Documentation Improvements

Chapel Team, Cray Inc.
Chapel version 1.14
October 6, 2016

COMPUTE | ANALYZE

Safe Harbor Statement .

~

Krhis presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

\these forward-looking statements.)

Copyright 2016 Cray Inc.

Outline

e Primers & Hellos

e chpldoc “use” information

e Chapel Lanquage Man Page

e Users Guide Improvements

e Other Documentation Improvements

Primers & Hellos

COMPUTE | STORE | ANALYZE

Copyright 2016 Cray Inc.

Primers & Hellos: Background o

e New users often pointed to “primers” and “hello worlds” |
e Appearance is important
e Likely the first Chapel code new users will see
e Actual ‘documentation’ contained within the source comments

e Hello Worlds

e Accessible via chapel.cray.com or repository
e Cumbersome to maintain — updates require updating web / repo version
e Majority of source file is made of comment blocks

e Primers

e Accessible via repository
e Typically link users to the Github URL
e No organized index or URL from the website

/C‘:% COMPUTE | STORE | ANALYZE
_:y Copyright 2016 Cray Inc. @

http://chapel.cray.com/

Primers & Hellos: This Effort KON

e chpl2rst.py script converts Chapel -> reStructured Text .
e Intended for rendering a source file into a tutorial-style rst file

e Different than chpldoc in several aspects
e Comment blocks and unindented line comments rendered as plain text
e Code and indented line comments rendered as code blocks
e Title and reference label auto-generated, for cross-referencing
e GitHub URL to actual source code inserted at top of file

e reStructured Text is rendered into HTML via Sphinx

e Primers and Hellos are now included with online docs
e Primers and Hellos were edited to provide clean renders
e Online docs include an organized index
e Primers and Hellos are included as top-level links in sidebar

/él COMPUTE | STORE | ANALYZE
,:_’/ Copyright 2016 Cray Inc. @

Primers & Hellos: Hello Worlds Index

Chapel Documentation 1.14

Docs » Hello World Variants View page source

Hello World Variants

Quickstart Instructions
Using Chapel The following are six "Hello, world!" variants that introduce a few of Chapel's serial, parallel, and

: locality-oriented features:
Platform-Specific Notes

Technical Notes * Simple version

Tools + Production-grade
+ Data-parallel

+ Distributed-memory data-parallel
Quick Reference

» Task-parallel
B Hello World Variants « Distributed-memory task-parallel

Simple version
Production-grade QO Previous Next ©
Data-parallel

Distributed-memory data-parallel

(3]

> Copyright 2016, Cray Inc.
Task-parallel

Distributed-memory task-parallel
Primers

Language Specification

Built-in Types and Functions

Standard Modules

Primers & Hellos: Data-parallel hello world .o

Chapel Documentation 1.14

Docs » Hello World Variants » Data-parallel hello world View page source

C—— \\
Data-parallel hello world

Quickstart Instructions
Using Chapel View hello3-datapar.chpl on GitHub
Platform-Specific Notes

This program uses Chapel's data parallel features to create a parallel hello world program that
Technical Notes utilizes multiple cores on a single /ocale (compute node).

Tools

The following configuration constantindicates the number of messages to print out. The default can
be overridden on the command-line (e.g., ./hello --numMessages-1@@ease).

Quick Reference

2 Hello World Variants
config const numMessages = 18@;
Simple version

Production-grade
Next, we use a data-parallel forall-loop to iterate over a range representing the number of messages

D eeans! to print. By default, forall-loops will typically be executed cooperatively by a number of tasks
Distributed-memory data-parallel proportional to the hardware parallelism on which the loop is running. Ranges like 1. .numMessages
Task-parallel are always local to the current task's locale, so this forall-loop will execute using the number of local
Distributed-memory task-parallel processing units or cores.

Primers
Because the messages are printed within a parallel loop, they may be displayed in any order. The

Language Specification writeln{) procedure protects against finer-grained interleaving of the messages themselves.

