
C O M P U T E | S T O R E | A N A L Y Z E

Other Miscellaneous and Notable Changes

Chapel Team, Cray Inc.

Chapel version 1.12

October 1st, 2015

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

 Safe Harbor Statement

Copyright 2015 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2015 Cray Inc.
3

● Packaging Improvements

● Other Compiler Improvements

● Example Code Changes

● Bug Fixes

● Scope Resolution

● Standalone Parallel Iterators

● Outer Variable Capture

● Reduce Intents Over Arrays, Domains

● Other Notable Bug Fixes

● Error Message Improvements

● Runtime Changes

● Third-Party Changes

● Platform-Oriented Improvements

● Launcher Changes

● Test System Improvements

C O M P U T E | S T O R E | A N A L Y Z E

Packaging Improvements

Copyright 2015 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

Packaging Improvements

Copyright 2015 Cray Inc.
5

● Rewrote ‘make check’ in bash
● removes reliance on start_test/tcsh/Python which hurt portability

● in hands-on sessions, ‘make check’ failed, though compiler worked

● Made ‘printchplenv’ indicate set vs. inferred values
● ‘*’ now indicates a value set by environment variable:

CHPL_HOST_PLATFORM: darwin *

CHPL_HOST_COMPILER: gnu *

CHPL_TARGET_PLATFORM: darwin

CHPL_TARGET_COMPILER: gnu

CHPL_TARGET_ARCH: none *

CHPL_LOCALE_MODEL: flat

CHPL_COMM: none

…

C O M P U T E | S T O R E | A N A L Y Z E

Other Compiler Improvements

Copyright 2015 Cray Inc.
6

C O M P U T E | S T O R E | A N A L Y Z E

Other Compiler Improvements

Copyright 2015 Cray Inc.
7

● Improved message for internal error messages
● more “it’s us, not you” in tone

● includes best stab at source code location causing problem

● points to web documentation for filing bugs

● Made --fast no longer imply --no-ieee-float

● Added --ieee-float support for ‘clang’ and ‘intel’

● Made --ccflags arguments stack

● When using LLVM back-end…
…enabled optimizations and streamlined code

…added support for --print-emitted-code-size

C O M P U T E | S T O R E | A N A L Y Z E

Example Code Changes

Copyright 2015 Cray Inc.
8

C O M P U T E | S T O R E | A N A L Y Z E

Changes to examples/ programs

Copyright 2015 Cray Inc.
9

● Added learnChapelInYMinutes.chpl to examples/primers/
● local copy of: http://learnxinyminutes.com/docs/chapel/

● contributed by Ian Bertolacci (Colorado State University)

● Created a new examples/patterns directory
● goal: create a cache of “How would I write X in Chapel?” patterns

● Only one program here so far…
● recordio.chpl: How to read file of records with tab-separated fields

● Updated nbody shootout program to use ‘ref’ variables

● Removed ‘local’ block from Stream EP and related cleanup

● Replaced ‘format()’ calls with ‘writef()’ in SSCA#2

● Improved numerical tolerance in fileIO and FFTW primers

● Removed ‘param’ from LULESH loops

https://github.com/chapel-lang/chapel/blob/release/1.12/test/release/examples/primers/learnChapelInYMinutes.chpl
http://learnxinyminutes.com/docs/chapel/
http://learnxinyminutes.com/docs/chapel/
http://learnxinyminutes.com/docs/chapel/
https://github.com/chapel-lang/chapel/tree/release/1.12/test/release/examples/patterns
https://github.com/chapel-lang/chapel/blob/release/1.12/test/release/examples/patterns/recordio.chpl
https://github.com/chapel-lang/chapel/blob/release/1.12/test/release/examples/benchmarks/shootout/nbody.chpl
https://github.com/chapel-lang/chapel/blob/release/1.12/test/release/examples/benchmarks/hpcc/stream-ep.chpl
https://github.com/chapel-lang/chapel/tree/release/1.12/test/release/examples/benchmarks/ssca2
https://github.com/chapel-lang/chapel/blob/release/1.12/test/release/examples/primers/fileIO.chpl
https://github.com/chapel-lang/chapel/blob/release/1.12/test/release/examples/primers/FFTWlib.chpl
https://github.com/chapel-lang/chapel/tree/release/1.12/test/release/examples/benchmarks/lulesh

