
C O M P U T E | S T O R E | A N A L Y Z E

Benchmark Improvements

Chapel Team, Cray Inc.

Chapel version 1.14

October 6, 2016

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

Safe Harbor Statement

Copyright 2016 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
3

● LCALS Improvements and Status

● Computer Language Benchmark Game (CLBG)

● Other Benchmark Improvements

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Improvements and Status

Copyright 2016 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Background

5

● LCALS: Livermore Compiler Analysis Loop Suite
● Loop kernels designed to measure compiler performance

● Developed by LLNL

● https://codesign.llnl.gov/LCALS.php

● Three loop subsets (30 kernels total)
● Subset A: Loops representative of application codes

● Subset B: Simple, basic loops

● Subset C: Loops extracted from “Livermore Loops coded in C”

● Each kernel is run for three sizes (Short, Medium, Long)

● Each kernel is implemented in a number of “variants”
● RAW (traditional C usage), OpenMP, C++ template-based, etc.

LCALS Code

Richard D. Hornung

LCALS version 1.0

LLNL-CODE-638939

2013

Copyright 2016 Cray Inc.

https://codesign.llnl.gov/LCALS.php

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: This Effort

6

● All kernels/variants/sizes performance tested nightly

● Benchmark run on a 24-core Cray XC30 node
● Compare serial performance vs. C++

● Compare parallel performance vs. C++ with OpenMP

● Compiled with g++ 6.2.0

● Working toward matching or beating g++ with OpenMP
● Serial variant is on par with g++ for almost all kernels

● Parallel variant is off by 2x-3x in most cases for Long problem size
● Best case: PIC_2D nearly 40% faster

● Worst case: COUPLE over 7x slower

● Short problem size parallel variant is much faster than C++ version
● --dataParMinGranularity=1000 option limits parallelism to reasonable level

Copyright 2016 Cray Inc.

Compilation/Execution commands:

chpl --fast --no-ieee-float

lcals-chpl –-dataParMinGranularity=1000

g++ -Ofast –fopenmp

lcals.exe

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Improvements since 1.13

Copyright 2016 Cray Inc.
7

● Removed -sassertNoSlicing config param setting
● Subsumed by the (default-on) compiler optimization --optimize-array-indexing

● Set dataParMinGranularity to 1000
● Small and medium loop sizes created too many tasks without this setting

● Replaced several loops over arrays with whole array assignments

● Added an output mode that is easier to parse by scripts

● Enabled performance tracking for all variants, kernels, and loop sizes
● Now test and track the performance of all 156 variants/kernels/sizes daily

● Graphs are online at the Chapel Performance Overview website

● Significantly increased PIC_2D performance with improvements to atomics

http://chapel.sourceforge.net/perf/chapcs/?graphs=lcalsrawlong,lcalsrawomplong

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Status: Serial Performance v1.13.0

Copyright 2016 Cray Inc.
8

Normalized time –

serial reference is 1.0

g++ -Ofast -fopenmp

chpl --fast

--no-ieee-float

Long problem size
(Similar results for medium

and short problem sizes)

0

0.5

1

1.5

2

2.5

3

P
R

E
S

S
U

R
E

_
C

A
L
C

E
N

E
R

G
Y

_
C

A
L
C

V
O

L
3
D

_
C

A
L
C

D
E

L
_
D

O
T

_
V

E
C

_
2
D

C
O

U
P

L
E

F
IR

IN
IT

3
M

U
L
A

D
D

S
U

B
IF

_
Q

U
A

D
T

R
A

P
_
IN

T
H

Y
D

R
O

_
1
D

IC
C

G
IN

N
E

R
_
P

R
O

D
B

A
N

D
_
L
IN

_
E

Q
T

R
ID

IA
G

_
E

L
IM

E
O

S
A

D
I

IN
T

_
P

R
E

D
IC

T
D

IF
F

_
P

R
E

D
IC

T
F

IR
S

T
_
S

U
M

F
IR

S
T

_
D

IF
F

P
IC

_
2
D

P
IC

_
1
D

H
Y

D
R

O
_
2
D

G
E

N
_
L
IN

_
R

E
C

U
R

D
IS

C
_
O

R
D

M
A

T
_
X

_
M

A
T

P
L
A

N
C

K
IA

N
IM

P
_
H

Y
D

R
O

_
2
D

F
IN

D
_
F

IR
S

T
_
M

IN

N
o

rm
a
li
z
e
d

 T
im

e
Serial Chapel vs g++

g++ serial Chapel serial

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Status: Serial Performance v1.14.0

