
C O M P U T E | S T O R E | A N A L Y Z E

Performance Optimizations

Chapel Team, Cray Inc.

Chapel version 1.14

October 6, 2016

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

Safe Harbor Statement

Copyright 2016 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
3

ǒArray Optimizations
Array Indexing Optimization

Promoted Fast Followers Improvements

Strided Bulk Transfer

Array-as-vec Improvements

ǒLocality Optimizations
Wide Pointer Analysis Improvements

Reducing Task Counting Overhead

Local On Statements Optimization

ǒQthreads Improvements
Native Qthread Sync Vars

Reduction Lock Improvements

Qthreads ñDistribò Scheduler

ǒRuntime Optimizations
Jemalloc Changes

Faster Complex .re/.im

ǒOther Performance Optimizations

C O M P U T E | S T O R E | A N A L Y Z E

Array Optimizations

Copyright 2016 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

Array Indexing Optimization

Copyright 2016 Cray Inc.
5

C O M P U T E | S T O R E | A N A L Y Z E

Array Indexing Opt: Background

Copyright 2016 Cray Inc.
6

ǒChapel arrays are significantly richer than C/C++ arrays
first-class language concept with support for:

non-0 based indexing, slicing, rank changing, and much more

ǒHistorically, these features had a performance cost
previous optimizations have lessened much of the performance cost

shifted base pointer optimization, loop invariant code motion, etc.

ǒA remaining cause of overhead was a multiply for indexing
multiply is only needed for some specific/rare use-cases

rank-change, re-indexing, strided slice aliases

but all arrays were paying the price

C O M P U T E | S T O R E | A N A L Y Z E

Array Indexing Opt: Background

Copyright 2016 Cray Inc.
7

ǒFor example, multiply needed for a strided slice alias
var A: [1..4] int ;

var B: [1..2] => A[2..4 by 2];

B is an alias to a subset of A (B is a ñviewò into Aôs data)
logically, accesses of B are translated to accesses of A

indexing is translated with a ñblkò offset

B[2] => A[2 * blk] => A[2 * 2]

previously, multiply occurred for all arrays

A[2] => A[2 * blk] => A[2 * 1]

1 2 3 4A

1 2B

C O M P U T E | S T O R E | A N A L Y Z E

Array Indexing Opt: This Effort

Copyright 2016 Cray Inc.
8

ǒñArray Viewsò will remove multiply in a principled manner
but that work wasnôt completed in time for 1.14

ǒAdded a simple compiler optimization in the interim
removes inner multiply, when it can prove no array needs it

i.e. if even one array requires it, all arrays will have the inner multiply

unfortunate, but few programs require it, and itôs better than the status quo

C O M P U T E | S T O R E | A N A L Y Z E

Array Indexing Opt: Impact

Copyright 2016 Cray Inc.
9

ǒNow generating ideal 1D array indexing code
for i in 1..10 do

A[i] = i ;

Used to generate

for (i = INT64(1); i <= INT64(10); i += INT64(1)) {

index = INT64(0);

rank1_index = (i * blk); // blk was always 1

index += rank1_index;

elem_ptr = (arr_base + index);

*(elem_ptr) = i ;

}

Now generates

for (i = INT64(1); i <= INT64(10); i += INT64(1))

*(arr_base + i) = i ; // identical to arr_base[i] = i;

C O M P U T E | S T O R E | A N A L Y Z E

Array Indexing Opt: Impact

Copyright 2016 Cray Inc.
10

ǒSaw significant performance improvements
particularly for array-heavy benchmarks (higher is better)

C O M P U T E | S T O R E | A N A L Y Z E

Array Indexing Opt: Impact

Copyright 2016 Cray Inc.
11

ǒSaw significant performance improvements
several shootout benchmarks also benefited (lower is better)

C O M P U T E | S T O R E | A N A L Y Z E

Array Indexing Opt: Status and Next Steps

Copyright 2016 Cray Inc.
12

Status:
added an array indexing optimization

indexing into 1-D arrays is as efficient as C/C++ arrays

optimization is thwarted if any arrays require this multiplication

Next Steps:
finish òarray-viewsò work

retire current compiler optimization

C O M P U T E | S T O R E | A N A L Y Z E

Promoted Fast Followers Improvements

Copyright 2016 Cray Inc.
13

C O M P U T E | S T O R E | A N A L Y Z E

Fast Promotion: Background

Copyright 2016 Cray Inc.
14

ǒChapel supports promoted expressions
var A, B, C: [1..m] real ;

A = B + alpha * C;

ǒPromotion is implemented using zippered iteration
The promoted expression:

A = B + alpha * C ;

Is semantically equivalent to:

forall (a, b, c) in zip (A, B, C) do

a = b + alpha * c;

