
C O M P U T E | S T O R E | A N A L Y Z E

Runtime and Third-Party Improvements

Chapel Team, Cray Inc.

Chapel version 1.13

April 7, 2016

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

 Safe Harbor Statement

Copyright 2016 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2016 Cray Inc.
3

● Runtime and Memory Layer Overview

● Jemalloc Memory Layer

● ugni Communication Layer Improvements

● Soft-threading Patent Granted

● Other Third-Party Changes

C O M P U T E | S T O R E | A N A L Y Z E

Runtime and Memory Layer Overview

C O M P U T E | S T O R E | A N A L Y Z E

Compiling Chapel

Chapel

Source

Code

Chapel

Executable

Standard

Modules

(in Chapel)

chpl

5

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Compilation Architecture

Generated

C Code

Chapel

Source

Code

Standard

C Compiler

& Linker

Chapel

Executable

Chapel

Compiler

Chapel-to-C

Compiler

6

Standard

Modules

(in Chapel)

Internal Modules

(in Chapel)

Runtime Support

Library (in C)
T
a
s
k
s
/T

h
re

a
d
s

C
o
m

m
u
n
ic

a
tio

n

M
e
m

o
ry

…

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Compilation Architecture

Generated

C Code

Chapel

Source

Code

Standard

C Compiler

& Linker

Chapel

Executable

Chapel

Compiler

Chapel-to-C

Compiler

7

Standard

Modules

(in Chapel)

Internal Modules

(in Chapel)

Runtime Support

Library (in C)
T
a
s
k
s
/T

h
re

a
d
s

C
o
m

m
u
n
ic

a
tio

n

M
e
m

o
ry

…

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Runtime

● Lowest level of Chapel software stack

● Supports language concepts and program activities

● Relies on system and third-party services

● Written in C

● Composed of layers
● A misnomer – these are not layers in the sense of being stacked

● More like posts, in that they work together to support a shared load

● Standardized interfaces

● Interchangeable implementations

● Env. vars. select configuration when building the runtime
● Also select between configurations when compiling a Chapel program

● (must have already been built ahead of time)

8

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Runtime Organization

9

Chapel Runtime Support Library (in C)

Commu-

nication

Tasking Memory Launch-

ers

Standard Timers

Standard and third-party libraries

QIO

C O M P U T E | S T O R E | A N A L Y Z E

Runtime Memory Layer

10

Chapel Runtime Support Library (in C)

Memory

dlmalloc tcmalloc cstdlib

dlmalloc

(Doug Lea)

tcmalloc

(Google

perftools)

libc malloc(),

free(), etc.

C O M P U T E | S T O R E | A N A L Y Z E

Runtime Memory Layer

11

● Supports dynamic memory management
● memory allocation, deallocation, and alignment

● Ideally supports allocating out of a given memory region
● ugni and gasnet sometimes require a shared heap

● in such cases, the communication layer:
● grabs memory from the system

● registers it with the NIC

● hands it over to the memory layer

● and the memory layer:
● must fulfill allocations from that memory segment

 (instead of grabbing memory from the system)

C O M P U T E | S T O R E | A N A L Y Z E

Runtime Memory Layer

12

Chapel Runtime Support Library (in C)

Memory

dlmalloc tcmalloc cstdlib

dlmalloc

(Doug Lea)

tcmalloc

(Google

perftools)

libc malloc(),

free(), etc.

C O M P U T E | S T O R E | A N A L Y Z E

Chapel Runtime Support Library (in C)

Memory

dlmalloc tcmalloc

dlmalloc

(Doug Lea)

tcmalloc

(Google

perftools)

Runtime Memory Layer: cstdlib

13

cstdlib

libc malloc(),

free(), etc.

● System allocator:

● portable

● relatively poor multi-threaded performance

● no shared-heap support

● the default in 1.12 when a shared heap was not required

C O M P U T E | S T O R E | A N A L Y Z E

cstdlib

libc malloc(),

free(), etc.

Chapel Runtime Support Library (in C)

Memory

tcmalloc

tcmalloc

(Google

perftools)

Runtime Memory Layer: dlmalloc

14

● Doug Lea’s dlmalloc allocator:

● relatively portable

● poor multi-threaded performance

● shared-heap support

● the default in 1.12 for gasnet with segment fast or large

dlmalloc

dlmalloc

(Doug Lea)

C O M P U T E | S T O R E | A N A L Y Z E

dlmalloc

dlmalloc

(Doug Lea)

cstdlib

libc malloc(),

free(), etc.

