Benchmark Improvements

Chapel Team, Cray Inc.
Chapel version 1.14
October 6, 2016

cCRANY”

aARPEL

COMPUTE | STORE | ANALYZE

Safe Harbor Statement .

~

Krhis presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements.)

Copyright 2016 Cray Inc.

Outline

e LCALS Improvements and Status

e Computer Lanquage Benchmark Game (CLBG)

e Other Benchmark Improvements

\

X

LCALS Improvements and Status

LCALS: Background o

e LCALS: Livermore Compiler Analysis Loop Suite .
e Loop kernels designed to measure compiler performance
e Developed by LLNL LCALS Code

e https://codesign.linl.gov/ILCALS.php Richard D. Hornung
LCALS version 1.0

LLNL-CODE-638939
2013

e Three loop subsets (30 kernels total)
e Subset A: Loops representative of application codes
e Subset B: Simple, basic loops
e Subset C: Loops extracted from “Livermore Loops coded in C”

e Each kernel is run for three sizes (Short, Medium, Long)

e Each kernel is implemented in a number of “variants”
e RAW (traditional C usage), OpenMP, C++ template-based, etc.

/C‘:% COMPUTE | STORE | ANALYZE
_:,/ Copyright 2016 Cray Inc. @

https://codesign.llnl.gov/LCALS.php

LCALS: This Effort .

e All kernels/variants/sizes performance tested nightly

e Benchmark run on a 24-core Cray XC30 node
e Compare serial performance vs. C++
e Compare parallel performance vs. C++ with OpenMP
e Compiled with g++ 6.2.0

e Working toward matching or beating g++ with OpenMP
e Serial variant is on par with g++ for almost all kernels
e Parallel variant is off by 2x-3x in most cases for Long problem size

e Best case: PIC_2D nearly 40% faster
e \Worst case: COUPLE over 7x slower

e Short problem size parallel variant is much faster than C++ version

e --dataParMinGranularity=1000 option limits parallelism to reasonable level
Compilation/Execution commands:

chpl --fast --no-ieee-float gt++ -Ofast —-fopenmp
lcals-chpl --dataParMinGranularity=1000 lcals.exe

/C‘:% COMPUTE | STORE | ANALYZE
=

J Copyright 2016 Cray Inc.

LCALS: Improvements since 1.13 A

e Removed -sassertNoSlicing config param setting
e Subsumed by the (default-on) compiler optimization --optimize-array-indexing

e Set dataParMinGranularity to 1000
e Small and medium loop sizes created too many tasks without this setting

e Replaced several loops over arrays with whole array assignments
e Added an output mode that is easier to parse by scripts

e Enabled performance tracking for all variants, kernels, and loop sizes
e Now test and track the performance of all 156 variants/kernels/sizes daily
e Graphs are online at the Chapel Performance Overview website

e Significantly increased PIC_2D performance with improvements to atomics

/C‘:% COMPUTE | STORE | ANALYZE
=

J Copyright 2016 Cray Inc.

http://chapel.sourceforge.net/perf/chapcs/?graphs=lcalsrawlong,lcalsrawomplong

LCALS Status: Seris

Long problem size

(Similar results for medium
and short problem sizes)

N
w

Normalized Time
_O =
o O O N O

FIR
INIT3

MULADDSUB
ICCG

INNER_PROD

ENERGY_CALC
VOL3D_CALC
HYDRO_1D

DEL_DOT VEC_2D
IF_QUAD

"COUPLE
TRAP INT

PRESSURE_CALC

m g++ serial

Serial Chapel vs g++

Q

TRIDIAG ELIM

BAND_LIN_E

| Performance v1.13.0 OO0

Normalized time —

EOS
ADI

PIC_1D

HYDRO_2D

FIRST_SUM
FIRST DIFF
PIC_2D

DIFE PREDICT

INT_PREDICT

m Chapel serial

serial reference is 1.0

xoFLzaoz

3&<<N§

OO0 =% &=

W o8-

x O X =&y

2L Qo

S0<a T

|

pd o Q2

L S Z

O] — L
chpl --fast
--no-ieee-float

g++ -Ofast -fopenmp

LCALS Status: Serial Performance v1.14.0 O

Long problem size

(Similar results for medium
and short problem sizes)

N
w

Normalized Time
_O =
(@] a = (@] N (@)]

