
C O M P U T E | S T O R E | A N A L Y Z E

Performance Optimizations

Chapel Team, Cray Inc.

Chapel version 1.12

October 1st, 2015

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

 Safe Harbor Statement

Copyright 2015 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2015 Cray Inc.
3

● STREAM Case Study

● Parallel Array Initialization Optimization

● Array Allocation Improvement

● Running Task Count Improvements

● Muxed Thread Limit Improvement

● Impact of Hugepages

● Optimizing Task Counters

● Stream Performance Summary

● Locality Optimizations

● Performance Improvements Summary

C O M P U T E | S T O R E | A N A L Y Z E

STREAM Case Study

Copyright 2015 Cray Inc.
4

C O M P U T E | S T O R E | A N A L Y Z E

Copyright 2015 Cray Inc.
5

● Previous releases focused on single-locale performance
● More and more, Chapel is becoming competitive with C/C++

● For this release we shifted our focus to multi-locale
● Using STREAM as a case study to motivate optimizations

● a simple benchmark, but important to get right

● Several important optimizations resulted from this work:
● Parallelized array initialization

● Switched from calloc() to malloc() for array allocation

● Corrected running task counts

● Removed thread limit for muxed

● Investigated hugepage issues

● Optimized task counters

STREAM Case Study: Background

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + αCi

In pictures:

STREAM: a trivial parallel computation

Copyright 2014 Cray Inc.
6

=

α

+

A

B

C

·

C O M P U T E | S T O R E | A N A L Y Z E

Given: m-element vectors A, B, C

Compute: i 1..m, Ai = Bi + αCi

In pictures, in parallel (distributed memory multicore):

STREAM: a trivial parallel computation

Copyright 2014 Cray Inc.
7

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

C O M P U T E | S T O R E | A N A L Y Z E

STREAM: MPI+OpenMP

Copyright 2014 Cray Inc.
8

#include <hpcc.h>

#ifdef _OPENMP

#include <omp.h>

#endif

static int VectorSize;

static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {

 int myRank, commSize;

 int rv, errCount;

 MPI_Comm comm = MPI_COMM_WORLD;

 MPI_Comm_size(comm, &commSize);

 MPI_Comm_rank(comm, &myRank);

 rv = HPCC_Stream(params, 0 == myRank);

 MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM,

0, comm);

 return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {

 register int j;

 double scalar;

 VectorSize = HPCC_LocalVectorSize(params, 3,

sizeof(double), 0);

 a = HPCC_XMALLOC(double, VectorSize);

 b = HPCC_XMALLOC(double, VectorSize);

 c = HPCC_XMALLOC(double, VectorSize);

HPCC Reference

 if (!a || !b || !c) {

 if (c) HPCC_free(c);

 if (b) HPCC_free(b);

 if (a) HPCC_free(a);

 if (doIO) {

 fprintf(outFile, "Failed to allocate memory

(%d).\n", VectorSize);

 fclose(outFile);

 }

 return 1;

 }

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++) {

 b[j] = 2.0;

 c[j] = 0.0;

 }

 scalar = 3.0;

#ifdef _OPENMP

#pragma omp parallel for

#endif

 for (j=0; j<VectorSize; j++)

 a[j] = b[j]+scalar*c[j];

 HPCC_free(c);

 HPCC_free(b);

 HPCC_free(a);

 return 0;

}

C O M P U T E | S T O R E | A N A L Y Z E

STREAM EP: Chapel

Copyright 2014 Cray Inc.
9

Chapel Stream EP (1.11 version)

coforall loc in Locales do on loc { // create task per locale

 local { // assert code in this block is local

 var A, B, C: [1..m] elemType; // declare per-locale vectors

 initVectors(B, C); // initialize vectors

 startTimer(); // start timed portion of code

 forall (a, b, c) in zip(A, B, C) do // parallel vector iteration

 a = b + alpha * c; // multiply-add-assign

 stopTimer(); // stop timed portion of code

 }

}

● Written in traditional SPMD style (not elegant Chapel)
● Spawns one task per locale (outside of timed region)

