Performance Optimizations

Chapel Team, Cray Inc.
Chapel version 1.14
October 6, 2016

C

Safe Harbor Statement .

~

Krhis presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements.)

Copyright 2016 Cray Inc.

Outline

0

0

0

0

Array Optimizations
Array Indexing Optimization
Promoted Fast Followers Improvements
Strided Bulk Transfer
Array-as-vec Improvements

Locality Optimizations
Wide Pointer Analysis Improvements
Reducing Task Counting Overhead
Local On Statements Optimization

Othreads Improvements

Native Othread Sync Vars
Reduction Lock Improvements

Ot hr eRigdrib0 AISc hedul er

Runtime Optimizations

Jemalloc Changes
Faster Complex .re/.im

Other Performance Optimizations

\

§

Array Optimizations

\

§

Array Indexing Optimization

Array Indexing Opt: Background o

0 Chapel arrays are significantly richer than C/C++ arrays \

first-class language concept with support for:
non-0 based indexing, slicing, rank changing, and much more

O Historically, these features had a performance cost

previous optimizations have lessened much of the performance cost
shifted base pointer optimization, loop invariant code motion, etc.

0 Aremaining cause of overhead was a multiply for indexing

multiply is only needed for some specific/rare use-cases
rank-change, re-indexing, strided slice aliases

but all arrays were paying the price

/C‘:% COMPUTE | STORE | ANALYZE
_:y Copyright 2016 Cray Inc. @

Array Indexing Opt: Background

0 For example, multlply needed for a strided slice alias
var A: [1..4] int ;
var B:[l1..2] => AJ2..4 by 2];

B i s an alias to a subset of
logically, accesses of B are translated to accesses of A

i ndexing is tbhlkdnoslfdsed with a
B[2] =>A[2*blk] =>A[2* 2]

previously, multiply occurred for all arrays
A[l2] =>A[2*blk] =>A[2 * 1]

A

(B

Array Indexing Opt: This Effort «oon

OANArray Vi ews omuWiply ih apriecipled/neanner
butthatwork wa s not compl eted I n time fo

0 Added a simple compiler optimization in the interim

removes inner multiply, when it can prove no array needs it
l.e. if even one array requires it, all arrays will have the inner multiply

unf ortunat e, but few programs requli
/C‘:% COMPUTE | STORE | ANALYZE
_:y Copyright 2016 Cray Inc.

Array Indexing Opt: Impact

0 Now generating ideal 1D array indexing code
for i in 1.10 do

Ali]= 1;
Used to generate
for (i =INT64(1); | <= INT64(10); I +=INT64(1)) {
index = INT64(0);
rankl _index = (i * blk); /Il blk was always 1
index += rankl_index;
elem_ptr =(arr_base + index);
*(elem ptr) =1i;
}
Now generates
for (i =INT64(1); | <= INT64(10); | +=INT64(1))
*(arr_base + i)= i; [/lidentical to arr_base[i] =i;

Array Indexing Opt: Impact

0 Saw significant performance improvements
particularly for array-heavy benchmarks (higher is better)

PRK stencil — DefaultDist
50000 — StencilDist
— BlockDist
— Serial
40000

30000

20000

Rate (MFlops/s)

10000

12 Sep 14 Sep 16 Sep 18 Sep 20 Sep

HPCC: PTRANS Perf (GB/sec) - n=2,000, nb=100 — ptrans GB/s (gnu+gasnet-aries)

0.0014

0.0012 ,—\/V‘
0.001

0.0008

0.0006

Performance (GB/sec)

0.0004

0.0002

12 Sep 14 Sep 16 Sep 18 Sep 20 Sep

/C‘:% COMPUTE | STORE | ANALYZE
=

—,/ Copyright 2016 Cray Inc.

Array Indexing Opt: Impact

Time (seconds)

Time (seconds)

e
e
0 Saw significant performance improvements
several shootout benchmarks also benefited (lower is better)
Submitted Fannkuch-Redux Shootout Benchmark (n=12) — submitted Submitted N-body Shootout Benchmark —release
— release 25 — submitted

25

20 N 20

15 § 15

10 g 10

5 5
14080:; 15 Sep 16 Sep 17 Sep 18 Sep 14080:; 15 Sep 16 Sep 17 Sep 18 Sep

Submitted Fasta Shootout Benchmark — submitted Submitted Meteor Shootout Benchmark —release

22 — release - submltted‘
. ~jasaubnited
18 z o8

© § 04

“ ‘é’ 03

- F 0.2

10 0.1
14 Sep 15 Sep 16 Sep 17 Sep 18 Sep 14030:: 15 Sep 16 Sep 17 Sep 18 Sep

COMPUTE | STORE | ANALYZE

Copyright 2016 Cray Inc.

