
C O M P U T E      |     S T O R E      |     A N A L Y Z E

Standard Library Improvements 

Chapel Team, Cray Inc. 

Chapel version 1.13 

April 7, 2016 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

This presentation may contain forward-looking statements that are 

based on our current expectations. Forward looking statements 

may include statements about our financial guidance and expected 

operating results, our opportunities and future potential, our product 

development and new product introduction plans, our ability to 

expand and penetrate our addressable markets and other 

statements that are not historical facts.  These statements are only 

predictions and actual results may materially vary from those 

projected. Please refer to Cray's documents filed with the SEC from 

time to time concerning factors that could affect the Company and 

these forward-looking statements.  

 Safe Harbor Statement 

Copyright 2016 Cray Inc. 
2 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Outline 

Copyright 2016 Cray Inc. 
3 

● Standard Library vs. Package Modules 

● Reflection Library Module 
● Querying Function Resolution 

● Inspecting Fields 

● Improvements to the Random Standard Module 

● JAMA: Linear Algebra module 

● FileSystem/Path Module Improvements 

● I/O Improvements for JSON 

● Other I/O Improvements 

● Spawn Module Improvements 

● Other Library Improvements 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Standard Library vs. Package Modules 

Copyright 2016 Cray Inc. 
4 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Libraries vs. Packages: Background & This Effort 

Copyright 2016 Cray Inc. 
5 

Background: 
● Most user-facing libraries we’ve distributed have lived in one directory: 

$CHPL_HOME/modules/standard/ 

 

This Effort: 
● Over time, it’s seemed that we have two classes of standard modules: 

● standard library modules 

● those that any Chapel implementation ought to support 

● e.g., ‘Math’, ‘FileSystem’, ‘Reflection’, … 

● package modules 

● those representing community codes or optional features 

• e.g., ‘FFTW’, ‘LAPACK’, ‘HDFS’, … 

• ultimately these should be managed by a distributed package manager 

● we’ve also moved some immature libraries here for the time being 

• e.g., ‘Sort’, ‘Search’, ‘Norm’, … 

 
 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Libraries vs. Packages: Status and Next Steps 

Copyright 2016 Cray Inc. 
6 

Status: 
● Split standard modules into two directories, along with their docs: 

libraries: $CHPL_HOME/modules/standard 

● see http://chapel.cray.com/docs/latest/modules/modules.html 

packages: $CHPL_HOME/modules/packages 

● see http://chapel.cray.com/docs/latest/modules/packages.html 

● Compiler populates module search path with both directories 

 

Next Steps: 
● Improve immature packages and promote to standard library 

● Create a distributed package manager (see “Ongoing Efforts” slides) 

http://chapel.cray.com/docs/latest/modules/modules.html
http://chapel.cray.com/docs/latest/modules/modules.html
http://chapel.cray.com/docs/latest/modules/packages.html
http://chapel.cray.com/docs/latest/modules/packages.html


C O M P U T E      |     S T O R E      |     A N A L Y Z E

Reflection Library Module 

Copyright 2016 Cray Inc. 
7 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Reflection: Background and This Effort 

Copyright 2016 Cray Inc. 
8 

Background: 
● Chapel already supports generic programming: 

● where clauses, type functions, param functions, and param for-loops 

● Yet, it can also be useful to make explicit queries 
● about procedures or methods that are available 

● about fields in records or classes 

● Such introspection has proven valuable in C++ 
● SFINAE and enable-if in C++ 

● Chapel’s internal modules already make such queries 
● but not in ways that were intended for end-users 

 

This Effort: 
● Provide user-facing introspection in a new ‘Reflection’ module 

● inspecting which procedures or methods are available 

● inspecting fields in records or classes 

https://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
http://www.boost.org/doc/libs/1_46_0/libs/utility/enable_if.html
http://www.boost.org/doc/libs/1_46_0/libs/utility/enable_if.html
http://www.boost.org/doc/libs/1_46_0/libs/utility/enable_if.html


C O M P U T E      |     S T O R E      |     A N A L Y Z E

Reflection: Querying Function Resolution 

Copyright 2016 Cray Inc. 
9 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Can Resolve: Motivation and This Effort 

Copyright 2016 Cray Inc. 
10 

Motivation: 
● Suppose we're writing a sorting library 

● Uses a compare routine, where compare(a,b) returns an int that’s… 

   < 0   if a  <  b 

 == 0   if a == b 

   > 0   if a  >  b 

● For usability reasons, we would like the library to 
● optionally allow compare to be written as a method 