Serial Chapel vs g++

FIR
INIT3

MULADDSUB
ICCG

INNER_PROD

ENERGY_CALC
VOL3D_CALC
HYDRO 1D

DEL_DOT VEC_2D
IF_QUAD

"COUPLE
TRAP INT

PRESSURE_CALC

m g++ serial

° \
\
Normalized time —
. . \
serial reference is 1.0
QZ8B552ER2R5253R2
mW>aandyoa'00 =22 4%
Z oo 110 omT |QO|_
NQ) oA OX s X,
Q3 | >Zn < - > T
Zz 0 LW oo I o LW
< Z 0 =T A
M= & 5 sz
©) — LL
, chpl --fast
m Chapel serial .
--no-ieee-float

g++ -Ofast -fopenmp

LCALS Status: Serial Performance v1.14.0 .
o
Long problem size
(Similar results for medium Normalized time —
and short problem sizes) i . .
Serial Chapel vs g++ gerial reference is 1.0
3
)
g 2.5
=2
I
N 1.5
g 1
205 | “
O —
0O ORMUETSRE9800288GG63ER8R5852RE
N 23T o _InuSg350D,) NO0SZ A=
OO0 D QOQ_O—D_Z | TTRTT IL_)QOLIJ | |QO}—|
N QIS 1S rrEELoa Xy OXz X
w>a>5 <uLpQ o ig aa?9 Q_10, g0
xo®. | JTFE> wao< 4 >z 3>F
o - T Zz=z0 N TRTITR r=0<gTuw
w0 = ZIx Z 0L =2 A
nz=>0 =oF =3 pd oo
wig a w S =
(0 L O) — L
a
&)
| | chpl --fast
mg++ serial ®Chapel serial .
--replace-array-accesses-with-ref-temps --no-leee-ﬂoat

optimization fixes IF_QUAD performance

g++ -Ofast -fopenmp

LCALS Status: Serial Performance v1.14.0 .
o
Long problem size _ _
(Similar results for medium Normalized time —
and short problem sizes) i . .
Serial Chapel vs g++ gerial reference is 1.0
3
£ 25
o2
I
N 15
g 1
205 |
O —
O gRYEEo5088=aa553ERAREREZAS
IIL ST ZzooTisloe_lmW T aann G002 s oS
OO0 D —QOQ_O—D_Z | TTRTT IL_)QOLIJ | |QO}—
N QIS 1S rrEELoa Xy OXz X
w>aQ>0 <Lre oclig Aoy o1, g0y
xo®. | JTFE> wao< 4 >z 3>F
S) T z=z=0 TR rsR<gTu
awQQ = Z<x Z L =R PN
0n=z=>0 = oK =3 z ag
TRV w ==
(0 L O) — L
a
&)
| | chpl --fast
m g++ serial mChapel serial .
" — —— --no-ieee-float
is-translation: The main iteration range
of TRAP_INT should use int (32) instead
of int (64). Fixed on master after 1.14. g++ -Ofast -fOpenmp

LCALS Status: Serial Performance v1.14.0 .
o
Long problem size _ _
(Similar results for medium Normalized time —
and short problem sizes i . .
proplem sizes) Serial Chapel vs g++ gerial reference is 1.0
3
)
g 2.5
=2
I
N 15
g 1
205 |
O —
38YQUEPLeEa0 s ALEIERARESFZ]E
I3 12> 955 10 LS3300 006002342
OOO0L2 =00aQ~=a | Dw, ! 120w TI_I59
WNIYe Qi< x SO rrEELAXx OX S X)
@) <WLpyO P73 2% O |0 |<(DD:
xoo | S>> w0 4 >z 3>F
oxah =) zz0 T i T
LS = 25z zi =74
L E ! e Q E S =
(0 L O) — L
o a)
, , chpl --fast
m g++ serial mChapel serial .
; — _ --no-ieee-float
Applying loop fission to two main loops

fixes HYDRO_2D performance.

g++ -Ofast -fopenmp

LCALS Status: Parallel Performance v1.13.0 .

Long problem size
Normalized time —

Parallel Chapel vs g++/OMP parallel reference is 1.0

9
8
e 7
=R
? 5
N
= 4
£ 3
;o FREFRFERE
1
, In il in1l iR in iR i
>
R IR R Q\Q“s‘@ § L P
OISy \OOO Q¥
& @ T S &
& & N
& Q((y/
chpl --fast

mg++ OMP ®mChapel parallel .
g PELp --no-ieee-float

g++ -Ofast -fopenmp

LCALS Status: Parallel Performance v1.14.0 .

Long problem size
Normalized time —

Parallel Chapel vs g++/OMP parallel reference is 1.0

9

8

e 7
E 6
? 5

N
= 4

£ 3
S 2

: 11l | |

, I Ik | I i1 I IR IR s

¢ ¢ & {b QO QO

Sl sl CF\’ 0/ oQ\’ < S g@ QOV \e\o?’

& A7 Qv & Oo Q Q}“ %

> & O L A\

&>
QQ~ QQ}//

mg++ OMP mChapel parallel chpl --fast
g apel paralle .
--no-ieee-float

g++ -Ofast -fopenmp

LCALS Status: Parallel Performance v1.14.0 ='=A:Y®

Long problem size
Normalized time —

Parallel Chapel vs g++/OMP parallel reference is 1.0

9
8
e 7
F 6
® 5
N
= 4
€ 3
g i I I I I I I
0|||I|||| il ol ol 5.
O O & ,<b Q
QV\’QVVQ‘?\’O/S?\’ < S Q@ 00\} fo?
/ </ / Q((/ 9) Q Q\
OQg/ Q~O \r/b0 4 © \)\/ N '\Qy
F & P N
QQg/ © QQ}’
chpl --fast
mg++ OMP mChapel parallel) f
Setting --dataParMinGranularity=1000 --no-leee- Oat

caused COUPLE to not use enough tasks

g++ -Ofast -fopenmp

LCALS Status: Parallel Performance .