Array Indexing Opt: Status and Next Steps

Status:

added an array indexing optimization
indexing into 1-D arrays is as efficient as C/C++ arrays
optimization is thwarted if any arrays require this multiplication

Next Steps:

fi ni shvioeawsroa ywor k
retire current compiler optimization

/C‘:% COMPUTE | STORE | ANALYZE
=

J Copyright 2016 Cray Inc.

\

X

Promoted Fast Followers Improvements

Fast Promotion: Background

0 Chapel supports promoted expressions
var A, B, C: [1.m] real ;
A =B + alpha * C;

0 Promotion is implemented using zippered iteration
The promoted expression:
A =B+ alpha *C;

Is semantically equivalent to:

forall (a, b, c) inzip (A, B,QC) do
a=Db + alpha * c;

0 Historically, promotion could hurt performance

compiler did not build support for promoted fast-followers
fast followers: optimize zippered iteration for aligned distributed arrays
hurt performance for aligned promotion relative to explicit zippering

/C‘—l COMPUTE | STORE | ANALYZE
=

—,/ Copyright 2016 Cray Inc.

Fast Promotion: This Effort and Impact RIS

This Effort: add support for promoted fast followers

compiler builds checks required for fast-followers to trigger
at compile time: check that the promoted types support fast-followers
at runtime: check that promoted arrays are aligned (distributed identically)

Impact: improved performance of promoted expressions
no longer any penalty for using promotion

HPCC: Promoted STREAM Perf (GB/s) - n=5,723,827,200 — promoted stream GB/s (gnu+gasnet-mpi)
1500

@
m
Qo
@ 1000
e
m
=
=
8 500 AVa

0

14Aug 21Aug 28Aug 04Sep 11Sep 18Sep 25Sep 02 Oct
/C‘:% COMPUTE | STORE | ANALYZE
=

J Copyright 2016 Cray Inc. @

Fast Promotion: Next Steps SO08

Next Steps: eliminate runtime checks when possible
arrays declared over the same distribution must be aligned
var A, B:[distDom] real ; // alignment known at compile time

var A: [distDoml] real ;
var B: [distbom2] real ; /[alignment must be checked at runtime

®

\

§

Strided Bulk Transfer

Strided Bulk Transfer: Background

0 Whole-array assignment can use a single GET or PUT \
var A, B:[1.4,1.4]

A[l..4,1..4]=B[1..4, 1..4];

0 Slicing may select non-contiguous memory

A[l..4,1..2] = B[1..4, 3..4];

B [

int ;

H N

0 Can still bulk-transfer elements contiguous in memory

/5\ COMPUTE

| STORE

Copyright 2016 Cray Inc.

| ANALYZE

Strided Bulk Transfer: Background

O Initial implementation based on GASNet support
Based on approach described by Dan Bonachea
http://upc.lbl.gov/publications/upc_memcpy.pdf
Contributed by Rafael Asenjo and Alberto Sanz (U. Malaga) for v1.6

0 Calls out to runtime functions to perform transfers
Uses GA S N eintarface when possible
Otherwise uses our own implementation for each comm layer
Module code computes necessary metadata about arrays

OEnabl ed tukeBukimrisfer&tridedéconfig param

Disabled by default due to lack of confidence in testing

/C‘:% COMPUTE | STORE | ANALYZE
=

—,/ Copyright 2016 Cray Inc.

http://upc.lbl.gov/publications/upc_memcpy.pdf

Strided Bulk Transfer : This Effort SO08
S \
\
0 Significantly improved the implementation \
Fixed several bugs
Simplified code implementation
Revamped documentation
0 Improved testing for DefaultRectangular cases
Rank changes
Strided domains
Many combinations of domains up to four dimensions
0 Enabled this optimization by default
Good performance observed for Intel PRK Stencil app
2N COMPUTE | STORE | ANALYZE
C_:'y Copyright 2016 Cray Inc.