ǒHistorically, promotion could hurt performance
compiler did not build support for promoted fast-followers

fast followers: optimize zippered iteration for aligned distributed arrays

hurt performance for aligned promotion relative to explicit zippering

C O M P U T E | S T O R E | A N A L Y Z E

Fast Promotion: This Effort and Impact

Copyright 2016 Cray Inc.
15

This Effort: add support for promoted fast followers
compiler builds checks required for fast-followers to trigger

at compile time: check that the promoted types support fast-followers

at runtime: check that promoted arrays are aligned (distributed identically)

Impact: improved performance of promoted expressions
no longer any penalty for using promotion

C O M P U T E | S T O R E | A N A L Y Z E

Fast Promotion: Next Steps

Copyright 2016 Cray Inc.
16

Next Steps: eliminate runtime checks when possible
arrays declared over the same distribution must be aligned

var A, B: [distDom] real ; // alignment known at compile time

var A: [distDom1] real ;

var B: [distDom2] real ; // alignment must be checked at runtime

C O M P U T E | S T O R E | A N A L Y Z E

Strided Bulk Transfer

Copyright 2016 Cray Inc.
17

C O M P U T E | S T O R E | A N A L Y Z E

Strided Bulk Transfer: Background

Copyright 2016 Cray Inc.
18

ǒWhole-array assignment can use a single GET or PUT
var A, B : [1..4, 1..4] int ;

A[1..4, 1..4] = B[1..4, 1..4];

ǒSlicing may select non-contiguous memory
A[1..4, 1..2] = B[1..4, 3..4];

ǒCan still bulk-transfer elements contiguous in memory

C O M P U T E | S T O R E | A N A L Y Z E

Strided Bulk Transfer: Background

Copyright 2016 Cray Inc.
19

ǒInitial implementation based on GASNet support
Based on approach described by Dan Bonachea

http://upc.lbl.gov/publications/upc_memcpy.pdf

Contributed by Rafael Asenjo and Alberto Sanz (U. Malaga) for v1.6

ǒCalls out to runtime functions to perform transfers
Uses GASNetôsinterface when possible

Otherwise uses our own implementation for each comm layer

Module code computes necessary metadata about arrays

ǒEnabled through óuseBulkTransferStrideô config param
Disabled by default due to lack of confidence in testing

http://upc.lbl.gov/publications/upc_memcpy.pdf

C O M P U T E | S T O R E | A N A L Y Z E

Strided Bulk Transfer : This Effort

Copyright 2016 Cray Inc.
20

ǒSignificantly improved the implementation
Fixed several bugs

Simplified code implementation

Revamped documentation

ǒImproved testing for DefaultRectangular cases
Rank changes

Strided domains

Many combinations of domains up to four dimensions

ǒEnabled this optimization by default
Good performance observed for Intel PRK Stencil app

C O M P U T E | S T O R E | A N A L Y Z E

Strided Bulk Transfer : Impact

Copyright 2016 Cray Inc.
21

ǒGood improvements for PRK stencil
Especially for GASNet

Also for ugni

C O M P U T E | S T O R E | A N A L Y Z E

Strided Bulk Transfer : Status and Next Steps

Copyright 2016 Cray Inc.
22

Status:
Enabled by default for the 1.14 release

Next Steps:
Investigate distributed array strided bulk transfer

Module-level implementation for runtimes without custom support?

C O M P U T E | S T O R E | A N A L Y Z E

Array-as-vec Shrinking Improvement

Copyright 2016 Cray Inc.
23

C O M P U T E | S T O R E | A N A L Y Z E

Array-as-vec Shrinking Improvement

Copyright 2016 Cray Inc.
24

Background: Shrinking an array-as-vec left no room for growth
After a shrink, the allocated size was set to the current array size

Then push/popping a few elements could cause repeated reallocation

This Effort: Leave room for growth after shrinking the array
Leave the allocation growthFactor times bigger than the number of array elements

Impact:Push/popping a few elements wonôt cause repeated resizing

C O M P U T E | S T O R E | A N A L Y Z E

Locality Optimizations

Copyright 2016 Cray Inc.
25

C O M P U T E | S T O R E | A N A L Y Z E

Wide Pointer Analysis Improvements

Copyright 2016 Cray Inc.
26

C O M P U T E | S T O R E | A N A L Y Z E

Wide Pointer Analysis: Background

Copyright 2016 Cray Inc.
27

ǒWide pointers represent remote data
t ypedef struct {

locale_id_t node;

myClass * addr ;

} chpl __wide_myClass ;

ǒThey introduce overhead when data is actually local
Especially for array accesses

Runtime check required to see if data is local

Wide pointers may thwart back-end C compiler optimizations

C O M P U T E | S T O R E | A N A L Y Z E

Wide Pointer Analysis: Background

Copyright 2016 Cray Inc.
28

ǒPassing a wide pointer to a function has consequences
proc increment(this: myClass) {

this._ internalAdd (1);

return this;

}

var foo = new myClass ();

foo.increment (); // internally becomes increment(foo)

on Locales[numLocales - 1] {

// ófooô is remote in this scope, so óthisô formal must be wide

foo.increment ();

}

óincrementô will always return a wide pointer, even for local data
// types for óincrementô must change during compilation

proc increment(this: chpl __wide_myClass) {

this._ internalAdd (1);

return this; // now a wide pointer!