Chapel Runtime Support Library (in C)

Memory

Runtime Memory Layer: tcmalloc

15

● Google Perftool’s tcmalloc allocator:

● not as portable as we’d like (gnu, clang, intel only)

● excellent multi-threaded performance

● shared-heap support

● default in 1.12 for ugni communication

tcmalloc

tcmalloc

(Google

perftools)

C O M P U T E | S T O R E | A N A L Y Z E

dlmalloc

dlmalloc

(Doug Lea)

cstdlib

libc malloc(),

free(), etc.

Chapel Runtime Support Library (in C)

Memory

Runtime Memory Layer: tcmalloc

16

● Tried to make tcmalloc our preferred allocator for 1.10

● experienced sporadic segfaults with Qthreads

● Decided to pursue jemalloc instead

● reputed to have good multi-threaded performance

● actively maintained, better portability

tcmalloc

tcmalloc

(Google

perftools)

C O M P U T E | S T O R E | A N A L Y Z E

Jemalloc Memory Layer

C O M P U T E | S T O R E | A N A L Y Z E

Jemalloc: Overview

Copyright 2014 Cray Inc.
18

● General purpose malloc implementation
● “scalable concurrency support”

● “emphasizes fragmentation avoidance”

● also supports an extended API
● good alloc size, sized deallocation, etc.

● Actively maintained on GitHub
● https://github.com/jemalloc/jemalloc

● Large number of notable users
● FreeBSD and NetBSD

● Mozilla Firefox

● Facebook

● Android

● Rust

https://github.com/jemalloc/jemalloc
https://github.com/jemalloc/jemalloc

C O M P U T E | S T O R E | A N A L Y Z E

Jemalloc: This Effort

Copyright 2016 Cray Inc.
19

● Added support for jemalloc
● initially just for configurations that did not require a shared heap

● saw good performance, decided to add shared-heap support
● using jemalloc’s custom chunk allocator interface

● implemented good_alloc_size() using extended API

● Switched our default allocator to jemalloc
● except for a few configurations:

● gnu+darwin (build issues)

● cygwin (build issues)

● pgi (segfaults at execution time)

● Removed dlmalloc and tcmalloc support
● jemalloc performs as well as tcmalloc and is as portable as dlmalloc

C O M P U T E | S T O R E | A N A L Y Z E

Jemalloc: Impact

Copyright 2016 Cray Inc.
20

● Excellent multi-locale performance
● No performance regressions from tcmalloc to jemalloc switch

● this is great news, as tcmalloc provided excellent performance

● Substantial performance improvements from dlmalloc to jemalloc

switch:

C O M P U T E | S T O R E | A N A L Y Z E

Jemalloc: Impact (continued)

Copyright 2016 Cray Inc.
21

● Excellent single-locale performance
● Substantial speedups from cstdlib to jemalloc switch:

C O M P U T E | S T O R E | A N A L Y Z E

Jemalloc: Impact (continued)

Copyright 2016 Cray Inc.
22

● A few minor single-locale performance regressions
● only impacted tests that we aren’t very invested in

● i.e., benchmarks we haven’t reviewed/optimized in-depth

C O M P U T E | S T O R E | A N A L Y Z E

Jemalloc: Impact (continued)

Copyright 2016 Cray Inc.
23

● Implementing good_alloc_size() also improved perf.
● good_alloc_size() lets you reduce slack for strings, vectors, etc.

● see Facebook’s vector documentation for more information

● we currently use good_alloc_size() for strings

https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md#the-jemalloc-connection

C O M P U T E | S T O R E | A N A L Y Z E

Jemalloc: Summary and Next Steps

Copyright 2016 Cray Inc.
24

Summary:
● Added support for jemalloc

● Switched to jemalloc as our default allocator for most configurations
● overall result was a dramatic performance improvement

● likely resulted in much less memory fragmentation as well

Next Steps:
● Look into fixing support for darwin+gnu, cygwin, and pgi

● Use more of the extended API (sized_deallocation(), etc.)