Short problem size
Normalized time —

Parallel Chapel vs g++/OMP parallel reference is 1.0

1.2
) 1
S
= 08
D
N 0.6
T
£ 04
(@]
Z 0.2 I I
0
& & QO
q/ N ’\
o Sl QVVO/QQ\’ € \%o‘b (},\5v >$\o(/b
y, y, > L O © Q
& & o ¥ & &
) N A/ \/ N\
<& o o))
& @ &
chpl --fast

mg++ OMP mChapel parallel

--no-ieee-float

g++ -Ofast -fopenmp

LCALS: Next Steps .o

e Continue optimization effort for parallel kernels)
e Understand the remaining parallel performance gaps
e Bring all parallel kernels in line with reference versions
e Avoid need for minGranularity setting

e Optimize the serial kernels that are still lagging
e IF QUAD, HYDRO 2D still need some effort

e Explore more elegant Chapel loop expressions
e Make further use of whole-array operations, array slicing, etc.

/C‘:% COMPUTE | STORE | ANALYZE
_:y Copyright 2016 Cray Inc. @

\

X

Computer Language Benchmark Game (CLBG)

CLBG: Background S

S \
\

CLBG: Website supporting cross-language comparisons .

e based on 13 simple serial/shared-memory computations:

e binary-trees: memory management stressor
chameneos-redux: tasking coordination via a shared resource
fannkuch-redux: compute permutations on a small array
fasta, k-nucleotide, regex-dna, reverse-complement: string manipulation
mandelbrot: compute the Mandelbrot set
meteor: solve a puzzle (program startup is the bottleneck for Chapel)
n-body: simulate the solar system’s largest bodies (wants vectorization)
pidigits: compute pi (wants GMP or equivalent)
spectral-norm: compute matrix-vector operations

e thread-ring: pass token between tasks as quickly as possible
e must follow prescribed algorithm (except meteor, which is free-form)

e website’s summaries don’t include three benchmarks:
e chameneos-redux, thread-ring, meteor
e the first two are parallel, which makes them of interest to us
e program startup time is our bottleneck for the third, so we include it as well

/C':% COMPUTE | STORE | ANALYZE
=

—,/ Copyright 2016 Cray Inc.

CLBG: Website

Can sort results by execution time, code size, memory or CPU use:

The Computer Language

1.0
1.0
1.0
1.0
1.1
1.2
1.3
1.9
2.1
2.1
2.1
2.1
2.2
2.3

Benchmarks Game

n-body

description

program source code, command-line and

measurements

source

C++ g++ #3

C++ g++ #8
C gcc #4

C++ g++ #7
Fortran Intel #5

Ada 2005 GNAT #2

C++ g++ #5
Ada 2005 GNAT #5

C++ g++ #6

C++ g++

Fortran Intel #2

Fortran Intel

C++ g++ #4
Cgcec #3

sSecs
9.30
9.37
9.56
9.65
9.79
10.99
11.76
18.00
19.20
19.37
19.84
19.96
20.20
20.97

KB

1,712
1,152
1,000
940
516
1,952
1,728
2,028
1,096
1,056
508
512
684
952

gz
1763
1544
1490
1545
1659
2604
1749
2436
1668
1659
1496
1389
1428
1208

cpu

9.29
9.36
9.56
9.64
9.78
10.99
11.75
18.00
19.19
19.36
19.83
19.95
20.19
20.96

cpu load

100% 1% 1% 0%
1% 0% 100% 1%
1% 100% 1% 1%
100% 1% 1% 1%
1% 0% 1% 100%
0% 1% 100% 1%
1% 100% 1% 0%
0% 0% 100% 1%
100% 1% 0% 0%
1% 100% 0% 0%
1% 0% 1% 100%
0% 1% 0% 100%
0% 0% 1% 100%

1% 1% 1% 100%

1.0
1.1
1.1
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.3

The Computer Language

Benchmarks Game

n-body

description

program source code,

measurements

source
Chapel
Hack #3
PHP #3
Ruby #2
Ruby JRuby #2
Fortran Intel #4
C gcc

C gcc #6
Python 3
Swift #2
Lua #2

Swift #6
Lua

Swift #3

secs
21.55
24 min
7 min
11 min
292.96
21.91
21.15
21.14
15 min
32.09

8 min

command-line and

KB gz cpu
20,688 [962 21.55
114,024 (1080 24 min
7,928 [1082 7 min
9,144/ 1137 11 min
706,25¢ 1137 5 min
5 1172 21.91
1,0p8 1173 21.14
956 1180 21.13
8,040 1181 15 min
4,376 1192 32.08
2,140 1193 8 min

whitespace, then gzip

gz == code size metric
= strip comments and extra

cpu load
100% 0% 1% 0%

54% 47% 1% 1%
0% 100% 0% 1%
0% 1% 100% 0%
26% 29% 25% 24%
1% 0% 0% 100%
1% 100% 0% 2%
100% 1% 1% 0%
44% 13% 0% 44%
1% 0% 100% 0%
0% 1% 100% 0%
1% 0% 100% 0%
1% 0% 0% 100%