}

C O M P U T E | S T O R E | A N A L Y Z E

Wide Pointer Analysis: Background

Copyright 2016 Cray Inc.
29

ǒóincrementô example is artificial, but this occurs in practice
Array, domain, distribution constructors

Array slicing

ǒFor non-trivial programs, we eventually use a wide array
Especially when domain maps are used

ǒAt callsite, the returned pointer refers to local data
var foo = new MyClass ();

foo.increment (); // ôfooô is local, but increment returns wide

Problem: the compiler could not detect this in 1.13

C O M P U T E | S T O R E | A N A L Y Z E

Wide Pointer Analysis: This Effort

Copyright 2016 Cray Inc.
30

ǒDevelop analysis to detect that the returned data is local
If we pass in a local class, get a local class back

Passing in a wide class, gets a wide class back

ǒFind functions that óreflectô the wide-ness of arguments
Reflects if returned symbol would be local if arguments are local

ǒAt a callsite, localize the returned wide pointer
When the arguments are also local

C O M P U T E | S T O R E | A N A L Y Z E

Wide Pointer Analysis: This Effort

Copyright 2016 Cray Inc.
31

ǒConsider the óincrementô function
Where ófooô is a local variable

Before this effort:
var temp : wide__ myClass = increment(foo);

After analysis:
var wideTemp : wide__ myClass = increment(foo);

var temp : myClass = wideTemp.addr ; // The local pointer

// ótempô is now local and avoids wide-pointer overhead for subsequent operations

C O M P U T E | S T O R E | A N A L Y Z E

Wide Pointer Analysis: Impact

Copyright 2016 Cray Inc.
32

ǒImprovements for single-node ïno-local
Minimal impact, if any, on true multi-locale

C O M P U T E | S T O R E | A N A L Y Z E

Wide Pointer Analysis: Status and Next Steps

Copyright 2016 Cray Inc.
33

Status:
New analysis enabled for 1.14 release

Improves generated C code

Performance gains less than hoped for

Next Steps:
Improve analysis for return-by-reference formals

Look for other patterns where this analysis is useful

C O M P U T E | S T O R E | A N A L Y Z E

Reducing Task Counting Overhead

Copyright 2016 Cray Inc.
34

C O M P U T E | S T O R E | A N A L Y Z E

Task Counting: Background

Copyright 2016 Cray Inc.
35

ǒcoforall statements wait for their tasks to complete
implemented with atomic variables

when coforall spawns each task, the atomic variable is incremented

when a task completes, it decrements the atomic variable

ǒBut, decrementing created a new task!
on the locale that owns the atomic variable

this is unnecessary overhead

C O M P U T E | S T O R E | A N A L Y Z E

Task Counting: Background

Copyright 2016 Cray Inc.
36

coforall loc in Locales {

on loc {

foo();

}

}

// is converted by the compiler into something like this:

var tasksRunning : atomicInt ; // processor atomic

for loc in Locales {

tasksRunning.add (1);

spawn_task_to_loc (loc , foo_wrapper ());

}

tasksRunning.waitFor (0);

foo_wrapper () {

foo() ;

on Locales[0] do tasksRunning.sub (1);

}

Overhead: creates a

task on Locale 0

C O M P U T E | S T O R E | A N A L Y Z E

Task Counting: This Effort

Copyright 2016 Cray Inc.
37

This Effort: Make compiler smarter about these decrements
perform them in active message handler

no need to start a task

Status:
Implemented and in the release

Improved performance of some tests, e.g. for this 16-node XC run:

Next Steps:
Make additional short operations run in active message handlers

C O M P U T E | S T O R E | A N A L Y Z E

Reducing Overhead for Local On Statements

Copyright 2016 Cray Inc.
38

C O M P U T E | S T O R E | A N A L Y Z E

Local On: Background

Copyright 2016 Cray Inc.
39

ǒPrograms often have on-statements that run locally
these are commonly there for generality

ǒSome common examples:
I/O from Locale 0

updating atomic values

ǒThese on-statements still add overhead because:
an argument bundle is allocated

arguments are stored into the argument bundle

the runtime is invoked to possibly communicate

C O M P U T E | S T O R E | A N A L Y Z E

Local On: This Effort

Copyright 2016 Cray Inc.
40

ǒCompiler now generates a fast-path for on-statements

on targetLocale do f(a, b, c);

now translates into

if (targetLocale == thisLocale) { // local case

f(a, b, c);

} else { // remote case

arguments = malloc (...);

arguments - >a = a;

arguments - >b = b;

arguments - >c = c;

chpl_executeOn (targetLocale , & f_wrapper);

free(arguments);

}

C O M P U T E | S T O R E | A N A L Y Z E

Local On: Impact on 16-node XC

Copyright 2016 Cray Inc.
41