● 1.11 version used local block to help squash communication

C O M P U T E | S T O R E | A N A L Y Z E

Global STREAM: Chapel

Copyright 2014 Cray Inc.
10

Chapel Global Stream

const ProblemSpace = {1..m}

 dmapped Block({1..m}); // create distributed domain

var A, B, C: [ProblemSpace] elemType; // create distributed vectors

initVectors(B, C); // initialize vectors

startTimer(); // start timed portion of code

forall (a, b, c) in zip(A, B, C) do // parallel vector iteration

 a = b + alpha * c; // multiply-add-assign

stopTimer(); // stop timed portion of code

● Elegant Chapel version
● Uses distributed (global) arrays

● Spawning tasks on other locales happens within timed region

C O M P U T E | S T O R E | A N A L Y Z E

STREAM: Chapel

Copyright 2014 Cray Inc.
11

coforall loc in Locales do on loc {

 local {

 var A, B, C: [1..m] elemType;

 initVectors(B, C);

 forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

 }

}

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] elemType;

initVectors(B, C);

forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

● Our main performance goals for 1.12:
● Improve the compiler, runtime, and modules such that:

● stream-ep performs as well as the reference

● global stream is competitive with the reference

● Improve compiler locality analysis and optimizations such that:
● the local block in stream-ep can be removed

Stream EP Global Stream

C O M P U T E | S T O R E | A N A L Y Z E

STREAM: Motivation

Copyright 2015 Cray Inc.
12

● Relatively simple and straightforward benchmark
● Easy for us to debug and find performance issues

● Has a minimal amount of communication
● makes it easy to isolate other performance and scaling bottlenecks

● Stream-inspired optimizations should improve most benchmarks

● Serves as a proxy for embarrassingly/pleasingly parallel computations

● Affinity is crucial for getting good performance

● Utilizes all cores and significant amounts of memory
● Should help identify weak links in tasking, memory, and comm layers

● Global version demonstrates productivity of domain maps
● Competitive results will help abate long-term performance concerns

● i.e. show that productivity and performance are not mutually exclusive

C O M P U T E | S T O R E | A N A L Y Z E

STREAM: Testing Configuration

Copyright 2015 Cray Inc.
13

● Run on a Cray XC40:
● 24 core (48 HT) IvyBridge Processor (2 numa domains)

● 128 GB RAM per node

● GCC 4.9.2

● Studied cross product of tasking, memory, comm layers
● To make isolating performance issues easier

● To ensure that there are no glaring issues with any given layer

● Test Results
● Will show several configurations compared to reference

● and impact of individual changes

● Most slides will show stream-ep vs. reference (GB/s per node)
● will do a comparison of global stream at the end

C O M P U T E | S T O R E | A N A L Y Z E

STREAM: Initial Performance

Copyright 2015 Cray Inc.
14

● In general we were just over 2x worse than reference
● Slightly worse for muxed and fifo

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

34 GB/s

N/A

muxed 31 GB/s

qthreads

35 GB/s

dlmalloc 35 GB/s

tcmalloc 35 GB/s

gasnet-mpi qthreads cstdlib 35 GB/s 35 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
30 GB/s 31 GB/s

qthreads 35 GB/s 35 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Parallel Array Initialization Optimization

Copyright 2015 Cray Inc.
15

C O M P U T E | S T O R E | A N A L Y Z E

Parallel Initialization: Background

Copyright 2015 Cray Inc.
16

● Uninitialized variables are assigned a default value
var i: int; // default initialized to 0

var A: [1..10] int; // each element default initialized to 0

● Array initialization has traditionally been serial
● Initialization is typically responsible for “first-touch”

● incorrect first-touch results in poor affinity, which can hurt performance

● Need a principled way to get good first-touch
● Short term: we want to default to some sort of parallel initialization

● Long term: domain map author should specify parallel initialization
● permits parallelization strategy to match parallel iterators

● requires finalizing and implementing our constructor proposal

● also want to permit users to ‘noinit’ arrays

C O M P U T E | S T O R E | A N A L Y Z E

Parallel Initialization: This Effort

Copyright 2015 Cray Inc.
17

● Determine when parallel initialization is appropriate
● Consistent to assume that most arrays will be used in parallel

● other operations are parallel by default (promotion, reductions, etc.)