Copyright 2016 Cray Inc.
9

0

0.5

1

1.5

2

2.5

3

P
R

E
S

S
U

R
E

_
C

A
L
C

E
N

E
R

G
Y

_
C

A
L
C

V
O

L
3
D

_
C

A
L
C

D
E

L
_
D

O
T

_
V

E
C

_
2
D

C
O

U
P

L
E

F
IR

IN
IT

3
M

U
L
A

D
D

S
U

B
IF

_
Q

U
A

D
T

R
A

P
_
IN

T
H

Y
D

R
O

_
1
D

IC
C

G
IN

N
E

R
_
P

R
O

D
B

A
N

D
_
L
IN

_
E

Q
T

R
ID

IA
G

_
E

L
IM

E
O

S
A

D
I

IN
T

_
P

R
E

D
IC

T
D

IF
F

_
P

R
E

D
IC

T
F

IR
S

T
_
S

U
M

F
IR

S
T

_
D

IF
F

P
IC

_
2
D

P
IC

_
1
D

H
Y

D
R

O
_
2
D

G
E

N
_
L
IN

_
R

E
C

U
R

D
IS

C
_
O

R
D

M
A

T
_
X

_
M

A
T

P
L
A

N
C

K
IA

N
IM

P
_
H

Y
D

R
O

_
2
D

F
IN

D
_
F

IR
S

T
_
M

IN

N
o

rm
a
li
z
e
d

 T
im

e
Serial Chapel vs g++

g++ serial Chapel serial

Normalized time –

serial reference is 1.0

g++ -Ofast -fopenmp

chpl --fast

--no-ieee-float

Long problem size
(Similar results for medium

and short problem sizes)

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Status: Serial Performance v1.14.0

Copyright 2016 Cray Inc.
10

0

0.5

1

1.5

2

2.5

3

P
R

E
S

S
U

R
E

_
C

A
L
C

E
N

E
R

G
Y

_
C

A
L
C

V
O

L
3
D

_
C

A
L
C

D
E

L
_
D

O
T

_
V

E
C

_
2
D

C
O

U
P

L
E

F
IR

IN
IT

3
M

U
L
A

D
D

S
U

B
IF

_
Q

U
A

D
T

R
A

P
_
IN

T
H

Y
D

R
O

_
1
D

IC
C

G
IN

N
E

R
_
P

R
O

D
B

A
N

D
_
L
IN

_
E

Q
T

R
ID

IA
G

_
E

L
IM

E
O

S
A

D
I

IN
T

_
P

R
E

D
IC

T
D

IF
F

_
P

R
E

D
IC

T
F

IR
S

T
_
S

U
M

F
IR

S
T

_
D

IF
F

P
IC

_
2
D

P
IC

_
1
D

H
Y

D
R

O
_
2
D

G
E

N
_
L
IN

_
R

E
C

U
R

D
IS

C
_
O

R
D

M
A

T
_
X

_
M

A
T

P
L
A

N
C

K
IA

N
IM

P
_
H

Y
D

R
O

_
2
D

F
IN

D
_
F

IR
S

T
_
M

IN

N
o

rm
a
li
z
e
d

 T
im

e
Serial Chapel vs g++

g++ serial Chapel serial

Normalized time –

serial reference is 1.0

g++ -Ofast -fopenmp

chpl --fast

--no-ieee-float

Long problem size
(Similar results for medium

and short problem sizes)

--replace-array-accesses-with-ref-temps

optimization fixes IF_QUAD performance

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Status: Serial Performance v1.14.0