100% 0% 1% 0%

CLBG: Website

Can also compare languages pair-wise:

The Computer Language

Benchmarks Game

Chapel programs versus Swift

all other Chapel programs & measurements

regex-dna

source secs KB gz
Chapel 9.35 1,787,668 468
Swift 103.03 270,796 712
source secs KB gz
Chapel 1.60 22,088 501
Swift 5.02 7,524 1017
n-body

source secs KB gz

Chapel 21.55 20,688 962

Swift 23.66 4,388 1253

by benchmark task performance

cpu
18.46
102.95

cpu
1.60
5.01

cpu
21.55
23.65

cpu load

100% 15% 15% 69%

1% 1% 0% 100%

cpu load
99% 4% 2% 1%

100% 1% 1% 0%

cpu load

100% 0% 1% 0%

100% 0% 0% 1%

\
cCRA Y|
[\
S \
\

CLBG: Website

e site has a sound philosophy about too-easy answers

We want easy answers, but easy answers are often
incomplete or wrong. You and I know, there's more we
should understand:

stories details fast? conclusions

e yet, most readers probably still jump to conclusions
e execution time dominates default/only views of results
e it's human nature

e we’re interested in elegance as well as performance

e elegance is obviously in the eye of the beholder
e We compare source codes manually
e but then use CLBG’s code size metric as a quantitative stand-in

e want to be able to compare both axes simultaneously
e to that end, we used scatter plots to compare implementations

/C‘:% COMPUTE | STORE | ANALYZE
=

J Copyright 2016 Cray Inc.

CLBG: Background

Background:

e Wwe ported these to evaluate Chapel serial/tasking performance
e many “top” entries are more heroic than typical programmers would write
e we strived for implementations that balance elegance with speed

e FAQ isn't particularly encouraging of adding new languages:

Why don't you include language X?
. my favorite language implementation?
. Microsoft® Windows® ?

Because I know it will take more time than I choose. Been
there; done that.

Measurements of “proggit popular” language
implementations like Crystal and Nim and Julia will attract
attention and be the basis of yet another successful website
(unlike more Fortran or Ada or Pascal or Lisp). So make
those repeated measurements at multiple workloads, and
publish them and promote them.

If you're interested in something not shown on the
benchmarks game website then please take the program
source code and the measurement scripts and publish your
own measurements.

CLBG: This Effort

Feb 2016: Inquired about submitting a Chapel entry \

Apr 2016: Got a positive response
May 2016: Submitted first program
Sep 2016: Submitted final program

Listed on the front page:
Oct 2017: Upgraded to 1.14

The Computer Language
Benchmarks Game

64-bit quad core data set

Will your toy benchmark program be faster if you write it in
a different programming language? It depends how you write
it!

Which programs are fast?

Which are succinct? Which are efficient?

Ada C Chapel Clojure C# C++

Dart Erlang F# Fortran Go Hack

Haskell Java JavaScript Lisp Lua

OCaml Pascal Perl PHP Python

Racket Ruby JRuby Rust Scala

Smalltalk Swift TypeScript

CLBG: Improvements due to 1.14 S i

S \
\

1.14 improved many benchmarks with no code changes: .

e thread-ring: benefitted from gthread native sync variables
e climbed ~16 slots = now 5! fastest after Haskell, Go, F#, Scala
e 1t most compact code followed by Ruby, Racket, Erlang, Ocaml, Python
e fannkuch-redux: benefitted from optimized array accesses
e climbed from ~#22 to #6 in performance
e ~1.5-2x more compact than most other top entries
e chameneos-redux: benefitted from tasking improvements
e climbed from ~#11 to #8 in terms of performance
e binary-trees: benefitted from jemalloc improvements
e climbed ~2 performance slots as a result
e still ~5x off from top entries which use explicit memory pools
n-body: saw marginal improvements, but climbed ~17 slots
regex-dna, revcomp: saw marginal improvements, climbed ~3 slots
meteor: saw marginal improvements, climbed ~1 slot
fasta: saw marginal improvements, no change in rank

/é\ COMPUTE | STORE | ANALYZE
= Copyright 2016 Cray Inc. @

CLBG: Improvements due to 1.14 A

1.14 enabled code improvements for other benchmarks:

e pidigits: created versions that use the ‘bigint’ type
e pidigits: uses operators everywhere
e pidigits-fast: uses methods to avoid assigning returned records

e knucleotide: needed bug fix due to buggy auto-‘use’ of 'Sort’ in 1.13
e updated to new ‘Sort’ interfaces while here
e also saw performance improvements from optimized array accesses

binary-trees: created an initializer-based implementation
mandelbrot: used complex values and the dynamic domain iterator
fasta: removed a downcast on ascii(); simplified 1/O due to a bug fix
meteor: made use of enum.size

revcomp: removed downcasts on ascii()