● However, parallel initialization is not always the right choice
● e.g. code with many small arrays (especially if constructed in a loop)

● Heuristic: Parallel initialize numeric arrays > 2MB
● Initial attempts at heuristics were naïve

● tried to parallel initialize all arrays, then tried several unreliable heuristics

● Moved to experimentally determining a good size
● 2MB is good for 2 core laptop, 8 core desktop, 24 core XC, 240 core KNC

● Decided to only parallel initialize numeric arrays
● serious performance regressions for arrays of arrays

● will be addressed in future releases, but was not high priority now

● stepping stone will be to enable for arrays of plain old data (POD) types

C O M P U T E | S T O R E | A N A L Y Z E

Parallel Initialization: Impact

Copyright 2015 Cray Inc.
18

● Improvements for several benchmarks

● Regressions for benchmarks testing serial array access
● understood, and acceptable (not representative of “real” code)

C O M P U T E | S T O R E | A N A L Y Z E

● Substantial performance improvements
● for all tasking layers

● for gasnet-mpi

● for most memory layers

Parallel Initialization: Stream Impact

Copyright 2015 Cray Inc.
19

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

64 GB/s

N/A

muxed 48 GB/s

qthreads

66 GB/s

dlmalloc 66 GB/s

tcmalloc 35 GB/s

gasnet-mpi qthreads cstdlib 67 GB/s 71 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
30 GB/s 31 GB/s

qthreads 35 GB/s 35 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Parallel Initialization: Stream Impact

Copyright 2015 Cray Inc.
20

● Substantial performance improvements
● for all tasking layers

● for gasnet-mpi

● for most memory layers (except tcmalloc)

 CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

64 GB/s

N/A

muxed 48 GB/s

qthreads

66 GB/s

dlmalloc 66 GB/s

tcmalloc 35 GB/s

gasnet-mpi qthreads cstdlib 67 GB/s 71 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
30 GB/s 31 GB/s

qthreads 35 GB/s 35 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Array Allocation Improvement

Copyright 2015 Cray Inc.
21

C O M P U T E | S T O R E | A N A L Y Z E

Array Allocation: Background

Copyright 2015 Cray Inc.
22

Background: Noticed that tcmalloc still had bad first-touch
● Discovered that array allocation was being done with calloc()

● tcmalloc always uses memset() with calloc(), which touches pages
● dlmalloc and cstdlib check if mmap() zeros pages and avoid memset()

This Effort: Switch to using malloc() instead of calloc()
● There was no reason for us to be using calloc()

● we initialize arrays in the modules after allocation

● calloc() was inadvertently introduced in early hierarchical locales work

C O M P U T E | S T O R E | A N A L Y Z E

Array Allocation: Stream Impact

Copyright 2015 Cray Inc.
23

● Substantial performance improvements
● for single locale tcmalloc

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

64 GB/s

N/A

muxed 48 GB/s

qthreads

66 GB/s

dlmalloc 66 GB/s

tcmalloc 66 GB/s

gasnet-mpi qthreads cstdlib 67 GB/s 71 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
48 GB/s 31 GB/s

qthreads 66 GB/s 35 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Array Allocation: Stream Impact

Copyright 2015 Cray Inc.
24

● Substantial performance improvements
● for single locale tcmalloc

● (overall, single locale was still slightly behind reference)

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

64 GB/s

N/A

muxed 48 GB/s

qthreads

66 GB/s

dlmalloc 66 GB/s

tcmalloc 66 GB/s

gasnet-mpi qthreads cstdlib 67 GB/s 71 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
48 GB/s 31 GB/s

qthreads 66 GB/s 35 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Running Task Count Improvements

Copyright 2015 Cray Inc.
25

C O M P U T E | S T O R E | A N A L Y Z E

Running Task Count: Background

Copyright 2015 Cray Inc.
26

Background: Discovered locale 0 was mostly unused
● non-blocking on-stmts were being counted as local running tasks