C O M P U T E | S T O R E | A N A L Y Z E

Bug Fixes: Scope Resolution

Copyright 2015 Cray Inc.
10

C O M P U T E | S T O R E | A N A L Y Z E

Scope Resolution: Incorrect Method Shadowing

Copyright 2015 Cray Inc.
11

● Shadowing bug: Method hid outer vars and functions
● Desirable when in method on same type

● Wrong when in function, or method on different type!

● Why did this happen?
● Method stored in symbol table for scope by base name only

● i.e. someRec.foo stored as “foo” not “someRec.foo”

● Helpful for inheritance, use in other methods

● But didn’t check if in method on same type!
● That check happens in function resolution

module Mod {

 proc someRec.foo {…}

}

var foo: int;

proc bar(arg) {

 use Mod;

 return arg * foo;

}

C O M P U T E | S T O R E | A N A L Y Z E

Scope Resolution: Module Use Shadowing

Copyright 2015 Cray Inc.
12

● Another shadowing issue:
● Consider the following code:

proc bar(foo) {

 use Mod;

 return callon(foo);

}

● User expects foo refers to argument foo

● But if Mod also defines a foo, that symbol is more in scope
● This is potentially confusing

● And likely not what the user intended

● Solution: Warn user when this happens
… so they can rename the argument

… or limit the symbols they use (once except keyword available)

C O M P U T E | S T O R E | A N A L Y Z E

Scope Resolution: Single-namespace Issues

Copyright 2015 Cray Inc.
13

● Chapel is a single namespace language
● Except when it unintentionally isn’t …

module foo {

 …

}

proc foo (…) {

 …

}

This compiled successfully

var foo: [1..10] real;

proc foo (i) {

 …

}

And so did this

C O M P U T E | S T O R E | A N A L Y Z E

Scope Resolution: Single-namespace Issues

Copyright 2015 Cray Inc.
14

● Chapel is a single namespace language
● Except when it unintentionally isn’t …

module foo {

 …

}

proc foo (…) {

 …

}

Now both complain about naming conflicts

var foo: [1..10] real;

proc foo (i) {

 …

}

C O M P U T E | S T O R E | A N A L Y Z E

Bug Fixes: Standalone Parallel Iterators

Copyright 2015 Cray Inc.
15

C O M P U T E | S T O R E | A N A L Y Z E

Standalone Parallel Iterators

Copyright 2015 Cray Inc.
16

Background: forall loops over a single array should use its

standalone parallel iterator
● it did not when the loop referenced an outer variable, e.g.:

var outer = 5;

forall a in A do

 a = outer;

This Effort: Fixed that bug
var outer = 5;

forall a in A do

 a = outer;

Impact: Improved generated code
● smaller size

● potentially faster execution

for followThis in A.these(leader) do

 for a in A.these(followThis,

 follower) do

 a = outer;

for a in A.these(standalone) do

 a = outer;

C O M P U T E | S T O R E | A N A L Y Z E

Bug Fixes: Outer Variable Capture

Copyright 2015 Cray Inc.
17

C O M P U T E | S T O R E | A N A L Y Z E

Outer Variable Capture: Background

Copyright 2015 Cray Inc.
18

● Given
● a cobegin or coforall statement

● an outer variable with in-like intent

● observed value of outer variable could vary
● in presence of concurrent updates
● task 2 could capture outer before or after task 1 updated it

outer is implicitly passed into

task functions by default intent,
which is const in for integers

could observe 5 or 6

depending on timing of tasks

var outer = 5;