Copyright 2016 Cray Inc.
11

0

0.5

1

1.5

2

2.5

3

P
R

E
S

S
U

R
E

_
C

A
L
C

E
N

E
R

G
Y

_
C

A
L
C

V
O

L
3
D

_
C

A
L
C

D
E

L
_
D

O
T

_
V

E
C

_
2
D

C
O

U
P

L
E

F
IR

IN
IT

3
M

U
L
A

D
D

S
U

B
IF

_
Q

U
A

D
T

R
A

P
_
IN

T
H

Y
D

R
O

_
1
D

IC
C

G
IN

N
E

R
_
P

R
O

D
B

A
N

D
_
L
IN

_
E

Q
T

R
ID

IA
G

_
E

L
IM

E
O

S
A

D
I

IN
T

_
P

R
E

D
IC

T
D

IF
F

_
P

R
E

D
IC

T
F

IR
S

T
_
S

U
M

F
IR

S
T

_
D

IF
F

P
IC

_
2
D

P
IC

_
1
D

H
Y

D
R

O
_
2
D

G
E

N
_
L
IN

_
R

E
C

U
R

D
IS

C
_
O

R
D

M
A

T
_
X

_
M

A
T

P
L
A

N
C

K
IA

N
IM

P
_
H

Y
D

R
O

_
2
D

F
IN

D
_
F

IR
S

T
_
M

IN

N
o

rm
a
li
z
e
d

 T
im

e
Serial Chapel vs g++

g++ serial Chapel serial

Normalized time –

serial reference is 1.0

g++ -Ofast -fopenmp

chpl --fast

--no-ieee-float

Long problem size
(Similar results for medium

and short problem sizes)

Mis-translation: The main iteration range

of TRAP_INT should use int(32) instead

of int(64). Fixed on master after 1.14.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Status: Serial Performance v1.14.0

Copyright 2016 Cray Inc.
12

0

0.5

1

1.5

2

2.5

3

P
R

E
S

S
U

R
E

_
C

A
L
C

E
N

E
R

G
Y

_
C

A
L
C

V
O

L
3
D

_
C

A
L
C

D
E

L
_
D

O
T

_
V

E
C

_
2
D

C
O

U
P

L
E

F
IR

IN
IT

3
M

U
L
A

D
D

S
U

B
IF

_
Q

U
A

D
T

R
A

P
_
IN

T
H

Y
D

R
O

_
1
D

IC
C

G
IN

N
E

R
_
P

R
O

D
B

A
N

D
_
L
IN

_
E

Q
T

R
ID

IA
G

_
E

L
IM

E
O

S
A

D
I

IN
T

_
P

R
E

D
IC

T
D

IF
F

_
P

R
E

D
IC

T
F

IR
S

T
_
S

U
M

F
IR

S
T

_
D

IF
F

P
IC

_
2
D

P
IC

_
1
D

H
Y

D
R

O
_
2
D

G
E

N
_
L
IN

_
R

E
C

U
R

D
IS

C
_
O

R
D

M
A

T
_
X

_
M

A
T

P
L
A

N
C

K
IA

N
IM

P
_
H

Y
D

R
O

_
2
D

F
IN

D
_
F

IR
S

T
_
M

IN

N
o

rm
a
li
z
e
d

 T
im

e
Serial Chapel vs g++

g++ serial Chapel serial

Normalized time –

serial reference is 1.0

g++ -Ofast -fopenmp

chpl --fast

--no-ieee-float

Long problem size
(Similar results for medium

and short problem sizes)

Applying loop fission to two main loops

fixes HYDRO_2D performance.

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Status: Parallel Performance v1.13.0

Copyright 2016 Cray Inc.
13

0

1

2

3

4

5

6

7

8

9
N

o
rm

a
li
z
e
d

 T
im

e
Parallel Chapel vs g++/OMP

g++ OMP Chapel parallel

Normalized time –

parallel reference is 1.0

g++ -Ofast -fopenmp

chpl --fast

--no-ieee-float

Long problem size

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Status: Parallel Performance v1.14.0

Copyright 2016 Cray Inc.
14

0

1

2

3

4

5

6

7

8

9
N

o
rm

a
li
z
e
d

 T
im

e
Parallel Chapel vs g++/OMP

g++ OMP Chapel parallel

Normalized time –

parallel reference is 1.0

g++ -Ofast -fopenmp

chpl --fast

--no-ieee-float

Long problem size

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Status: Parallel Performance v1.14.0

Copyright 2016 Cray Inc.
15

0

1

2

3

4

5

6

7

8

9
N

o
rm

a
li
z
e
d

 T
im

e
Parallel Chapel vs g++/OMP

g++ OMP Chapel parallel

Normalized time –

parallel reference is 1.0

g++ -Ofast -fopenmp

chpl --fast

--no-ieee-float

Long problem size

Setting --dataParMinGranularity=1000

caused COUPLE to not use enough tasks

C O M P U T E | S T O R E | A N A L Y Z E

LCALS Status: Parallel Performance

Copyright 2016 Cray Inc.
16

0

0.2

0.4

0.6

0.8

1

1.2
N

o
rm

a
li
z
e
d

 T
im

e
Parallel Chapel vs g++/OMP

g++ OMP Chapel parallel

g++ -Ofast -fopenmp

chpl --fast

--no-ieee-float

Short problem size
Normalized time –

parallel reference is 1.0

C O M P U T E | S T O R E | A N A L Y Z E

LCALS: Next Steps

17

● Continue optimization effort for parallel kernels
● Understand the remaining parallel performance gaps

● Bring all parallel kernels in line with reference versions

● Avoid need for minGranularity setting

● Optimize the serial kernels that are still lagging
● IF_QUAD, HYDRO_2D still need some effort

● Explore more elegant Chapel loop expressions
● Make further use of whole-array operations, array slicing, etc.