● as was the task waiting for a coforall/cobegin to complete

● Iterators select degree of parallelism based on running task count
● incorrect running task count led to iterators creating too few tasks

coforall loc in Locales do on loc {

 // running task count on locale 0 was numLocales+1 here, rather than 1

}

This Effort: Improve accuracy of running task count
● Stop counting non-blocking on-stmts as tasks

● Stop counting the task waiting for a coforall/cobegin to finish

coforall loc in Locales do on loc {

 // now, running task count is 1 on all locales

}

C O M P U T E | S T O R E | A N A L Y Z E

Running Task Count: Impact

Copyright 2015 Cray Inc.
27

● Several performance improvements
● Larger values are better

C O M P U T E | S T O R E | A N A L Y Z E

Running Task Count: Stream Impact

Copyright 2015 Cray Inc.
28

● Substantial performance improvements
● qthreads is on par with reference!

● gasnet-mpi 1- and 16-locale are on par with reference!

● fifo was close to reference

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

68 GB/s

N/A

muxed 48 GB/s

qthreads

74 GB/s

dlmalloc 74 GB/s

tcmalloc 74 GB/s

gasnet-mpi qthreads cstdlib 74 GB/s 74 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
48 GB/s 31 GB/s

qthreads 74 GB/s 35 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Running Task Count: Stream Impact

Copyright 2015 Cray Inc.
29

● Substantial performance improvements
● qthreads is on par with reference!

● gasnet-mpi 1- and 16-locale are on par with reference!

● fifo was close to reference (muxed did not change)

 CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

68 GB/s

N/A

muxed 48 GB/s

qthreads

74 GB/s

dlmalloc 74 GB/s

tcmalloc 74 GB/s

gasnet-mpi qthreads cstdlib 74 GB/s 74 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
48 GB/s 31 GB/s

qthreads 74 GB/s 35 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Muxed Thread Limit Improvement

Copyright 2015 Cray Inc.
30

C O M P U T E | S T O R E | A N A L Y Z E

Muxed Thread Limit

Copyright 2015 Cray Inc.
31

Background: Discovered muxed was only using 16/24 cores
● Outdated code limited muxed to max of 16 hardware threads

● muxed was originally tuned for Gemini and SSCA#2 in HPCS days

● Hardware and muxed configuration have changed since then
● hard-coding this thread limit unnecessary and undesirable

● Missed this in previous releases since our machines only had 16 cores

This Effort: Remove limit on number of hardware threads
● Default is now the number of physical cores

● can be changed by user up to a comm layer limit (as with qthreads/fifo)

C O M P U T E | S T O R E | A N A L Y Z E

Muxed Thread Limit: Impact

Copyright 2015 Cray Inc.
32

● Several performance improvements
● Larger values are better

C O M P U T E | S T O R E | A N A L Y Z E

Muxed Thread Limit: Stream Impact

Copyright 2015 Cray Inc.
33

● Substantial performance improvements
● 1-locale muxed is really close to reference

● qthreads (our default for 1.12) has better support for affinity and pinning

● 16-locale muxed was slightly better than before

 CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

68 GB/s

N/A

muxed 70 GB/s

qthreads

74 GB/s

dlmalloc 74 GB/s

tcmalloc 74 GB/s

gasnet-mpi qthreads cstdlib 74 GB/s 74 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
70 GB/s 35 GB/s

qthreads 74 GB/s 35 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Muxed Thread Limit: Stream Impact

Copyright 2015 Cray Inc.
34

● Substantial performance improvements
● 1-locale muxed is really close to reference

● qthreads (our default for 1.12) has better support for affinity and pinning

● 16-locale muxed was slightly better than before (16-locale ugni still bad)

 CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

68 GB/s

N/A

muxed 70 GB/s

qthreads

74 GB/s

dlmalloc 74 GB/s

tcmalloc 74 GB/s

gasnet-mpi qthreads cstdlib 74 GB/s 74 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
70 GB/s 35 GB/s

qthreads 74 GB/s 35 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Impact of Hugepages

