Performance Results

Chapel Team, Cray Inc.
Chapel version 1.15
April 6, 2017
This presentation may contain forward-looking statements that are based on our current expectations. Forward looking statements may include statements about our financial guidance and expected operating results, our opportunities and future potential, our product development and new product introduction plans, our ability to expand and penetrate our addressable markets and other statements that are not historical facts. These statements are only predictions and actual results may materially vary from those projected. Please refer to Cray's documents filed with the SEC from time to time concerning factors that could affect the Company and these forward-looking statements.
Executive Summary

● Generally speaking, performance has improved with 1.15
 ● in fact, this is our strongest release ever

● Previous slide decks have shown performance changes:
 …due to array improvements
 …due to compiler and library optimizations
 …due to runtime optimizations

● These slides contain additional v1.15 performance results
 ● not tied to any specific effort, just comparisons across releases
Outline

- **Single-Locale Performance Trends**
- **Multi-Locale Performance Trends**
Single-Locale Performance Trends
Single-Locale Performance

- A few expected performance regressions
 - minor thread-ring regression caused by limiting qthreads pool size
 - change was necessary, no other benchmarks impacted
 - minor pi-digits regression caused by hybrid spin/condwait
 - change had an enormously positive impact overall
 - minor regressions for serial/low-task applications only
Single-Locale Performance

- A few surprising --no-local regressions
 - caused by array memory management improvements
 - slipped by our --no-local perf triage, will track more closely in the future
 - nbody regression has already been resolved
 - investigating fixes for other regressions
Single-Locale Performance

- Overall, single-locale performance improved dramatically
Single-Locale Performance

- Overall, single-locale performance improved dramatically
- Speedups for single-idiom micro-benchmarks

Serial 1D Array Performance

Array Vector Operations

Reductions Time (sec)

Empty Task Spawn Timings (500,000 x maxTaskPar)
Single-Locale Performance

- Overall, single-locale performance improved dramatically
- improvements for several shootout codes

Meteor Shootout Benchmark (n=2098)

Chameneos Redux Shootout Benchmark (n=6,000,000)

N-body variations

Submitted Fasta Shootout Benchmark

Copyright 2017 Cray Inc.
Single-Locale Performance

- Overall, single-locale performance improved dramatically
- substantial speedups for HPCC codes

![Graphs showing performance improvements over time for HPCC PTRANS, FFT, RA, and HPL benchmarks.](image-url)
Single-Locale Performance

- Overall, single-locale performance improved dramatically
- huge improvements for core proxy apps
Multi-Locale Performance Trends
Multi-locale Performance

- Significant multi-locale performance improvements
- no known regressions
Multi-locale Performance

- Significant multi-locale performance improvements
- No known regressions (qthreads now outperforms muxed even more)
Performance Priorities and Next Steps
Performance Priorities and Next Steps

● **Improve NUMA-aware performance**
 ● strive to support NUMA by default without performance loss

● **Continue benchmark-driven improvements**
 ● single-locale:
 ● eliminate remaining performance gap for LCALS
 ● improve performance for shootouts and proxy apps
 ● multi-locale:
 ● reduce unnecessary communication code
 ● optimize scalability of core algorithms (task spawning, reductions, barriers)
 ● focus on ISx, MiniMD/CoMD, LULESH
Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their respective owners.