Built-in Types and Functions

Standard Modules forall msg in 1..nunMessages do

writalnf "Hat1 -

Primers & Hellos: Data-parallel hello world .o

Chapel Documentation 1.14

Docs » Hello World Variants » Data-parallel hello world View page source

GRS \

// Data-parallel hello world

Data-parallel hellg

Quickstart Instructions /* This program uses Chapel's data parallel features to create a
Using Chapel View hello3-datapar.chpl on GitHY parallel hello world program that utilizes multiple cores on a
. single ~locale” (compute node).
Platform-Specific Notes . . */

This program uses Chapel's data p

Technical Notes utilizes multiple cores on a single |

Tools p
The following mnﬁgurat:onconst. // The following ~configuration constant”™ indicates the number of
. be overridden on the command-lin // messages to print out. The default can be overridden on the
Quick Reference
// command-line (e.g., ~./hello --numMessages=1080000 ").
2 Hello World Variants //

i t numM = 1ee;
Simple version contig const numfessages ’ config const numMessages = 100;

Production-grade //
Next, we use a data-parallel forall
Data-parallel // Next, we use a data-parallel "forall-loop™ to iterate over a

EEEIEE ot E R // “range’ representing the number of messages to print. By default,

LA E Tt sl proportional to the hardware para // forall-loops will typically be executed cooperatively by a number
Task-parallel are always local to the current tas // of tasks proportional to the hardware parallelism on which the loop
Distributed-memory task-parallel processing units or cores. // is running. Ranges like "“1..numMessages™ "~ are always local to the

// current task's locale, so this forall-loop will execute using the

Primers Because the messages are printed // number of local processing units or cores.
/7

// Because the messages are printed within a parallel loop, they may

Langua ecification writeln{) procedure protects again

Built-in Types and Functions

// be displayed in any order. The “writeln()" procedure protects

Standard Modules forall msg in 1..numMessages do // against finer-grained interleaving of the messages themselves.
writelnf"Hat1~ » am s //
[] forall msg in 1..numMessages do
= writeln("Hello, world! (from iteration ", msg, " of ", numMessages, ")");

C O,

Primers & Hellos: Primers Index

Chapel Documentation 1.14

Docs » Primers View page source

Primers

Quickstart Instructions
Using Chapel Language Basics

Platform-Specific Notes

* Variables
Technical Notes

* Procedures

Tools + Classes
» Generic Classes
e e » Variadic Arguments (var args)

» Modules
Hello World Variants

2 Primers Iterators

Language Basics

Iterators * lterators

. « Parallel Iterators
Task Parallelism

Locality Task Parallelism

Data Parallelism

Library Utilities » Task Parallelism

Numerical Libraries * Sync/Singles

* Atomics
Tools

Language Overview LOC ali tY

Primers & Hellos: Primers - Variadic Arguments

Chapel Documentation 1.14

Docs » Primers » Variadic Arguments View page source

Variadic Arguments

Quickstart Instructions

Using Chapel View varargs.chpl on GitHub

Platform-Specific Notes . X . . .

This primer demonstrates procedures with variable length arguments lists.

Technical Notes

Tools Procedures can be defined with variable length argument lists. The following procedure accepts
integer arguments and defines the parameter n as the number of arguments passed to the current

i call. The args argument is an n -tuple of int values.
Quick Reference gsarg n -tup in

Hello World Variants

. proc intWriteln(args: int ...?n) {
2 Primers for i in 1..n {
& Language Basics i - = ther.'
write{args(i), " ");
Variables else
writeln{args(i));
Procedures 1
Classes 1
Generic Classes intWriteln(1, 2, 3, 4);

Variadic Arguments (var args)

Modules By eliding the type of the args argument, the variable arguments can be made generic. The
Iterators following procedure takes n arguments of any type and writes them on a single line. Here, args isa
Task Parallelism heterogeneous n -tuple, so a parameter for loop is used to unroll the loop body so that the index i
Localitv fe amaramatas oot T

\
AY |
[\
S \

\

Primers & Hellos: Status and Next Steps

Status:
e Intro Chapel code is more accessible and prettier
e Hello Worlds are more maintainable

Next Steps:
e Continue to improve primers breadth and depth
e Modify reference labels to reflect source filenames
e Improves readability of cross-references in source code

e Minor feature additions to chpl2rst.py script
e Add a way to render sequences: /* and */
e Add a way to maintain indentation across code blocks

/C':% COMPUTE | STORE | ANALYZE

=/ Copyright 2016 Cray Inc.