To date, have only submitted two of the above cases
e trying to avoid maintenance fatigue
e latest versions available in examples/benchmarks/shootout on GitHub

/C':% COMPUTE | STORE | ANALYZE
=

=/ Copyright 2016 Cray Inc.

https://github.com/chapel-lang/chapel/tree/master/test/release/examples/benchmarks/shootout

CLBG: Status

Chapel entry highlights (as of Oct 17t): i

e performance rankings:
e tOp entries: pidigits
e top-5 entries: meteor-contest, thread-ring
e top-10 entries: fannkuch-redux, chameneos-redux
e top-20 entries: n-body, spectral-norm, binary-trees
e code compactness rankings:
e tOop entries: n-body, thread-ring
e top-5 entries: spectral-norm, pidigits
e top-20 entries: mandelbrot, regex-dna, chameneos-redux, meteor

/é\ COMPUTE | STORE | ANALYZE
=/ Copyright 2016 Cray Inc. @

CLBG Scatter Plots

CLBG Scatter Plots S ST

S \
\

e Made scatter plots to compare performance and code size |

e created these to help us understand where we’re falling short
e e.0., helps us identify performance outliers
e compared with the languages of highest interest to our team:
e traditional: C, C++, Fortran, Java
e productive: Python
e modern: Scala, Go, Rust, Swift
e each program is scaled by the fastest/smallest entries for that axis
e In any language -- not restricted to the subset we're focusing on here
e e.g., binary trees is scaled by C’s time (fastest) and Ruby’s size (smallest)
e data is from the CLBG repository on Oct 18™"

e Notes:

e these only characterize the submitted programs
e i.e., better versions could potentially be written in each language
e however, this is the data we have to work with

e not all languages have entries for all programs

/C':% COMPUTE | STORE | ANALYZE
=

—,/ Copyright 2016 Cray Inc.

CLBG Scatter

L= fasta
s (9]
‘Z:LB
(9]
5 o g
e @
1 |
)
m o

Plots: Chapel Programs

chapel

i k-nucleotide

= meteor
9]
rev-comp

5 B
relative source size

B chapel

O fastest

O smallest

O mean-fastest
[] mean-smallest

Pairwise Language Comparison Graphs SO08

The first series of graphs compares languages pairwise .
e For each language, we plot...
...the fastest version of each benchmark as a circle
...the smallest version of each benchmark as a square
...the mean of each set of benchmarks as a larger square/circle
e We also plot an oval at 1o (a standard deviation away from the mean)
e this provides an overall “profile” for the language’s fastest/smallest entries
e The axis scales are fixed across the graphs
e In a few cases we zoom out in the subsequent slide to display outliers

/C':% COMPUTE | STORE | ANALYZE
_:’/ Copyright 2016 Cray Inc. @

CLBG Scatter Plots: Chapel vs. C

25

chapel-gcc

20 |-
|

. thread-fring |
. thread;ring

15

. |
regex-dna

relative execution time

relative source size

chameneos-redux

B chapel \
H gcc

fastest

smallest

mean-fastest

-§DQD o

mean-smallest

regex-dna

g 9

CLBG Scatter

25

mandeibrot

. binary-ftrees

relative execution time

Plots: Chapel vs. C++ .o

chapel-gpp
i - chapel \
. gpp
Q fastest
smallest

(i
C) mean-fastest
L]

mean-smallest

thfead—ring 5
thread-ring

rev-comp _

3 4 5 [7 8 9
relative source size

CLBG Scatter Plots: Chapel vs. Fortran .

chapel-ifc

25 .
B chapel
- ifc
fastest
smallest

o}
; ; | | ; i O
binary-treeS j 3 (O mean-fastest
» |]

mean-smallest

15 b R e b e e S

s é ‘ ~ , k-nucleotide

s

relative execution time

relative source size

CLBG Scatter Plots: Chapel vs. Java

relative execution time

25

=
m
=
o
=
m @
L =
=

chapel—java

?.k-nucleotidé

5 [
relative source size

- chapel \
Bl java
O fastest
: [J smallest
() mean-fastest
°® meteor |:| mean-smallest
o fev-comp |
7 8 9

CLBG Scatter Plots: Chapel vs. Java (zoom) .

)
chapel-]ava full
(1 T D S R R _ Bocsza000z0m020000c0200008 020 Socoocacasacancasazecantasacocaad - -chapel ...
; ; : : meteor B java
o 5 O fastest

[0 smallest
: : : : O mean-fastest
5B Lo R D ciocscomrascamesaraemao: I S, R A [] mean-smallest .

) S - . thread-ring - ________________________ B ____________________________ ___________________________ _________________________ _

relative execution time

meteor

LA e S . eMeteor
* m
B
v e .’ . ® i i i
A '-; @ o = ; : - revcomp
m B e : ® é B

G'”“-““”"”"”““---“?“””"-”-”-”"“““-ﬁ é |(”I1l](ﬂ(3()t"j€3 ? ?