proc update() { outer = 6; }

coforall i in 1..2 do

 if i==1 then update(); // in task 1

 else writeln(outer); // in task 2

C O M P U T E | S T O R E | A N A L Y Z E

Outer Variable Capture: This Effort

Copyright 2015 Cray Inc.
19

● Capture outer variable right before statement
● guarantees consistent value in all tasks – the desired semantics
● for in-like intents only

guaranteed to observe 5
i.e. its value at start of coforall

var outer = 5;

proc update() { outer = 6; }

coforall i in 1..2 do

 if i==1 then update(); // in task 1

 else writeln(outer); // in task 2

C O M P U T E | S T O R E | A N A L Y Z E

Outer Variable Capture: Status and Next Steps

Copyright 2015 Cray Inc.
20

Impact:
● ensures correct semantics

● prevents hard-to-find data races
● note: semantics allows races for records that are passed by default intent

Status:
● implemented for task-parallel constructs

Next Steps:
● extend to forall loops

● optimize away unnecessary copies

C O M P U T E | S T O R E | A N A L Y Z E

Bug Fixes: Reduce Intents Over Arrays, Domains

Copyright 2015 Cray Inc.
21

C O M P U T E | S T O R E | A N A L Y Z E

Reduce Intents: Background–Semantics

Copyright 2015 Cray Inc.
22

a variable passed into a forall loop with a reduce intent

will aggregate values from individual loop iterations

var x: int;

forall i in myIterator() with (+ reduce x) {

 x += i;

}

writeln(x);

inside the loop, x is implicitly

a task-private shadow variable

x is passed into the loop

by reduce intent,

will aggregate using +

after the loop, x contains

the aggregated result

C O M P U T E | S T O R E | A N A L Y Z E

Reduce Intents: Background–Implementation 1

Copyright 2015 Cray Inc.
23

user forall loop
var x: int;

forall i in myIterator() with (+ reduce x) {

 x += i;

}

writeln(x); // prints sum of values yielded by myIterator()

implementation
var x: int;

const xOp = new SumReduceScanOp();

for zip(i, ref xShadow) in myIterator(xOp, standalone) {

 xShadow += i;

}

xOuter = xOp.generate()

writeln(x);

alias for a shadow variable

created by compiler-modified
myIterator() – see next ...

C O M P U T E | S T O R E | A N A L Y Z E

Reduce Intents: Background–Implementation 2

Copyright 2015 Cray Inc.
24

user parallel iterator
iter myIterator(param tag) where tag == standalone {

 coforall ... {

 yield expr;

} }

implementation
iter myIterator(xOp, param tag) where tag == standalone {

 coforall ... {

 const currOp = xOp.clone();

 var xShadow = currOp.identity;

 yield (expr, ref xShadow);

 currOp.accumulate(xShadow);

 xOp.combine(currOp);

 delete currOp;

} }

create a task-private shadow variable…

accumulate value of xShadow at end of task

... for use in loop body

C O M P U T E | S T O R E | A N A L Y Z E

Reduce Intents: Background–Missed Cases 1

Copyright 2015 Cray Inc.
25

● We implemented an important case first
● parallel iterator has yield(s) within task-parallel constructs

● begin, cobegin, coforall

● Needed to implement other cases
● seen in iterators invoked by forall over a domain or array

a. domain iterator: a yield outside any parallel construct

b. array iterator: a yield in for loop over another parallel iterator

C O M P U T E | S T O R E | A N A L Y Z E

Reduce Intents: Background–Missed Cases 2

Copyright 2015 Cray Inc.
26

these cases were not handled before

a. yield outside any parallel construct – e.g. in domain iterator

iter _domain.these(param tag) where tag == standalone {

 if numChunks <= 1 { ... yield expr1; ... }

 else task-parallel case, handled already

}

b. yield in for loop over other parallel iterator – e.g. in array iterator

iter _array.these(param tag) where tag == standalone {

 for i in dom.these(tag) do

 yield dsiAccess(i);