\

X

chpldoc “use” information

chpldoc “use” information SO08

Background: No information on how to access module in docs

This Effort: Now generate a sample use statement for module

Docs » Standard Modules » FileSystem

FileSystem

A file utilities library

Impact: Users can copy+paste the use directly into their code

®

\

X

Chapel Language Man Page

Chapel Language Man Page A

Background: Documentation built by sphinx into html
e Sphinx supports many other output types, but we only supported html
e Building to a man page resulted in errors

This Effort: Officially support building the docs as a man page

Impact: Users & Developers can search docs from CLI
e This man page contains all documentation that comes in html docs

e Accessed via the language man3 page:
man chapel

Next Steps: Consider other outputs to support
e e.g., individual man pages, pdf, JSON

?f COMPUTE | STORE | ANALYZE
=

J Copyright 2016 Cray Inc.

\

X

Users Guide Improvements

Users Guide Improvements

Background:

e Started creating online users guide with version 1.13
e uUsing Sphinx-based rst — html approach
e Wwriting lightweight, example-driven articles per topic

This Effort:

e expanded users guide by another 8 articles:

Base Language:
e basic types
e literal values for basic types
e casts
e for loops
e zippered iteration
Task Parallelism:
e cobegins
e coforalls
Data Parallelism:
o forall loops

7= COMPUTE | STORE | ANALYZE

=/ Copyright 2016 Cray Inc.

Users Guide Improvements

Impact:

e users guide starting to look
non-trivial:

Next Steps:
e keep writing!
e consider using chpl2rst.py
for these

e current approach is fragile
w.r.t. test changes

Chapel Documentation 1.14

Using Cha
Platform ific Notes
Technica

Tools

Quick Reference

Built-in Type
Standard Modules
Pac Moduls

Standard Layouts and Distributions

B Chapel Users Guide (WIP)

Overview

Base Language
Task Parallelism
Data Parallelism

Locality

ecifications

Base Language

This is the core of Chapel and what remains when all features in support of parallelism and locality
are removed.

Hello world: simple console output
Variable Declarations

« Basic Types: booleans, numbers, and strings
« Literal Values for Basic Types

« Casts: explicit type conversions

for-loops: structured serial iteration
Zippered Iteration

(more to come...)

Task Parallelism

These are Chapel's lower-level features for creating parallel explicitly and synchronizing between
them.

Task Parallelism Overview

+ begin Statements: unstructured tasking
» cobegin Statements: creating groups of tasks
« coforall-loops: loop-based tasking

(more to come...)

Data Parallelism

These are Chapel's higher-level features for creating parallelism more abstractly using a rich set of
data structures.

o forall-loops: data-parallel loops
(more to come...)

Locality

These are Chapel's features for describing how data and tasks should be mapped to the target
architecture for the purposes of performance and scalability.

o Locales: representing architectural locality

o Compiling and Executing Multi-Locale Programs
* The locale Type and Variables

» on-clauses: controlling locality/affinity

(more to come...)

\

X

Other Documentation Improvements

Other Documentation Improvements

e Doc page content updates:
e Multilocale instructions
e Quickstart instructions
e UDP GASNet conduit notes
e HDFS module (contributed by Deepak Majeti)

e New primer: Modules

e Archived Language Specifications page created

e chplvis file format documented

e A multitude of spelling mistakes in source corrected
e Various general formatting improvements to online docs

e Several spec improvements

2

@

http://chapel.cray.com/docs/1.14/usingchapel/multilocale.html
http://chapel.cray.com/docs/1.14/usingchapel/QUICKSTART.html
http://chapel.cray.com/docs/1.14/platforms/udp.html
http://chapel.cray.com/docs/1.14/modules/packages/HDFS.html#module-HDFS
http://chapel.cray.com/docs/1.14/primers/primers/modules.html
http://chapel.cray.com/docs/1.14/primers/primers/modules.html
https://github.com/chapel-lang/chapel/blob/release/1.14/tools/chplvis/TextDataFormat.txt

: : ==AYC: |
Legal Disclaimer «oon

S \

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.. ACE, APPRENTICEZ2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

2

= @