1 2 3 4 5 6 7 g 9
relative source size

CLBG Scatter Plots: Chapel vs. Python A

chapel-python3

25 -
B chapel

' python3

O fastest

[J smallest

() mean-fastest
E] mean-smallest

S b S S R - b S

relative execution time
e}
o)
>
c
Q
. ...m......
o
=l
o
D

relative source size

CLBG Fastest Entries:

relative execution time

o metgor
meteor
o !
o Cchameneos-redux
- spectral-nprm

Chapel vs. Python (zoom)

chapel-python3-full

_k-nucleotide

<
§
CcCRAY

W chapel \
' python3

O fastest

[0 smallest

() mean-fastest

D mean-smallest

PSP N P R _ ckenuceoide — —

4 5 [
relative source size

CLBG Scatter Plots: Chapel vs. Scala .

. chapel_—scala _
i W chapel
BN scala
O fastest
[0 smallest
() mean-fastest
[] mean-smallest
] T O (O

wthread-ring
15 B R ICI T 2 T C I O STl B e e

g ® mandelbrot

18 bo-.- B e e O O e s R

relative execution time

= 3 |
(o f f :
| ~, k-nucleotide : _
» . | ; k-nucleotide
e b e R S .
= s @ @ F regex-dna
&) i ® [} i
- o E | |
b o oo
= L
5] j 2 2 2 2 2
1 2 3 4 5 [} 7 g

relative source size

CLBG Scatter Plots: Chapel vs. Go .

)
25 . ChapE.-I.*gO . . .
o blnary-tl’ees B chapel
‘ ‘ z z z z W ogo
: ‘ O fastest
: [0 smallest
3 () mean-fastest
| [] mean-smallest
.
chameneos-redux
%15 ,,,
5 @
: o binary-trees
o O ; :
B o |
g @ - |
| o o | i i
o - i i P
;- oo - | 5 oK-nucleotide
g u Ee) ; :
m e | regex-dna ®rev-comp
| g g g

1 2 3 4 5 [7 g
relative source size

CLBG Scatter Plots: Chapel vs. Rust .o

chapel—rust

25 h
: W chapel \
I rust
: O fastest
| O smallest
3 () mean-fastest
f [] mean-smallest
< T T O [R
|

e e e e R REEEREE S TR e e

relative execution time

\ | | | | rev-com
- . pidigits . i
! ; ; | ;

1 2 3 4 5 [7 g 9
relative source size

CLBG Scatter Plots: Chapel vs. Rust (zoom) .o

chapel-rust-full

, chameneos-redux

T T Bansscaocasssncaciecasacaascsacad e e e b e s b

relative execution time

0 thread-ring
: : [] :

b cai . g e ews . Piigts

1 2 3 4 5 [
relative source size

4 fev-comp

— chapel \
BN rust
O fastest

[0 smallest

........... (D). mean-fastest. .

[] mean-smallest

] 9

CLBG Scatter Plots: Chapel vs. Swift .

chapelfswift

25 T T
- chapel
: swift
: O fastest
i [J smallest
E () mean-fastest
; [] mean-smallest
- T s e
m 5
” f
= ' H B
ppty - e S
5 =
E B
s i
e m [:
v N
v s
Z :
E < T ...
v |
= - o
o] : :
O : :)
| k-nucleotide
5 : a. f
g O B

- 27 s . pidigits

o i

mandelbrot
1 2 3 a 5 6 7 8
relative source size

CLBG Scatter Plots: Chapel vs. Swift (zoom) .

chapel-swift-full
7 ; ; : i W chapel
- regex-dna . euitt
3 E : : : fastest
smallest
mean-fastest

T P S SR ‘mean-smallest

relative execution time

o @ k-nucléotide
| = a ;
L s B s o pidigits
m B° o °o | |
[P mandelbrot e

1 2 3 4 5 [7 g 9
relative source size

Language Summary Plots A

e The following two graphs plot the means for all languages
first: across the set of fastest entries
then: across the set of most compact entries

e Note that the y-axis is logarithmic
e otherwise, Python’s inclusion flattens all data along the x-axis

/C‘:% COMPUTE | STORE | ANALYZE
=

J Copyright 2016 Cray Inc.

CLBG Fastest Codes: Averages (log scale perf)

averaged-shootouts-fastest

- chapel
- gcc
? ? ? o
% ; ; —k— gpp
L 3 i i Yoo ifc
B T e Java
! | 5 ¥r python3
—*— rust
- scala
- swift

log(relative execution time)

1@8

relative source size

CLBG Smallest Codes: Averages (log scale perf)

log(relative execution time)

L I T T

1@8

averaged-shootouts-smallest

relative source size

% chapel \
* BECC

¥ g0

¥ gpp

e ifc

- java

7 python3

—*— rust

- scala

- swift

Per-Benchmark Comparison Graphs A

The next graphs compare benchmarks across languages
e For each language, we plot its fastest and most compact version

e We connect these versions with a line to help the eye associate them
e note that this line doesn’t imply a bound or a constraint, just a visual link

e Note that the y-axis is logarithmic

/C‘:% COMPUTE | STORE | ANALYZE
=

J Copyright 2016 Cray Inc.