Copyright 2015 Cray Inc.
35

C O M P U T E | S T O R E | A N A L Y Z E

Hugepages: Background

Copyright 2015 Cray Inc.
36

Background: ugni and gasnet-aries use hugepages
● Cray Gemini/Aries NICs must register (pin) memory to access it

● gasnet-aries always registers, ugni only registers when numLocales > 1

● Registration is page-based, NIC has limited number of entries
● registering significant memory requires huge pages

● Currently Chapel registers the entire heap and data segment
● unfortunately, registration touches pages causing bad first-touch

This Effort: Investigate solutions for bad first-touch with ugni
● Work to resolve this issue is underway

● but did not make it into the 1.12 release

● We will show the performance of that work for stream
● to see the impact of later optimizations

● Did not investigate gasnet-aries yet
● suspect memory registration also leads to bad first-touch

C O M P U T E | S T O R E | A N A L Y Z E

Hugepages: Stream Impact

Copyright 2015 Cray Inc.
37

Reminder: This work did not make it into 1.12

● Substantial performance improvements
● for 16-locale ugni (still off from reference though)

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales

none

fifo

cstdlib

68 GB/s

N/A

muxed 70 GB/s

qthreads

74 GB/s

dlmalloc 74 GB/s

tcmalloc 74 GB/s

gasnet-mpi qthreads cstdlib 74 GB/s 74 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s

ugni
muxed

tcmalloc
70 GB/s 64 GB/s

qthreads 74 GB/s 55 GB/s

Reference 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Optimizing Task Counters

Copyright 2015 Cray Inc.
38

C O M P U T E | S T O R E | A N A L Y Z E

Optimizing Task Counters: Background

Copyright 2015 Cray Inc.
39

● Chapel has support for network-based atomics
● Chosen globally using CHPL_NETWORK_ATOMICS

● changes default type for all atomic variables

● Availability depends on hardware/environment
● currently available only for comm=ugni

● Internally, Chapel uses atomics for:
● the running task counter on each locale

● tracking the # of completed tasks for a parallel construct (‘endcounts’)
begin, cobegin, and coforall

C O M P U T E | S T O R E | A N A L Y Z E

Optimizing Task Counters: Background

Copyright 2015 Cray Inc.
40

● Historically, task counters used default atomic type
// Processor or network atomic, depending on CHPL_NETWORK_ATOMICS

var runningTaskCounter: atomic int;

// Ditto for compiler-generated endcounts for sync, cobegin, coforall statements…

● A parallel construct’s endcount may be provably local
coforall i in 1..10 {…} // lack of on-stmt means it’s local

cobegin {…}

● Processor atomics are much faster for local operations

C O M P U T E | S T O R E | A N A L Y Z E

Optimizing Task Counters: This Effort

Copyright 2015 Cray Inc.
41

● Force use of processor atomics for running task counter
● It is a per-locale counter that is always accessed locally

● Current method of forcing processor atomics not intended for users
● future work to provide a user-facing mechanism

● possibly repurposing the “local” keyword

● Have compiler choose atomic type for endcounts
● Use processor atomics for local cobegin and coforall statements

● i.e. blocking parallel constructs that do not have an on-statement

● Note that these changes are invisible to users
● Contained within compiler and internal modules

C O M P U T E | S T O R E | A N A L Y Z E

Optimizing Task Counters: Impact

Copyright 2015 Cray Inc.
42

● Positive impact for multi-locale programs
● For CHPL_COMM=ugni

● Larger values are better

C O M P U T E | S T O R E | A N A L Y Z E

Optimizing Task Counters: Stream Impact

Copyright 2015 Cray Inc.
43

● Substantial performance improvements
● Note: these numbers are with the hugepage workaround

● 16-locale ugni is on par with 1-locale – qthreads on par with reference

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales 16 w/o hugepages

none

fifo

cstdlib

68 GB/s

N/A

muxed 70 GB/s

qthreads

74 GB/s

dlmalloc 74 GB/s

tcmalloc 74 GB/s

gasnet-mpi qthreads cstdlib 74 GB/s 74 GB/s 74 GB/s

gasnet-aries qthreads dlmalloc 35 GB/s 35 GB/s N/A

ugni
muxed

tcmalloc
70 GB/s 35 GB/s 70 GB/s

qthreads 74 GB/s 35 GB/s 74 GB/s

Reference 74 GB/s 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Stream Performance Summary