Copyright 2016 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Computer Language Benchmark Game (CLBG)

Copyright 2016 Cray Inc.
18

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Background

Copyright 2016 Cray Inc.
19

CLBG: Website supporting cross-language comparisons
● based on 13 simple serial/shared-memory computations:

● binary-trees: memory management stressor

● chameneos-redux: tasking coordination via a shared resource

● fannkuch-redux: compute permutations on a small array

● fasta, k-nucleotide, regex-dna, reverse-complement: string manipulation

● mandelbrot: compute the Mandelbrot set

● meteor: solve a puzzle (program startup is the bottleneck for Chapel)

● n-body: simulate the solar system’s largest bodies (wants vectorization)

● pidigits: compute pi (wants GMP or equivalent)

● spectral-norm: compute matrix-vector operations

● thread-ring: pass token between tasks as quickly as possible

● must follow prescribed algorithm (except meteor, which is free-form)

● website’s summaries don’t include three benchmarks:
● chameneos-redux, thread-ring, meteor

● the first two are parallel, which makes them of interest to us

● program startup time is our bottleneck for the third, so we include it as well

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Website

Copyright 2016 Cray Inc.
20

Can sort results by execution time, code size, memory or CPU use:

gz == code size metric

strip comments and extra

whitespace, then gzip

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Website

Copyright 2016 Cray Inc.
21

Can also compare languages pair-wise:

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Website

Copyright 2016 Cray Inc.
22

● site has a sound philosophy about too-easy answers

● yet, most readers probably still jump to conclusions
● execution time dominates default/only views of results

● it’s human nature

● we’re interested in elegance as well as performance
● elegance is obviously in the eye of the beholder

● we compare source codes manually

● but then use CLBG’s code size metric as a quantitative stand-in

● want to be able to compare both axes simultaneously

● to that end, we used scatter plots to compare implementations

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Background

Copyright 2016 Cray Inc.
23

Background:
● we ported these to evaluate Chapel serial/tasking performance

● many “top” entries are more heroic than typical programmers would write

● we strived for implementations that balance elegance with speed

● FAQ isn’t particularly encouraging of adding new languages:

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: This Effort

Copyright 2016 Cray Inc.
24

Feb 2016: Inquired about submitting a Chapel entry

Apr 2016: Got a positive response

May 2016: Submitted first program

Sep 2016: Submitted final program

Listed on the front page:

Oct 2017: Upgraded to 1.14

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Improvements due to 1.14

Copyright 2016 Cray Inc.
25

1.14 improved many benchmarks with no code changes:
● thread-ring: benefitted from qthread native sync variables

● climbed ~16 slots ⇒ now 5th fastest after Haskell, Go, F#, Scala

● 1st most compact code followed by Ruby, Racket, Erlang, Ocaml, Python

● fannkuch-redux: benefitted from optimized array accesses
● climbed from ~#22 to #6 in performance

● ~1.5–2x more compact than most other top entries

● chameneos-redux: benefitted from tasking improvements
● climbed from ~#11 to #8 in terms of performance

● binary-trees: benefitted from jemalloc improvements
● climbed ~2 performance slots as a result

● still ~5x off from top entries which use explicit memory pools

● n-body: saw marginal improvements, but climbed ~17 slots

● regex-dna, revcomp: saw marginal improvements, climbed ~3 slots

● meteor: saw marginal improvements, climbed ~1 slot

● fasta: saw marginal improvements, no change in rank

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Improvements due to 1.14

Copyright 2016 Cray Inc.
26

1.14 enabled code improvements for other benchmarks:
● pidigits: created versions that use the ‘bigint’ type

● pidigits: uses operators everywhere

● pidigits-fast: uses methods to avoid assigning returned records

● knucleotide: needed bug fix due to buggy auto-‘use’ of ’Sort’ in 1.13
● updated to new ‘Sort’ interfaces while here