Binary-Trees: Language Comparisons .

)
binarytrees
o @ chapel
; ; ; -8 gcc
o go
-@ gpp
o ifc
-@ java
- B O python3
g e ® fust
o i : i -@® scala

o swift

log(relative execution time)

relative source size

Chameneos-redux: Language Comparisons A

)
chameneosredux
© @ chapel
-® gcc
o go
® gpp
-@ java
O python3
-@® rust

@ scala

log(relative execution time)

relative source size

Fannkuch-redux: Language Comparisons RIS

fannkuchredux

? ~-@ chapel \
' ; ; ; & g
; ; ; © g
: 5 : -@ gpp
: ; ; o ifc
; ; ; -® java
N SO SO TS SO S NN SNUPUUIN | b Q python3.
: : : -@& rust
: : : i ! -@® scala
E E C)E E j @ swift
A
,E N . .
o 5 : ;
< : : :
° : : :
- g g g
= . 5 3
o B B .
v : : :
v : : :
o : : :
,> N . .
" : : ;
E T N POPRRR @] S NN N ———————— [S ———————————
= e : i i
g - | |
- ° R | |
! ~ o k“::iliii“
~ - H - - H
N Sod T
i e TS e— :
® . ° e -e

1.8 1.5 2.8 2.5 3.0 3.5
relative source size

Fasta: Language Comparisons

fasta

log(relative execution time)

relative source size

chapel \
gcc :

g0

Egpp

ifc

java

python3:

rust

scala
swift

K-Nucleotide: Language Comparisons

knucleotide

] 3 3 © -® chapel
. : : o - gcc
o go
-@ gpp
o ifc
2 'O]'ava
e} i O python3
. : : . { -@ rust
10T Y caa
; @ ™ ; : i@ swift

log(relative execution time)
-

relative source size

Mandelbrot: Language Comparisons A

mandelbrot

o : | -@ chapel
182 : 3 i -® gcc
; | ; © g
g : g -@ gpp
: : o] : o ifc
: : : -® java
B i B O python3
: : : -® rust
i i i -@ scala
: } : O swift
M i | :
E [1 : ; :
= ~ g : g
N : : :
= ~ . . .
o ~ ;
- g i ;
3 [N ® : i
o Q e ~ : :
B [] B LY i :
5 N [N : ° g
~ : N 8 H
@ 101 fom =~ e m g S keemozomacsecesarasonzazazacay T
> ~ ~ \
— Mo \\\ ! S H
5 g i g
] O R : S :
— S .~ : » :
¢ N D ‘ \ :
— \\ \\\ o \ :
g ~ o ek \ 3
— S o - g w :
\\ \\ O\\\ \\ :
N N >3 \ i
~ N - N]
~ N ~ 5
\\ ™ ~ N
o ~ h . w8
~ ~ = N
~ hY .
S N S N\
- N ~ :\\
\\ \\ ~ “
~ 1w
S 3 . e
~ N

1.5 2.0 2.5 3.8 3.5
relative source size

Meteor: Language Comparisons .

meteor
o | ' : : : -@ chapel
@] i | | | | -@ gcc
; i i i i o go
j j j -@ gpp
: : i -® java
. . : © python3
| : : -& rust
A [hl ooc=csssaceosacazacaocazacasassasasacathesesssaszasasacaasazasasassasasasasssssaca fosesasessosssacaasesasacansasasasassasssasas tosssacsscesasacassesessoassasasasacsasssaseethessacaasacasasancasasssansssasasassacaaasas t=c=acacsssssansesssssacassesasacanca
2 : : 3
,E i i .
- : ; o :
< i i T~ i
_O . . T~ .
e : : Sal
o : : >k
by ‘ ‘ e
e \\.
v j : : ~ .
ES i i T e
o i i
— . .
v : :
;1@_ ... e e s et as
s : ° i
! [] I
® - __e____ |
: ST -e
L N O . ; rrr
2 3 4 5 6

relative source size

N-Body: Language Comparisons o

-@ java

O python3
-® rust
-® scala
O swift

log(relative execution time)

1.8 1.2 1.4 1.6 1.8
relative source size

Pidigits: Language Comparisons .o

pidigits

[} ' -@ chapel \
ET O SO PRSP R RSP RPPRESP \ A R S T BT R ~@-gee .
\ : o go

Y : -® java

\ -® rust

\ : O swift
\ .
\ !
\ H
\ :
L ;
\ g
\ o
\ o
~ ' :
v 1 :
= \ :
c 4 g
° v g
) \ .
o \ :
] \ :
e N
Ly \ Q :
1 n
v i
> \ :
o \ g
© \ :
< \ o
by \ ;
St N
bl \ :
2 g
= \ H
\ g
o o ® §

[] : L]
160 | o B B eeesemssesmmenm e oo camse e s aea e cm o csacasssse ena s me sae cnesem s e o ae s e
2 3 4 5

relative source size

Regexdna: Language Comparisons A

)
regexdna
o { -@ chapel
: : : : : L e ecc
o go
-@ gpp
-® java
O python3
-@® rust
-® scala
O swift

181 |-

log(relative execution time)

1@8 L.

relative source size

Reverse-Complement: Language Comparisons

revcomp

log(relative execution time)

o

rd
/

Iy

!
1y

!