Copyright 2015 Cray Inc.
44

C O M P U T E | S T O R E | A N A L Y Z E

Copyright 2015 Cray Inc.
45

● Summary of Improvements:
● Parallelized array initialization

● Switched to malloc() for array allocation

● Corrected running task count

● Removed thread limit for muxed

● Investigated hugepage issues

● Optimized task counters

Stream Performance Summary

C O M P U T E | S T O R E | A N A L Y Z E

Stream Performance Summary

Copyright 2014 Cray Inc.
46

coforall loc in Locales do on loc {

 local {

 var A, B, C: [1..m] elemType;

 initVectors(B, C);

 forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

 }

}

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] elemType;

initVectors(B, C);

forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

Stream EP Global Stream

● Our main performance goals for 1.12:
● Improve the compiler, runtime, and modules such that:

 stream-ep performs as well as the reference

 global stream is competitive with the reference

● Improve compiler locality analysis and optimizations such that:
 the local block in stream-ep can be removed

C O M P U T E | S T O R E | A N A L Y Z E

Stream Performance Summary

Copyright 2014 Cray Inc.
47

Stream EP Performance:

● Blue configurations perform as well as the reference!
● Still have a little work to do for ugni

● last remaining issue is understood and already being worked on

● Gasnet-aries still has first-touch problems
● not a high priority (only used if building from source on a Cray)

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales 16 w/o hugepages

none

qthreads

cstdlib
74 GB/s N/A

gasnet-mpi 74 GB/s 74 GB/s 74 GB/s

gasnet-aries dlmalloc 35 GB/s 35 GB/s N/A

ugni tcmalloc 74 GB/s 35 GB/s 74 GB/s

Reference 74 GB/s 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Stream Performance Summary

Copyright 2014 Cray Inc.
48

Global Stream Performance:

● Blue configurations perform close or as well as reference!
● No overhead for 1 locale

● Slight (3%) overhead for 16 locales
● most likely because remote task creation is inside timed section

● could also mean that our block distribution could use some tuning

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales 16 w/o hugepages

none

qthreads

cstdlib
74 GB/s N/A

gasnet-mpi 74 GB/s 72 GB/s 72 GB/s

gasnet-aries dlmalloc 35 GB/s 34 GB/s N/A

ugni tcmalloc 74 GB/s 35 GB/s 73 GB/s

Reference 74 GB/s 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Stream Performance Summary

Copyright 2014 Cray Inc.
49

● Our main performance goals for 1.12:
● Improve the compiler, runtime, and modules such that:

 stream-ep performs as well as the reference

 global stream is competitive with the reference

● Improve compiler locality analysis and optimizations such that:
 the local block in stream-ep can be removed

CHPL_COMM CHPL_TASKS CHPL_MEM 1 locale 16 locales 16 w/o hugepages

none

qthreads

cstdlib
74 GB/s N/A

gasnet-mpi 74 GB/s 72 GB/s 72 GB/s

gasnet-aries dlmalloc 35 GB/s 34 GB/s N/A

ugni tcmalloc 74 GB/s 35 GB/s 73 GB/s

Reference 74 GB/s 74 GB/s 74 GB/s

C O M P U T E | S T O R E | A N A L Y Z E

Locality Optimizations

Copyright 2015 Cray Inc.
50

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Background

Copyright 2015 Cray Inc.
51

● STREAM-EP in 1.11:
coforall loc in Locales do on loc {

 local { // Permits compiler to squash overheads related to wide pointers

 var A, B, C: [1..m] elemType;

 initVectors(B, C);

 forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

 }

}

● Goal: get rid of the local block
● Cumbersome language feature in general

● Compiler should be able to eliminate all overhead in this case
● code within local block can be trivially seen to be local