}

was not handled

was not handled

another parallel iterator

C O M P U T E | S T O R E | A N A L Y Z E

Reduce Intents: This Effort – Handle Case A

Copyright 2015 Cray Inc.
27

source code: domain parallel iterator

iter _domain.these(param tag) where tag == standalone {

 if numChunks <= 1 { ... yield expr1; ... }

 else task-parallel case

}

implementation

iter _domain.these(xOp, param tag) where tag == standalone {

 var xShadow = xOp.identity;

 if numChunks <= 1 { ... yield (expr, ref xShadow); ... }

 else task-parallel case, handled as before

 xOp.accumulate(xShadow);

}

shadow variable for non-parallel yields

yield outside

any parallel construct

C O M P U T E | S T O R E | A N A L Y Z E

Reduce Intents: This Effort – Handle Case B

Copyright 2015 Cray Inc.
28

source code: array parallel iterator

iter _array.these(param tag) where tag == standalone {

 for i in dom.these(tag) do

 yield dsiAccess(i);

}

implementation

iter _array.these(xOp, param tag) where tag == standalone {

 for zip(i, ref xShadow) in dom.these(xOp, tag) do

 yield (dsiAccess(i), ref xShadow);

}

● also: modify a copy of dom.these() as if for a forall loop

yield in for loop over

another parallel iterator

propagate shadow variable

from the other iterator

C O M P U T E | S T O R E | A N A L Y Z E

Reduce Intents: Status and Next Steps

Copyright 2015 Cray Inc.
29

Impact:
● can use reduce intents with forall loops over domains and arrays

Status:
● reduce intents with forall loops over arrays/domains working

● reduce intents with forall loops over ranges not working with 1.12
● has since been fixed on master, though

Next Steps:
● re-implement reductions using forall loops and reduce intents

● tune performance

● design and implement partial reductions

C O M P U T E | S T O R E | A N A L Y Z E

Other Notable Bug Fixes

Copyright 2015 Cray Inc.
30

C O M P U T E | S T O R E | A N A L Y Z E

Other Notable Bug Fixes

Copyright 2015 Cray Inc.
31

● Overloads of ‘|’ no longer break internal modules

● Extern variables of type c_ptr(c_int) now work better

● Classes can now call parent class’ destructor

● Fixed large array copies where size > max(int(32))

● Function calls of the form <type>(<args>) no longer error

● Non-blocking ‘on’s no longer counted as local tasks

● Fixed compiler exception when dividing by param 0

● FileSystem is*() routines handle invalid paths/links better

● Made chpldoc better handle directory creation failures

● Added an error message for too-long compiler flags

C O M P U T E | S T O R E | A N A L Y Z E

More Notable Bug Fixes

Copyright 2015 Cray Inc.
32

● Closed leaks for heap-allocated cobegin/coforall vars

● Improved support for malloc/free in extern blocks

● Fixed occasional ‘text file busy’ error when making ‘chpl’

● Stopped permitting overloading via argument intents

● Fixed an occasional segfault when zippering glob()