● fall back on calls to < if no compare method/function is provided 

 

This Effort: 
● Adds canResolve and canResolveMethod functions 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Can Resolve: Library Example 

Copyright 2016 Cray Inc. 
11 

use Reflection; 

 

private proc do_compare(a, b) { 

  if canResolveMethod(a, "compare", b) { 

    // use a.compare(b) if possible 

    return a.compare(b); 

  } else if canResolve("compare", a, b) { 

    // if not, use compare(a,b) 

    return compare(a, b); 

  } else { 

    //  otherwise, fall back on a version using < 

    if a < b then 

      return -1; 

    else if b < a then 

      return 1; 

    else return 0; 

  } 

} 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Can Resolve: Usage Example 

Copyright 2016 Cray Inc. 
12 

record MyRecord { 

  var x:int; 

} 

 

// Client of sorting library could provide 

// any or all of these comparison routines. 

proc MyRecord.compare(b: MyRecord) { 

  return this.x - b.x; 

} 

proc compare(a: MyRecord, b: MyRecord) { 

  return a.x - b.x; 

} 

proc <(a: MyRecord, b: MyRecord) { 

  return a.x < b.x; 

} 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Can Resolve: Impact, Status, and Next Steps 

Copyright 2016 Cray Inc. 
13 

Impact: 
● Enables generic libraries to respond to what functions are available 

 

Status: 
● Implemented, documented, fully functional 

 

Next Steps: 
● Replace current internal uses of ‘tryToken’ with ‘canResolve’ 

● this was the previous (and weaker) internal means of making such choices 

● Get user feedback on ‘canResolve’ 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Reflection: Inspecting Fields 

Copyright 2016 Cray Inc. 
14 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Inspecting Fields: Motivation 

Copyright 2016 Cray Inc. 
15 

Motivation: 
● Suppose that we're writing an I/O library with a particular format, e.g. 

● JSON 

● XML 

● YAML 

 

● For usability reasons, want the library to work with any record or class 
 

This Effort: 
● Adds field introspection routines 

●  numFields, getFieldName, getField, getFieldIndex, hasField 

● BSON 

● MessagePack 

● Protocol Buffers 

● Apache Thrift 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Inspecting Fields: Library Example 

Copyright 2016 Cray Inc. 
16 

use Reflection; use Types; 

 

private proc do_outputYaml(obj:?t, indent:string) { 

  for param i in 1..numFields(t) {      // param loop over fields 

    var field = getField(obj, i);       // query value of ith  field 

    var fieldName = getFieldName(t, i);  // query name of ith field 

    if isString(field) || isNumeric(field) { 

      // Output numbers and strings directly  

      writeln(indent, fieldName, ": ", field); 

    } else if isRecord(field) || isClass(field) { 

      // Recurse to output a record or class. 

      writeln(indent, fieldName, ":"); 

      do_outputYaml (field, indent + "    "); 

    } else compilerError("unhandled type ", field.type:string); 

  } 

} 

proc outputYaml(obj) { 

  writeln("---"); do_outputYaml(obj, ""); writeln("..."); 

} 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Inspecting Fields: Usage Example 

Copyright 2016 Cray Inc. 
17 

var r = new Invoice(number=22, total=135.17,  

                    new Customer("Dorothy", "Gale")); 

outputYaml(r); 

 

record Customer { 

  var first_name:string; 

  var family_name:string; 

} 

record Invoice { 

  var number:int; 

  var customer:Customer; 

  var total:real; 

} 

--- 

number: 22 

customer: 

    first_name: Dorothy 

    family_name: Gale 

 

total: 135.17 

... 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Inspecting Fields: Impact, Status, and Next Steps 

Copyright 2016 Cray Inc. 
18 

Impact: 
● Enables generic libraries to adapt to fields in records and classes 

 

Status: 
● Implemented, documented 

● getField does not currently return a mutable value 
● primitive can be used for now as a workaround 

● getFieldRef implemented but didn't make it into v1.13 (on master now) 

 

Next Steps: 
● replace uses of primitives in ChapelIO with Reflection module routines 

● consider changing these functions to methods / type methods 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Improvements to the Random Standard Module 

Copyright 2016 Cray Inc. 
19 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Random: Background 

Copyright 2016 Cray Inc. 
20 

● <= 1.12 only had NPB Random Number Generator (RNG) 

● NPB RNG has issues 
● it’s a 46-bit Linear Congruential Generator (LCG) 