Strided Bulk Transfer : Impact

0 Good improvements for PRK stencil
Especially for GASNet

PRK stencil

D)

Rate (MFlops/s)

80000

60000

40000

20000

0

17 Jul 24 Jul 31 Jul 07 Aug 14 Aug 21 Aug 28 Aug 04 Sep

Also for ugni

Rate (MFlops/s)

PRK stencil

70000
60000 ’~
L~ s,
50000
40000
30000
20000

10000
0

07 Aug 14 Aug 21 Aug 28 Aug 04 Sep

— stencildist (gnu+gasnet-aries)
--blockdist (gnu+gasnet-aries)

— stencildist (gnu+ugni-qthreads)
-=-blockdist (gnu+ugni-qthreads)

Strided Bulk Transfer : Status and Next Steps S

Status: !
Enabled by default for the 1.14 release

Next Steps:
Investigate distributed array strided bulk transfer
Module-level implementation for runtimes without custom support?

/C‘:% COMPUTE | STORE | ANALYZE
_:y Copyright 2016 Cray Inc. @

\

X

Array-as-vec Shrinking Improvement

Array-as-vec Shrinking Improvement «oon

Background: Shrinking an array-as-vec left no room for growth .
After a shrink, the allocated size was set to the current array size
Then push/popping a few elements could cause repeated reallocation

This Effort: Leave room for growth after shrinking the array
Leave the allocation growthFactor times bigger than the number of array elements

Impact: Pus h/ popping a few el ements w

/C‘:% COMPUTE | STORE | ANALYZE
=

—,/ Copyright 2016 Cray Inc.

\

X

Locality Optimizations

\

X

Wide Pointer Analysis Improvements

Wide Pointer Analysis: Background o

0 Wide pointers represent remote data .
t ypedef struct {
locale id t node;
myClass * addr ;
} chpl _ wide_myClass ;

0 They introduce overhead when data is actually local
Especially for array accesses
Runtime check required to see if data is local
Wide pointers may thwart back-end C compiler optimizations

Wide Pointer Analysis: Background .o

0 Passing a wide pointer to a function has consequences !

proc increment(this: myClass) {
this._ internalAdd (1);
return this;

}

var foo= new myClass ();

foo.increment (); // internally becomes increment(foo)

on Locales[numLocales -1]{
/'l 6foobdb is remote in this scope, so O0thisbo
foo.increment ();
}
Oi ncremento wil |l al ways return a
/'l types for o6incrementdé must change during c¢
proc increment(this: chpl __ wide_myClass){

this._ internalAdd (1);
return this; // now a wide pointer!

Wide Pointer Analysis: Background o
A \
\
0O60i ncremento example 1 s artifi
Array, domain, distribution constructors
Array slicing

0 For non-trivial programs, we eventually use a wide array
Especially when domain maps are used

0 At callsite, the returned pointer refers to local data

var foo= new MyClass ();
foo.increment (); // o6food6 i1s | ocal, but i1 ncrem

Problem: the compiler could not detect this in 1.13

Wide Pointer Analysis: This Effort «oon

0 Develop analysis to detect that the returned data is local !
If we pass in a local class, get a local class back
Passing in a wide class, gets a wide class back

OFi nd functions t h-adssda arguménesct O
Reflects if returned symbol would be local if arguments are local

0 At a callsite, localize the returned wide pointer
When the arguments are also local

7= COMPUTE | STORE | ANALYZE

=/ Copyright 2016 Cray Inc.

Wide Pointer Analysis: This Effort .o

oOConsi der t he oIl ncremento funcac

Wher e 06 fooabvariables a

Before this effort:
var temp:wide myClass = increment(foo);

After analysis:
var wideTemp :wide myClass =increment(foo);

var temp myClass = wideTemp.addr ; // The local pointer

/'l o0t empd6 1 s now -poiater averheadfar subsequeantdoperationsd e

Wide Pointer Analysis: Impact

0 Improvements for single-node i no-local
Minimal impact, if any, on true multi-locale

Time (seconds)

Time (seconds)

1.5

0.5

Parboil Stencil 3D Execution Time

[15] [16]
03Apr 10 Apr 17 Apr 24 Apr 01 May 08 May 15 May
ISx (Release)
s
Y
Ay
N e _ o e e e o
_______ N
——————— Y
........ _ _
24 Apr 01 May 08 May 15 May

--stencil 3D (gnhu+no-local)
— stencil 3D (gnhu+none)