● also saw performance improvements from optimized array accesses

● binary-trees: created an initializer-based implementation

● mandelbrot: used complex values and the dynamic domain iterator

● fasta: removed a downcast on ascii(); simplified I/O due to a bug fix

● meteor: made use of enum.size

● revcomp: removed downcasts on ascii()

To date, have only submitted two of the above cases
● trying to avoid maintenance fatigue

● latest versions available in examples/benchmarks/shootout on GitHub

https://github.com/chapel-lang/chapel/tree/master/test/release/examples/benchmarks/shootout

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Status

Copyright 2016 Cray Inc.
27

Chapel entry highlights (as of Oct 17th):
● performance rankings:

● top entries: pidigits

● top-5 entries: meteor-contest, thread-ring

● top-10 entries: fannkuch-redux, chameneos-redux

● top-20 entries: n-body, spectral-norm, binary-trees

● code compactness rankings:
● top entries: n-body, thread-ring

● top-5 entries: spectral-norm, pidigits

● top-20 entries: mandelbrot, regex-dna, chameneos-redux, meteor

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots

Copyright 2016 Cray Inc.
28

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots

Copyright 2016 Cray Inc.
29

● Made scatter plots to compare performance and code size
● created these to help us understand where we’re falling short

● e.g., helps us identify performance outliers

● compared with the languages of highest interest to our team:
● traditional: C, C++, Fortran, Java

● productive: Python

● modern: Scala, Go, Rust, Swift

● each program is scaled by the fastest/smallest entries for that axis
● In any language -- not restricted to the subset we’re focusing on here

● e.g., binary trees is scaled by C’s time (fastest) and Ruby’s size (smallest)

● data is from the CLBG repository on Oct 18th

● Notes:
● these only characterize the submitted programs

● i.e., better versions could potentially be written in each language

● however, this is the data we have to work with

● not all languages have entries for all programs

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel Programs

Copyright 2016 Cray Inc.
30

fasta

k-nucleotide

rev-comp

meteor

C O M P U T E | S T O R E | A N A L Y Z E

Pairwise Language Comparison Graphs

Copyright 2016 Cray Inc.
31

The first series of graphs compares languages pairwise
● For each language, we plot…

…the fastest version of each benchmark as a circle

…the smallest version of each benchmark as a square

…the mean of each set of benchmarks as a larger square/circle

● We also plot an oval at 1𝜎 (a standard deviation away from the mean)
● this provides an overall “profile” for the language’s fastest/smallest entries

● The axis scales are fixed across the graphs
● in a few cases we zoom out in the subsequent slide to display outliers

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. C

Copyright 2016 Cray Inc.
32

thread-ring

regex-dna

chameneos-redux

thread-ring

regex-dna

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. C++

Copyright 2016 Cray Inc.
33

thread-ring

mandelbrot

rev-comp

binary-trees

thread-ring

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Fortran

Copyright 2016 Cray Inc.
34

k-nucleotide

binary-trees

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Java

Copyright 2016 Cray Inc.
35

k-nucleotide

rev-comp

meteor

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Java (zoom)

Copyright 2016 Cray Inc.
36

k-nucleotide

rev-comp

meteor

meteor

thread-ring

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Python

Copyright 2016 Cray Inc.
37

k-nucleotide

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Fastest Entries: Chapel vs. Python (zoom)

Copyright 2016 Cray Inc.
38

spectral-norm

chameneos-redux

meteor

meteor

k-nucleotide

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Scala

Copyright 2016 Cray Inc.
39

regex-dna

k-nucleotide

chameneos-redux

thread-ring

mandelbrot

k-nucleotide

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Go

Copyright 2016 Cray Inc.
40

meteor

chameneos-redux

rev-compregex-dna

k-nucleotide

binary-trees

binary-trees

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Rust

Copyright 2016 Cray Inc.
41

pidigits
rev-comp

thread-ring

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Rust (zoom)

Copyright 2016 Cray Inc.
42

pidigits rev-comp

chameneos-redux

thread-ring

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Swift

Copyright 2016 Cray Inc.
43

mandelbrot

pidigits

k-nucleotide

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Scatter Plots: Chapel vs. Swift (zoom)

Copyright 2016 Cray Inc.
44

regex-dna

mandelbrot

pidigits

k-nucleotide

C O M P U T E | S T O R E | A N A L Y Z E

Language Summary Plots

Copyright 2016 Cray Inc.
45

● The following two graphs plot the means for all languages
first: across the set of fastest entries

then: across the set of most compact entries

● Note that the y-axis is logarithmic
● otherwise, Python’s inclusion flattens all data along the x-axis