● it only supports generating real(64), imag(64), complex(128) 

● it’s implemented in terms of double-precision arithmetic 
● i.e., has lower than ideal performance if converting reals to integers 

● it’s not suitable for Monte Carlo* 

● it fails 41/144 statistical tests in TestU01's Crush suite 

● Yet, the NPB RNG supports jump-ahead 
● supports deterministic parallel RNG use cases 

● Have long intended to address these issues 
● Users have requested better Random support as well 

 

          * = see Click, Kaminski, and Liu, “Quality of random number generators significantly affects results of Monte Carlo simulations for organic and biological systems” 

 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992609/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2992609/


C O M P U T E      |     S T O R E      |     A N A L Y Z E

Random: Some other RNGs 

Copyright 2016 Cray Inc. 
21 

● Mersenne Twister 
● popular 

● used in Python 

● we didn’t find a version that supported jump-ahead that we liked 
● came with disclaimers 

● raised licensing challenges (GPL, vague/missing licenses) 

 

● PCG: Permuted Congruential Generator 
● reasonably new 

● supports jump-ahead 

● simple implementation 

● C implementation available with permissive license (Apache) 

http://www.pcg-random.org


C O M P U T E      |     S T O R E      |     A N A L Y Z E

Random: This Effort 

Copyright 2016 Cray Inc. 
22 

● Implemented PCG RNG purely in Chapel code 
● it was simple enough not to require wrapping the C library 

● main PCG RNG has 64 bits of state and generates 32 bits at a time 

● generate >32 bits by splicing RNGs with different increments 

● Adds functionality to the C PCG implementation 
● generates real values (via multiplying by 2**-64) 

● generates bounded integer values in way that supports jump-ahead 

● Refactored Random standard module 
● Parallel RandomStream available with either NPB or PCG RNG 

● PCG is now the default 

● Low-level PCG module is also available, providing interface like C’s 

● Added new functionality 
● shuffle, permute, generate random integer 

● Documented RandomStream.iterate 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Random: Impact 

Copyright 2016 Cray Inc. 
23 

● Tested statistical properties with TestU01's Crush suite: 
● NPB failed 41/144 tests for real(64) 

● PCG passed all tests for real(64), uint(64) 

● PCG failed 1 test for real(32) 
● as does the C PCG implementation with the same seed 

 ⇒ PCG offers much improved statistical properties 

 

 

 
 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Random: Impact 

Copyright 2016 Cray Inc. 
24 

● PCG is faster and more flexible than NPB 
● 1.4x when generating doubles; able to generate integers directly 

0

100

200

300

400

500

600

700

800

NPB PCG

M
 n

u
m

b
e
rs

 /
 s

 

real(64)

uint(64)

uint(32)



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Random: Impact 

Copyright 2016 Cray Inc. 
25 

Status: 
● PCG RNG is the new default in 1.13 

● Better performance and statistical properties 

● Integer output supported 

 

Next Steps: 
● Improve API based on review, user feedback, Chapel improvements 

● e.g., leader-follower improvements required to zipper RNGs naturally 

● Support additional RNGs as necessary / desired 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

JAMA: Linear Algebra module 
(contributed by Chris Taylor) 

Copyright 2016 Cray Inc. 
26 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

JAMA: Background and This Effort 

Copyright 2016 Cray Inc. 
27 

Background: 
● JAMA: Linear Algebra package originally for Java 

● Aimed at creation/manipulation of real, dense matrices 

● Developed by MathWorks and NIST 

● Ported to Chapel 

● Focuses on 5 fundamental matrix decompositions: 
● Cholesky – for symmetric, positive definite matrices 

● LU – for rectangular matrices 

● QR – for rectangular matrices 

● Eigenvalue – for symmetric and nonsymmetric square matrices  

● Singular – for rectangular matrices 

 

This Effort: 
● Ported JAMA to Chapel 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

JAMA: LU Decomposition Example 

Copyright 2016 Cray Inc. 
28 

● Example usage: 
use LinearAlgebraJama; 

 

var A = …; //  Initialize A.  We’ll compute L and U from A such that L*U = A 

var LU = A.lu(); 

var L = LU.getL(); 

var U = LU.getU(); 

… // Using L and U, solve Ax = b for x given b (for instance) 

a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

l11 0 0 

l21 l22 0 

l31 l32 l33 

u11 u12 u13 

0 u22 u23 

0 0 u33 

= 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

JAMA: Eigenvalue Example 

Copyright 2016 Cray Inc. 
29 

● Example 2: 
use LinearAlgebraJama; 