● Wide pointers are the main source of overhead

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Background

Copyright 2015 Cray Inc.
52

● Wide pointers represent potentially remote data

● Use runtime GETs and PUTs to read/write data
● Will short-circuit if data is local

● Significant source of overhead
● Some overhead for runtime calls

● Potential for communication thwarts back-end compiler optimizations

typedef struct {

 int localeID; // where this object lives

 Foo addr; // pointer to data

} wide_Foo; // wide pointer for class Foo

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Background

Copyright 2015 Cray Inc.
53

● ‘chpl’ has traditionally introduced wide pointers liberally
 Simple implementation

 Easier to ensure program correctness

 Unnecessary overhead, often for cases that seem easy

● Particularly bad for arrays
● Wide pointer overhead for every array access

● Reason STREAM-EP had a local block
local { // Squashes overhead for wide pointers

 forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

}

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Improving the compiler

Copyright 2015 Cray Inc.
54

● Eventually, hope to remove all local blocks
● Used in other benchmarks like FFT, LULESH, etc.

● Also used inside standard distributions like Block

● Many cases dependent on compiler improvements
● For other cases, we intend to move to data-centric locality assertions

● e.g., “access the local slice of this array”

● First step: improve part of compiler architecture
● Make it easier to write new optimizations

● Reduce complexity of existing analysis

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Improving the compiler

Copyright 2015 Cray Inc.
55

● 1.11 had two compiler passes to manage wide pointers

Wide Pointers

Pass #2: Perform analysis and undo “widening” from Pass #1

All data considered local, initially

Resulting program state is overly conservative, expensive

Pass #1: Insert wide pointers for all data

Final output

C O M P U T E | S T O R E | A N A L Y Z E

Problem: Easy for wide pointers to stick around
● First pass inserts many unnecessary wide pointers

● Second pass was often not smart enough to remove them

Solution: Merge two passes into one
● Only insert wide pointers when necessary

● Fewer variables will be wide pointers by default

Locality optimizations: Improving the compiler

Copyright 2015 Cray Inc.
56

All data considered local

Final output

New Pass: Analyze AST and insert wide pointers

Wide Pointers

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Improving the compiler

Copyright 2015 Cray Inc.
57

● New pass is less complex
● Less code (by several hundred lines)

● Only handles cases that involve wide pointers

● Easy for developers to see when/why a wide pointer was inserted

● Easier to add new optimizations
● Can manipulate AST without completely restarting analysis

● More utility functions for developers

● Should be able to improve compiler analysis more quickly

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Better analysis

Copyright 2015 Cray Inc.
58

● Problem: Fields in aggregate types are wide pointers
● For a simpler code-generation implementation

● Tuples are represented as records in AST
● Fields “x1”, “x2”, etc. will be wide pointers

● Stream’s arrays are eventually wrapped in a tuple
● Due to implementation of zip

forall (a, b, c) in zip(A, B, C) do ...

● Those arrays are then referred to using wide pointers
● Adds significant overhead on every read/write on array

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Better analysis

Copyright 2015 Cray Inc.
59

● Solution: Compiler should not widen every field by default

● Only insert a wide pointer…
● when a field is visible to another locale

● if a field is assigned to by another wide pointer

● Reduces overhead for compiler-inserted classes/records

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Impact

Copyright 2015 Cray Inc.
60

0

10

20

30

40

50

60

70

80

Before After

G
B

/s
 p

e
r

n
o

d
e

w/ local block

w/o local block

● STREAM-EP on 16-node XC40
● For gasnet-mpi

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Impact

Copyright 2015 Cray Inc.
61

C O M P U T E | S T O R E | A N A L Y Z E

Locality optimizations: Next Steps

Copyright 2015 Cray Inc.
62

● Goal: Eliminate use of local block in other benchmarks
● HPCC FFT

● LULESH

● HPL

● Continue improving compiler’s locality analysis

● Provide data-centric locality support
● Repurpose “local” keyword in variable/type/indexing contexts