● Fixed source locations passed to string routines

● Fixed source locations for cobegin statements

● Improved inlined iterators for generic array fields

● Improved passing c_strings to extern C functions

C O M P U T E | S T O R E | A N A L Y Z E

I/O Bug Fixes

Copyright 2015 Cray Inc.
33

● I/O on integers works with ‘%{##.##}’-style formats now

● when skipping whitespace, illegal characters handled

● made readf() calls halt on mismatches when no error arg

● trailing whitespace is now consumed less aggressively

● fixed EOF bugs in Reader/Writer types

● channel.read(<style>) no longer ignores style argument

C O M P U T E | S T O R E | A N A L Y Z E

Error Message Improvements

Copyright 2015 Cray Inc.
34

C O M P U T E | S T O R E | A N A L Y Z E

Error Message Improvements

Copyright 2015 Cray Inc.
35

● Improved error messages for runaway comments

● Improved source locations for ‘noinit’ warnings

C O M P U T E | S T O R E | A N A L Y Z E

Runtime Changes

Copyright 2015 Cray Inc.
36

C O M P U T E | S T O R E | A N A L Y Z E

Runtime Changes

Copyright 2015 Cray Inc.
37

● Moved polling thread to last CPU to avoid contention

● Added support for out-of-segments puts/gets

● Changed I/O to allocate buffers from Chapel heap

C O M P U T E | S T O R E | A N A L Y Z E

Third-Party Changes

Copyright 2015 Cray Inc.
38

C O M P U T E | S T O R E | A N A L Y Z E

Third-Party Changes

Copyright 2015 Cray Inc.
39

● Added ‘fltk’ to third-party directories for use by ‘chplvis’

● Enabled use of GMP with the LLVM back-end

● Made LLVM build in non-debug mode by default

● Improved cross-compilation of third-party on ‘cray-x*’

● Switched to storing RE2 in an unbundled form

● Fixed a valgrind issue in RE2

C O M P U T E | S T O R E | A N A L Y Z E

Platform-Oriented Improvements

Copyright 2015 Cray Inc.
40

C O M P U T E | S T O R E | A N A L Y Z E

Platform-specific Changes

Copyright 2015 Cray Inc.
41

● Made ‘cray-x*’ systems default to ‘qthreads’ over ‘muxed’

● ‘muxed’ now supports guard pages for non-hugepages

● Added support for ‘clang-included’ with GASNet on Crays

● Removed support for ‘cray-prgenv-pgi’ from Cray module

● Stopped throwing –hipa2 by default for ‘cray-prgenv-cray’

C O M P U T E | S T O R E | A N A L Y Z E

Portability Fixes/Platform-Specific Bugfixes

Copyright 2015 Cray Inc.
42

● Fixed [_BSD|_SVID]_SOURCE deprecation issues

● Improved building of SysCTypes.chpl for Fedora 22

● Fixed a pair of stack-related bugs in ‘muxed’ tasking

● Removed symmetric address assumptions in error code

● Fixed a number of I/O issues on Cygwin

● Fixed tcmalloc for clang 3.6 when used from C++

● Fixed I/O for 32-bit Ubuntu 14.04

● Added support for building GASNet segment fast on OS X

● Fixed hwloc’s Cairo detection for certain OS X cases

● Eliminated Xcode-specific warnings

C O M P U T E | S T O R E | A N A L Y Z E

Launcher Changes

Copyright 2015 Cray Inc.
43

C O M P U T E | S T O R E | A N A L Y Z E

Launcher Changes

Copyright 2015 Cray Inc.
44

● Improved ‘slurm’s handling of non-zero exit codes

● Changed how ‘amudprun’ deals with quoted arguments

C O M P U T E | S T O R E | A N A L Y Z E

Test System Improvements

Copyright 2015 Cray Inc.
45

C O M P U T E | S T O R E | A N A L Y Z E

Correctness Test System Improvements

Copyright 2015 Cray Inc.
46

● Rewrote key scripts in Python (from ‘csh’)

● Improved mechanism for suppressing expected failures

● Added ability to write ‘chpldoc’ and ‘chpl-ipe’ tests

● Made parallel testing print estimated end time

● Added support for multi-option COMPOPTS files

● Made improvements to C code testing feature

● Extended timeout mechanism to work for Cygwin

● Added recognition of certain launcher failures

C O M P U T E | S T O R E | A N A L Y Z E

Performance Testing/Graphing Improvements

Copyright 2015 Cray Inc.
47

● Added a ‘screenshot’ capability for performance graphs

● Added annotations to ‘cray-xc’ performance graphs

● Improved resilience to missing annotations file

● Retired the code for the old gnuplot-based graphs

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2015 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2015 Cray Inc.

48

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