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Fastest Codes: Averages (log scale perf)

Copyright 2016 Cray Inc.
46

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Smallest Codes: Averages (log scale perf)

Copyright 2016 Cray Inc.
47

C O M P U T E | S T O R E | A N A L Y Z E

Per-Benchmark Comparison Graphs

Copyright 2016 Cray Inc.
48

The next graphs compare benchmarks across languages
● For each language, we plot its fastest and most compact version

● We connect these versions with a line to help the eye associate them
● note that this line doesn’t imply a bound or a constraint, just a visual link

● Note that the y-axis is logarithmic

C O M P U T E | S T O R E | A N A L Y Z E

Binary-Trees: Language Comparisons

Copyright 2016 Cray Inc.
49

C O M P U T E | S T O R E | A N A L Y Z E

Chameneos-redux: Language Comparisons

Copyright 2016 Cray Inc.
50

C O M P U T E | S T O R E | A N A L Y Z E

Fannkuch-redux: Language Comparisons

Copyright 2016 Cray Inc.
51

C O M P U T E | S T O R E | A N A L Y Z E

Fasta: Language Comparisons

Copyright 2016 Cray Inc.
52

C O M P U T E | S T O R E | A N A L Y Z E

K-Nucleotide: Language Comparisons

Copyright 2016 Cray Inc.
53

C O M P U T E | S T O R E | A N A L Y Z E

Mandelbrot: Language Comparisons

Copyright 2016 Cray Inc.
54

C O M P U T E | S T O R E | A N A L Y Z E

Meteor: Language Comparisons

Copyright 2016 Cray Inc.
55

C O M P U T E | S T O R E | A N A L Y Z E

N-Body: Language Comparisons

Copyright 2016 Cray Inc.
56

C O M P U T E | S T O R E | A N A L Y Z E

Pidigits: Language Comparisons

Copyright 2016 Cray Inc.
57

C O M P U T E | S T O R E | A N A L Y Z E

Regexdna: Language Comparisons

Copyright 2016 Cray Inc.
58

C O M P U T E | S T O R E | A N A L Y Z E

Reverse-Complement: Language Comparisons

Copyright 2016 Cray Inc.
59

C O M P U T E | S T O R E | A N A L Y Z E

Spectral-Norm: Language Comparisons

Copyright 2016 Cray Inc.
60

C O M P U T E | S T O R E | A N A L Y Z E

Thread-Ring: Language Comparisons

Copyright 2016 Cray Inc.
61

C O M P U T E | S T O R E | A N A L Y Z E

CLBG Comparison Graphs

Copyright 2016 Cray Inc.
62

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Comparisons to C/C++

Copyright 2016 Cray Inc.
63

● The following graphs compare Chapel to C/C++ versions
● an update to what we did for the 1.11 release notes

● run using our team’s systems:
● 2 x 12-core Intel Xeon

● gcc/g++

● reflects more recent HW/compiler than the official CLBG system

● yet imperfect:
● some C/C++ entries are tuned specifically for the CLBG system

● others rely on libraries that are not installed on our system

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Comparisons to C/C++

Copyright 2016 Cray Inc.
64

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Comparisons to C/C++

Copyright 2016 Cray Inc.
65

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Comparisons to C/C++

Copyright 2016 Cray Inc.
66

C O M P U T E | S T O R E | A N A L Y Z E

CLBG: Future Work

Copyright 2016 Cray Inc.
67

● Continue improving Chapel and our entries:
● fasta: parallelize and optimize our current version

● string benchmarks: improve string operations and performance

● pidigits: optimize “assign returned record” idioms

● meteor: reduce startup time in qthreads/hwloc

● n-body: enable vectorization

● k-nucleotide: improve associative domain performance and features

● mandelbrot: consider adding ‘unroll’ keyword to for loops

● continue to study outliers and work on improving them

● Publish studies that dive beyond the superficial
● e.g., show heroism of top versions, compare with more typical ones

● Consider submitting more heroic Chapel versions

● Don’t lose sight of multi-locale performance work
● encourage HPC community to establish a CLBG equivalent

C O M P U T E | S T O R E | A N A L Y Z E

Other Benchmark Improvements

Copyright 2016 Cray Inc.
68

C O M P U T E | S T O R E | A N A L Y Z E

Other Benchmark Improvements

Copyright 2016 Cray Inc.
69

● Switched ISx to use the low-level PCG interface
● results in identical data sets as the reference version

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

70