 

var A = …; //  Initialize A. If symmetric, V*D*V’ = A 

var Eig = A.eig(); 

var D = Eig.getD(); //  an eigenvalue matrix 

var V = Eig.getV(); //  an eigenvector matrix 

… // Using D and V, find the inverse of A (for instance) 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

JAMA: Next Steps 

Copyright 2016 Cray Inc. 
30 

● Create online documentation 
● Current document comments are javadoc style rather than chpldoc 

● Connect to LAPACK and BLAS modules 
● Once BLAS module routines finished 

● Design/implement sparse matrix solution 

● Use as starting point for computer algebra module 
● Similar to Python’s Theano, NumPy 

● Aimed at dense vector/matrix computations 

● Also would make use of LAPACK/BLAS routines 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

FileSystem/Path Module Improvements 

Copyright 2016 Cray Inc. 
31 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

FileSystem/Path: Background and This Effort 

Copyright 2016 Cray Inc. 
32 

Background: 
● Recent releases added FileSystem and Path modules 

● FileSystem was nearly complete, but missing a few routines 

● Path was mostly empty, waiting on strings to mature 

 

This Effort: 
● Complete FileSystem 

● Continue with Path now that strings are in good shape 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

FileSystem/Path: Status and Next Steps 

Copyright 2016 Cray Inc. 
33 

Status: 
FileSystem: Finished remaining routines 

● rmTree():   remove directory and contents 

● moveDir(): move directory and contents to new location 

 

Path: Added a few more routines 
● basename(): last component of given path 

● dirname():    all but last component of given path 

● splitPath():   divide path into (dirname, basename) 

● 10 functions remain unimplemented 

● absPath(), joinPath(), etc. 

 

 

Next Steps: complete remaining Path routines 

this/is/the/pathspec/of/a.file 

dirname() 

basename() 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Spawn Module Improvements 

Copyright 2016 Cray Inc. 
34 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Spawn Module Improvements 

Copyright 2016 Cray Inc. 
35 

Background: Added ‘Spawn’ standard module in v1.12 
● had a bug where communicate() did not function correctly 

● had several bugs related to interrupted system calls 

● did not include functions for sending signals to subprocesses 
 

This Effort: Improved the Spawn module 
● fixed communicate() 

● made wait() optionally call it when buffer=true via new argument: 
proc subprocess.wait(out error: syserr, buffer=true) … 

● fixed problems with interrupted system calls 

● added support for sending signals (contributed by Nick Park) 
 

Impact: Spawn module is much more stable and usable 
 

Next Steps: Write more programs using the Spawn module! 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

I/O Improvements for JSON 

Copyright 2015 Cray Inc. 
36 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

JSON Improvements: Background & This Effort 

Copyright 2016 Cray Inc. 
37 

Background:  
● I/O module supports writeln, writef, … 

● during v1.12, there was an ongoing effort to improve JSON I/O 

 

This Effort: 
● Improved JSON support with ~ in format strings to skip fields 

● see example on following slides 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Example Tweet in JSON format 

Copyright 2015 Cray Inc. 
38 

{ "coordinates": null, "created_at": "Fri Oct 16 16:00:00 +0000 2015", "favorited": false, "truncated": false, "id_str": "28031452151", 

"entities": { "urls": [ { "expanded_url": null, "url": "http://chapel.cray.com", "indices": [ 69, 100 ] } ], "hashtags": [ ], 

"user_mentions": [ { "name": "Cray Inc.", "id_str": "23424245", "id": 23424245, "indices": [ 25, 30 ], "screen_name": "cray" } ] }, 

"in_reply_to_user_id_str": null, "text": "Let's mention   the user @cray -- here is an embedded url .......... http://chapel.cray.com", 

"contributors": null, "id": 28039652140, "retweet_count": null, "in_reply_to_status_id_str": null, "geo": null, "retweeted": false, 

"in_reply_to_user_id": null, "user": { "profile_sidebar_border_color": "C0DEED", "name": "Cray Inc.", "profile_sidebar_fill_color": 

"DDEEF6", "profile_background_tile": false, "profile_image_url": "http://a3.twimg.com/profile_images/2342452/icon_normal.png", 

"location": "Seattle, WA", "created_at": "Fri Oct 10 23:10:00 +0000 2008", "id_str": "23502385", "follow_request_sent": false, 