● Use good_alloc_size() for array-as-vector

● Consider overriding malloc to call into jemalloc
● possible performance benefits for third-party code that calls malloc()

C O M P U T E | S T O R E | A N A L Y Z E

ugni Communication Layer Improvements

Copyright 2016 Cray Inc.
25

C O M P U T E | S T O R E | A N A L Y Z E

ugni Improvements: Background

Copyright 2016 Cray Inc.
26

● GNI memory registration wrecks NUMA affinity
● NIC needs virtual/physical mapping, so registration pins memory

● NIC accepts virtual addrs from user code but references physical mem

● GNI prefers pinning to NUMA domain 0 because it’s closer to the NIC

● Thus all or most memory ends up there; user first-touch has no effect

● Touch-before-registering forces locality, but we can’t leverage that yet

● Workaround: don’t register user memory
● Permit user first-touch to have its usual effect

● Register minimal internal memory
● GNI RDMA communication requires registration

● Includes management data, trampoline buffers, etc.

● Implies: reworking many internal data structures
● these were previously allocated from the (registered) heap

● This is a stopgap, not a principled solution

C O M P U T E | S T O R E | A N A L Y Z E

ugni Improvements: Status and Impact (1)

Copyright 2016 Cray Inc.
27

● Reworked ugni communication layer internals
● Streamlined resource management

● GNI RDMA comm. domains (represent Gemini/Aries FMA descriptors)

● Reorganized internal data structures and procedures
● request buffers and completion handling for remote on-stmts

● completion handling for nonblocking GET/PUT

● Result: improved remote memory access performance

C O M P U T E | S T O R E | A N A L Y Z E

ugni Improvements: Status and Impact (2)

Copyright 2016 Cray Inc.
28

● Implemented minimal registered memory
● Register communicable internal data structures

● Register trampoline buffers for communicating user data

● Don’t register anything else

● Add logic to bounce transfers through trampolines, etc.

● Results without hugepages:
● Much-improved NUMA-related performance

● Cray XC multi-node: stream-ep ~2X faster than with hugepages

● on par with HPCC MPI+OpenMP reference version

● Hurt comm-intensive benchmark performance in some cases
● sometimes dramatic: have seen ~50X slower for RA-rmo

● Beneficial side effect: without hugepages, ‘Spawn’ works with ugni
● GNI kernel driver has issues duplicating registered memory in fork()

C O M P U T E | S T O R E | A N A L Y Z E

ugni Improvements: Summary and Next Steps

Copyright 2016 Cray Inc.
29

Summary:
● Support for minimal registered memory is complete

● Related work greatly improved remote memory access performance

● Users can optionally run without hugepages
● remember: this is only a stopgap, or for specific use cases

● Principled solution for performance is to use the numa locale model
● first-touch currently depends on luck: how tasks are assigned to threads

● numa locale model won’t depend on first-touch

● numa locale model improvements didn’t make it into 1.13 release

● (see “Ongoing Efforts” deck for more information)

Next Steps:
● Investigate performance surprises due to minimal registered memory

C O M P U T E | S T O R E | A N A L Y Z E

Soft-threading Patent Granted

Copyright 2016 Cray Inc.
30

C O M P U T E | S T O R E | A N A L Y Z E

The Soft-threading Patent Has Been Granted

Copyright 2016 Cray Inc.
31

Background: Intellectual property in Cray runtime layers
● Enables fine-grained compute/communicate overlap in ugni+muxed

This Effort: Patent 9,201,689 at uspto.gov

Software emulation of massive

hardware threading for tolerating

remote memory references

Impact: Cray runtime layer IP no longer secret

Next Steps: Lightweight comp & comm overlap in other layers?
● Need to evaluate effectiveness of lightweight switching in Qthreads

● If effective, may be able to retire muxed tasking

http://www.uspto.gov/web/patents/patog/week48/OG/html/1421-1/US09201689-20151201.html

C O M P U T E | S T O R E | A N A L Y Z E

Other Third-Party Changes

Copyright 2016 Cray Inc.
32

C O M P U T E | S T O R E | A N A L Y Z E

Other Third-Party Changes

Copyright 2016 Cray Inc.
33

● Turned on optimizations when compiling ‘re2’ optimized

● Enabled ‘re2’ for Cray and PGI compilers

● Upgraded GASNet to version 1.26.0

● Upgraded hwloc to version 1.11.2
● also cherry-picked a /proc/mounts buffer overflow fix from their master

● Upgraded LLVM to version 3.7

● Made several third-party directories more Git-friendly
● stopped embedding version numbers in subdirectory names

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2016 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2,
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE,
THREADSTORM. The following system family marks, and associated model number marks, are
trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

34