● See CHIUW 2015 talk Data-Centric Locality in Chapel for details

http://chapel.cray.com/CHIUW/2015/talks/data-centric-locality-chiuw-2015.pdf
http://chapel.cray.com/CHIUW/2015/talks/data-centric-locality-chiuw-2015.pdf
http://chapel.cray.com/CHIUW/2015/talks/data-centric-locality-chiuw-2015.pdf

C O M P U T E | S T O R E | A N A L Y Z E

Stream Locality Summary

Copyright 2014 Cray Inc.
63

coforall loc in Locales do on loc {

 local {

 var A, B, C: [1..m] elemType;

 initVectors(B, C);

 forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

 }

}

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] elemType;

initVectors(B, C);

forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

● Our main performance goals for 1.12:
● Improve the compiler, runtime, and modules such that:

 stream-ep performs as well as the reference

 global stream is competitive with the reference

● Improve compiler locality analysis and optimizations such that:
 the local block in stream-ep can be removed

Stream EP Global Stream

C O M P U T E | S T O R E | A N A L Y Z E

Stream Locality Summary

Copyright 2014 Cray Inc.
64

coforall loc in Locales do on loc {

 // local {

 var A, B, C: [1..m] elemType;

 initVectors(B, C);

 forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

 // }
}

const ProblemSpace = {1..m} dmapped …;

var A, B, C: [ProblemSpace] elemType;

initVectors(B, C);

forall (a, b, c) in zip(A, B, C) do

 a = b + alpha * c;

● Our main performance goals for 1.12:
● Improve the compiler, runtime, and modules such that:

 stream-ep performs as well as the reference

 global stream is competitive with the reference

● Improve compiler locality analysis and optimizations such that:
 the local block in stream-ep can be removed

Note: removing it also enabled other code cleanups not shown above

Stream EP Global Stream

C O M P U T E | S T O R E | A N A L Y Z E

Performance Improvements Summary

Copyright 2015 Cray Inc.
65

C O M P U T E | S T O R E | A N A L Y Z E

Performance: Summary

Copyright 2015 Cray Inc.
66

● This release we focused on multi-locale performance
● We used steam as a case study to motivate optimizations

● We achieved our performance goals for stream
● resulting in our first truly competitive and scalable benchmark

● as well as significant improvements for other many other benchmarks

● Previous slides have shown performance at 16 locales

● Following slides will show performance up to 256 locales
● Run on 1-256 nodes of a Cray XC40:

● 32-core (64 HT) Haswell Processors

● 128 GB RAM per node

● GCC 5.1.0

C O M P U T E | S T O R E | A N A L Y Z E

Performance: Summary

Copyright 2015 Cray Inc.
67

● Performance trends are the same at higher node counts
● Performance has more than doubled since last release

● EP is on par with the reference

● Global is also very competitive (spinning up parallelism is scaling)

C O M P U T E | S T O R E | A N A L Y Z E

Performance: Summary

Copyright 2015 Cray Inc.
68

● Performance trends are the same at higher node counts
● Performance has more than doubled since last release

● EP is on par with the reference

● Global is also very competitive (spinning up parallelism is scaling)

C O M P U T E | S T O R E | A N A L Y Z E

Performance: Next Steps

Copyright 2015 Cray Inc.
69

● Complete remaining work for stream
● Resolve ugni hugepage performance issue

● and possibly gasnet-aries as well

● Determine if global stream performance can be improved
● particularly as node counts grow

● Compare/improve other variants of writing stream
● e.g., promoted operator version; domain-based iteration + indexing

● Optimize more complicated multi-locale benchmarks
● Likely starting with RA, other HPCC benchmarks, and ISx

● possibly working towards an HPCC entry for SC16

● Continue improving compiler locality optimizations
● Guided by removing “local” blocks from other benchmarks

C O M P U T E | S T O R E | A N A L Y Z E

Appendix: Larger Stream Scalability Graph Images

Copyright 2015 Cray Inc.
70

C O M P U T E | S T O R E | A N A L Y Z E

Performance: Summary

Copyright 2015 Cray Inc.
71

C O M P U T E | S T O R E | A N A L Y Z E

Performance: Summary

Copyright 2015 Cray Inc.
72

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2015 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2014 Cray Inc.

73

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