'

relative source size

rust
scala

Spectral-Norm: Language Comparisons .o

spectralnorm

® 3 -@ chapel \
| | | | e o
| | | | © g
i ; ; ; @ gpp
: é é é o ifc
1 : : ; -@ java
o O python3
. : : : -®& rust
L T P S e e e e e Beresenene L RSIRPPPITOT R ICTa Tt @ scala
; ; : Q swift
2
,E . . .
" i : :
c g g g
° i i i
- g g g
= 5 5 3
= . . .
v : : :
v : : :
v : : :
,> . . .
- g g g
o o o o
Lo : : :
11 | fecmememomneneacanenan e e R e
Y g : g
) e.%_ oe _ & 5 5
s, Tel | T TEes | |
&, TS~ TTRRio I s
‘\\\ "‘-‘:.,.____5 H‘H"‘*ﬁ
) e . © oL ® : ®
LT L T U S DTS SOy OH““ -"'-.

1.8 1.5 2.8 2.5 3.0 3.5 4.0
relative source size

Thread-Ring: Language Comparisons A

threadring
e} : -@ Echapel
; ; : ; ; -& | gcc
: : . : © go
e -~ : i 5 ~® gpp
: = : ; : -@ java
Tl : O python3
: T i —& rust
° ; T~ -@ scala

log(relative execution time)

1.8 1.5 2.0 2.5 3.0 3.5 4.0 4.5
relative source size

\

§

CLBG Comparison Graphs

CLBG: Comparisons to C/C++ A

e The following graphs compare Chapel to C/C++ versions
e an update to what we did for the 1.11 release notes
e run using our team’s systems:
e 2 X 12-core Intel Xeon
e gcc/gt+
e reflects more recent HW/compiler than the official CLBG system
e Yyet imperfect:

e some C/C++ entries are tuned specifically for the CLBG system
e others rely on libraries that are not installed on our system

chameneosredux, all versions

Time (seconds)
O~ NWPHSA OO N O©
T

1.14

— chpl 1 === gcC 2 mmm
= gpp 2 ===

/él COMPUTE | STORE | ANALYZE
,:_’/ Copyright 2016 Cray Inc.

CLBG: Comparisons to C/C++

pidigits, all versions

Time (seconds)

fannkuchredux, all versions

Time (seconds)
COO0000000
O—_NWhOIONOOO -

1.14

chpl 2 === chpl 1 === el ——]

threadring, all versions

Time (seconds)
N
a
T

Time (seconds)

chpl 1 o gcc 3 mmmm

/C‘:% COMPUTE | STORE

_:y Copyright 2016 Cray Inc.

ANALYZE

mandelbrot, all versions
binarytrees, all versions

L
0Ot NO

0F

(O O Y L
LOVOWVOWVOWO 0 O < N
ITTOONNT ~

(spuo9oas) awi| (spuooas) awi|

to C/C++

ISONS

all versions

revcomp
spectralnorm, all versions

Compar

ANt~
888
- - oo A
o T T Y O
G N © o © N © oY nORANRT o
| (spuooas) awi| (spuooas) awi| \
O &

CLBG: Comparisons to C/C++

knucleotide, all versions

w
—_~ -D
n c
] o]
c o
o] o)
o)
q) N—"
L 0]
° £
£ =
=

1.14

gpp 3 e chpl 1 ===

meteor, all versions

Time (seconds)

O =~ N W s~ o1l O

Time (seconds)
o =~ N W b~ 00O

nbody, all versions

1.14
= M= = &=
/E\ COMPUTE | STORE ANALYZE

Copyright 2016 Cray Inc.

CLBG: Future Work .

e Continue improving Chapel and our entries:
e fasta: parallelize and optimize our current version
string benchmarks: improve string operations and performance
pidigits: optimize “assign returned record” idioms
meteor: reduce startup time in gthreads/hwloc
n-body: enable vectorization
kK-nucleotide: improve associative domain performance and features
mandelbrot: consider adding ‘unroll’ keyword to for loops
continue to study outliers and work on improving them

e Publish studies that dive beyond the superficial
e e.g., show heroism of top versions, compare with more typical ones

e Consider submitting more heroic Chapel versions

e Don’t lose sight of multi-locale performance work

e encourage HPC community to establish a CLBG equivalent
/C‘:% COMPUTE | STORE | ANALYZE

J Copyright 2016 Cray Inc.

\

X

Other Benchmark Improvements

Other Benchmark Improvements «oon
e \\
e Switched ISx to use the low-level PCG interface \
e results in identical data sets as the reference version
72N COMPUTE | STORE | ANALYZE
C__:'_’/ Copyright 2016 Cray Inc.

: : ==AYC: |
Legal Disclaimer «oon

S \

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.. ACE, APPRENTICEZ2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

2

= ®

