublocale-aware allocation (task stacks, etc.)

● reduce migration by allocating memory with proper locality

Not very much

✘

✘

Painful to code, hard to automate

C O M P U T E | S T O R E | A N A L Y Z E

Numa: This Effort (quoting 1.15 ‘Next Steps’)

Copyright 2017 Cray Inc.
14

● Major 1.16 decision: stay with multi-ddata?

● If retaining multi-ddata:
● reduce array access overhead; how much can we achieve?

● provide for programmer specification re: single- vs. multi-ddata

● If reverting to single-ddata:
● how (whether) to handle pre-existing locality?

● how to handle NIC-registered heaps?

● Improve NUMA-aware memory allocation
● do more sublocale-aware allocation (task stacks, etc.)

● reduce migration by allocating memory with proper locality

Not very much

✘

✘

no

Painful to code, hard to automate

C O M P U T E | S T O R E | A N A L Y Z E

Numa: This Effort (quoting 1.15 ‘Next Steps’)

Copyright 2017 Cray Inc.
15

● Major 1.16 decision: stay with multi-ddata?

● If retaining multi-ddata:
● reduce array access overhead; how much can we achieve?

● provide for programmer specification re: single- vs. multi-ddata

● If reverting to single-ddata:
● how (whether) to handle pre-existing locality?

● how to handle NIC-registered heaps?

● Improve NUMA-aware memory allocation
● do more sublocale-aware allocation (task stacks, etc.)

● reduce migration by allocating memory with proper locality

Not very much

✘

✘

no

Painful to code, hard to automate

C O M P U T E | S T O R E | A N A L Y Z E

Numa: This Effort (quoting 1.15 ‘Next Steps’)

Copyright 2017 Cray Inc.
16

● Major 1.16 decision: stay with multi-ddata?

● If retaining multi-ddata:
● reduce array access overhead; how much can we achieve?

● provide for programmer specification re: single- vs. multi-ddata

● If reverting to single-ddata:
● how (whether) to handle pre-existing locality?

● how to handle NIC-registered heaps?

● Improve NUMA-aware memory allocation
● do more sublocale-aware allocation (task stacks, etc.)

● reduce migration by allocating memory with proper locality

Not very much

?

✘

✘

no

Don’t know

Painful to code, hard to automate

C O M P U T E | S T O R E | A N A L Y Z E

Numa: This Effort (quoting 1.15 ‘Next Steps’)

Copyright 2017 Cray Inc.
17

● Major 1.16 decision: stay with multi-ddata?

● If retaining multi-ddata:
● reduce array access overhead; how much can we achieve?

● provide for programmer specification re: single- vs. multi-ddata

● If reverting to single-ddata:
● how (whether) to handle pre-existing locality?

● how to handle NIC-registered heaps?

● Improve NUMA-aware memory allocation
● do more sublocale-aware allocation (task stacks, etc.)

● reduce migration by allocating memory with proper locality

Not very much

?

✓

✘

✘

no

Dynamic registration

Don’t know

Painful to code, hard to automate

C O M P U T E | S T O R E | A N A L Y Z E

Numa: This Effort (quoting 1.15 ‘Next Steps’)

Copyright 2017 Cray Inc.
18

● Major 1.16 decision: stay with multi-ddata?

● If retaining multi-ddata:
● reduce array access overhead; how much can we achieve?

● provide for programmer specification re: single- vs. multi-ddata

● If reverting to single-ddata:
● how (whether) to handle pre-existing locality?

● how to handle NIC-registered heaps?

● Improve NUMA-aware memory allocation
● do more sublocale-aware allocation (task stacks, etc.)

● reduce migration by allocating memory with proper locality

Not very much

?

✓

✘

✘

no

Extendable heap

Dynamic registration

Don’t know

✓

Painful to code, hard to automate

C O M P U T E | S T O R E | A N A L Y Z E

Numa: This Effort (quoting 1.15 ‘Next Steps’)

Copyright 2017 Cray Inc.
19

● Major 1.16 decision: stay with multi-ddata?

● If retaining multi-ddata:
● reduce array access overhead; how much can we achieve?

● provide for programmer specification re: single- vs. multi-ddata

● If reverting to single-ddata:
● how (whether) to handle pre-existing locality?

● how to handle NIC-registered heaps?

● Improve NUMA-aware memory allocation
● do more sublocale-aware allocation (task stacks, etc.)

● reduce migration by allocating memory with proper locality

Not very much

?

✓

✘

✘

no

Extendable heap

Dynamic registration

Don’t know

✓
?

Not needed?

Painful to code, hard to automate

C O M P U T E | S T O R E | A N A L Y Z E

Numa: Status

Copyright 2017 Cray Inc.
20

● Numa locale model was on hold for this release cycle

● Focused on single-ddata improvements

● Dynamic NIC registration helps flat LM as much as numa
● See ugni comm layer slides in Runtime/Third Party deck for details

C O M P U T E | S T O R E | A N A L Y Z E

Numa: Next Steps

Copyright 2017 Cray Inc.
21

● Can we get rid of the numa locale model altogether?
● No; sometimes we want architectural NUMA domains to be explicit

● But performance needs to be nearly on par with flat, and often is not
● Due to wide pointer overhead, Qthreads scheduler issues, likely others

● Explore:
● Locality queries in place of wide pointers

● Qthreads scheduler improvements

● Other things?

numa matches

numa 10x worse

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2017 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

22