--total time (gnhu+no-local)

— total time (gnu+none)
-=bucketize time (gnu+no-local)

— bucketize time (gnu+none)

— bucket count time (gnu+none)
--bucket count time (gnu+no-local)

- —input time (gnu+none)

==input time (gnu+no-local)
--count keys time (gnu+no-local)
— count keys time (gnu+none)

— exchange time (gnu+none)
--exchange time (gnu+no-local)
--bucket offset time (gnu+no-local)
— bucket offset time (gnu+none)

Wide Pointer Analysis: Status and Next Steps S St

Status: .
New analysis enabled for 1.14 release
Improves generated C code
Performance gains less than hoped for

Next Steps:
Improve analysis for return-by-reference formals
Look for other patterns where this analysis is useful

/C‘:% COMPUTE | STORE | ANALYZE
_:y Copyright 2016 Cray Inc. @

\

X

Reducing Task Counting Overhead

Task Counting: Background SO08

0 coforall statements wait for their tasks to complete !
Implemented with atomic variables
when coforall spawns each task, the atomic variable is incremented
when a task completes, it decrements the atomic variable

0 But, decrementing created a new task!
on the locale that owns the atomic variable
this is unnecessary overhead

/C‘:% COMPUTE | STORE | ANALYZE
_:y Copyright 2016 Cray Inc. @

Task Counting: Background

coforall loc in Locales {
on loc {
foo();
}
}

/l'is converted by the compiler into something like this:

var tasksRunning
loc in Locales {

for

}

tasksRunning.add

atomicint ; // processor atomic

(1);

spawn_task to loc (loc , foo_ wrapper

tasksRunning.waitFor

foo_wrapper (){

foo() ;
on Locales[O]

(0);

do tasksRunning.sub

0);

(1),

Overhead: creates a
task on Locale O

Task Counting: This Effort R

This Effort: Make compiler smarter about these decrements
perform them in active message handler
no need to start a task

Status:
Implemented and in the release
Improved performance of some tests, e.g. for this 16-node XC run:

ISx (Release) — total time (gnu+gasnet-mpi)
--exchange time (gnu+gasnet-mpi)
20 — total time (gnu+gasnet-aries)
-- exchange time (gnu+gasnet-aries)
--- bucketize time (gnu+gasnet-mpi)
--- bucket offset time (gnu+gasnet-mpi)
— -~ bucketize time (gnu+gasnet-aries)
-+ bucket count time (gnu+gasnet-mpi)
- bucket count time (gnu+gasnet-aries)
— input time (gnu+gasnet-aries)
— input time (gnu+gasnet-mpi)
g——— == -- count keys time (gnu+gasnet-aries)
—————————————————————————————— count keys time (gnu+gasnet-mpi)
== bucket offset time (gnu+gasnet-aries)
1

15

10

Time (seconds)

0

05 Jun 12 Jun 19 Jun 26 Jun 03 Jul 10 Jul

Next Steps:
Make additional short operations run in active message handlers

2

@

COMPUTE | STORE | ANALYZE

Copyright 2016 Cray Inc.

\

X

Reducing Overhead for Local On Statements

Local On: Background

0 Programs often have on-statements that run locally
these are commonly there for generality

0 Some common examples:
I/O from Locale O
updating atomic values

0 These on-statements still add overhead because:
an argument bundle is allocated
arguments are stored into the argument bundle
the runtime is invoked to possibly communicate

/C‘:% COMPUTE | STORE | ANALYZE
=

—,/ Copyright 2016 Cray Inc.

Local On: This Effort OO0

0 Compiler now generates a fast-path for on-statements

on targetLocale do f(a, b, ¢);

now translates into

if (targetLocale == thisLocale) { /Il local case
f(a, b, ¢);

} else { I/l remote case
arguments = malloc (...);

arguments ->a = a;

arguments ->b =b;

arguments - >c =;

chpl_executeOn (targetLocale ,& f wrapper);
free(arguments);

Local On: Impact on 16-node XC

NPB: EP Time (sec) -size D

40
L) 30
c
o]
o
@
R 20
)
£
|_
10
ol
15 May 22 May 29 May 05 Jun 12 Jun 19 Jun 26 Jun

— ep runtime - D (gnu+ugni-qthreads)
— ep runtime - D (gnu+gasnet-aries)

\
cCRA Y|
[\
S \
\