"profile_link_color": "0084B4", "favourites_count": 1, "url": "http://cray.com", "contributors_enabled": false, "utc_offset": -25200, 

"id": 23548250, "profile_use_background_image": true, "listed_count": 23, "protected": false, "lang": "en", "profile_text_color": 

"333333", "followers_count": 1000, "time_zone": "Mountain Time (US & Canada)", "verified": false, "geo_enabled": true, 

"profile_background_color": "C0DEED", "notifications": false, "description": "Cray Inc", "friends_count": 71, 

"profile_background_image_url": "http://s.twimg.com/a/2349257201/images/themes/theme1/bg.png", "statuses_count": 302, 

"screen_name": "gnip", "following": false, "show_all_inline_media": false }, "in_reply_to_screen_name": null, "source": "web", 

"place": null, "in_reply_to_status_id": null } 

● Tweets have 34 top-level fields 
● including nested structures containing additional fields 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

JSON Improvements: Reading Tweet subsets 

Copyright 2015 Cray Inc. 
39 

// define Chapel records whose fields reflect only  

// the portions of the JSON data we care about 

 

record TweetUser { 

  var id: int; 

} 

record TweetEntities { 

  var user_mentions: list(TweetUser); 

} 

record User { 

  var id: int; 

} 

record Tweet { 

  var id: int, 

      user: User, 

      entities: TweetEntities; 

} 

proc process_json(…) { 

  var tweet: Tweet; 

 

  while true { 

    // “%~jt” format string: 

         //      j: JSON format 

         //      t: any record 

         //      ~: skip other fields 

    got = logfile.readf("%~jt", 

                        tweet, 

                        error=err); 

    if got && !err then 

      handle_tweet(tweet); 

    if err == EFORMAT then ...; 

    if err == EEOF then break; 

} 

 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

JSON Improvements: Impact and Next Steps 

Copyright 2016 Cray Inc. 
40 

Impact: 
● JSON support is improved in version 1.13 

 

Next Steps: 
● Support formatting extensions to channel 

● since not all formats will be supported directly as JSON is 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Other I/O Improvements 

Copyright 2016 Cray Inc. 
41 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Other I/O Improvements 

Copyright 2016 Cray Inc. 
42 

● HDFS package now supports libhdfs3 
(contributed by Chris Taylor) 

● Removed Reader and Writer types in favor of channels 

● Made readbits/writebits accept any integral argument 

● List module now supports JSON format 

● Default I/O routines now ignore ‘param’ fields 

● channels now support an isClosed() method 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Other Library Improvements 

Copyright 2016 Cray Inc. 
43 



C O M P U T E      |     S T O R E      |     A N A L Y Z E

Other Library Improvements 

Copyright 2016 Cray Inc. 
44 

● Time.sleep() now optionally supports a unit argument 
(contributed by Nick Park) 

● exit() can now be called without arguments 
(contributed by Kushal Singh) 

● Also, aforementioned library routines for strings: 
http://chapel.cray.com/docs/1.13/modules/internal/String.html  

http://chapel.cray.com/docs/1.13/modules/internal/String.html
http://chapel.cray.com/docs/1.13/modules/internal/String.html
http://chapel.cray.com/docs/1.13/modules/internal/String.html


C O M P U T E      |     S T O R E      |     A N A L Y Z E

Legal Disclaimer 

Copyright 2016 Cray Inc. 

Information in this document is provided in connection with Cray Inc. products. No license, express or 
implied, to any intellectual property rights is granted by this document.  

Cray Inc. may make changes to specifications and product descriptions at any time, without notice. 

All products, dates and figures specified are preliminary based on current expectations, and are subject to 
change without notice.  

Cray hardware and software products may contain design defects or errors known as errata, which may 
cause the product to deviate from published specifications. Current characterized errata are available on 
request.  

Cray uses codenames internally to identify products that are in development and not yet publically 
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames 
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the 
user.  

Performance tests and ratings are measured using specific systems and/or components and reflect the 
approximate performance of Cray Inc. products as measured by those tests. Any difference in system 
hardware or software design or configuration may affect actual performance.  

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY 
and design, SONEXION, and URIKA. The following are trademarks of Cray Inc.:  ACE, APPRENTICE2, 
CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, 
THREADSTORM.  The following system family marks, and associated model number marks, are 
trademarks of Cray Inc.:  CS, CX, XC, XE, XK, XMT, and XT.  The registered trademark LINUX is used 
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a 
worldwide basis.  Other trademarks used in this document are the property of their respective owners. 

45 




