
C O M P U T E | S T O R E | A N A L Y Z E

Benchmarks and Performance Results

Chapel Team, Cray Inc.

Chapel version 1.11

April 2, 2015

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

 Safe Harbor Statement

Copyright 2015 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Executive Summary

Copyright 2014 Cray Inc.
3

● Generally speaking, performance has improved with 1.11

● Previous slide decks have shown performance changes:
…due to vectorization

…due to LICM improvements

…due to ugni+muxed as default

…due to parallel range iteration improvements

…due to the local field pragma

● These slides contain additional v1.11 performance results
● not tied to any specific effort, just comparisons across releases

C O M P U T E | S T O R E | A N A L Y Z E

Outline

Copyright 2014 Cray Inc.
4

● Shootout Benchmark Status

● Single Locale Performance Trends

● Compiler Performance Trends

● Multi-locale Performance Trends

● ugni+qthreads Performance Trends

● Performance Scalability Study

● Performance Priorities and Next Steps

C O M P U T E | S T O R E | A N A L Y Z E

Shootout Benchmarks Status

Copyright 2015 Cray Inc.
5

C O M P U T E | S T O R E | A N A L Y Z E

Shootout Benchmark Summary

Copyright 2015 Cray Inc.
6

● By design, not much effort put into shootouts for 1.11
● --no-local timings improved for some cases due to locality work

● A few of our fastest versions improved, but most stayed the same

● Several of our non-fastest versions also improved
 Chapel becoming less sensitive to writing in a specific style

C O M P U T E | S T O R E | A N A L Y Z E

Shootout Performance Standings

Copyright 2015 Cray Inc.
7

● Chapel versions (purple) compared to C/C++ references
● Timings taken on 2x4-core Intel Xeon processors w/ gcc 4.7.2

C O M P U T E | S T O R E | A N A L Y Z E

Shootout Performance Standings (continued)

Copyright 2015 Cray Inc.
8

Note: two Chapel versions above,

one faster, one more elegant

C O M P U T E | S T O R E | A N A L Y Z E

Shootout Performance Standings (continued)

Copyright 2015 Cray Inc.
9

● The following cases deserve additional notes:
fannkuch-redux:

● reference versions hard-code #threads for the 4-core shootout system

● Chapel doesn’t, to its benefit on this 8-core system

nbody:
● the five fastest reference versions use vector intrinsics

● the Chapel version vectorizes, yet not with gcc 4.7.2, so no benefit there

pidigits:
● the reference versions use an older system installation of GMP

● Chapel uses a newer, bundled version that results in the difference

C O M P U T E | S T O R E | A N A L Y Z E

Single Locale Performance Trends

Copyright 2015 Cray Inc.
10

C O M P U T E | S T O R E | A N A L Y Z E

Single Locale Performance

Copyright 2015 Cray Inc.
11

● No-local execution improved due to better local analysis
● More no-local executions complete without timing out in test system

● e.g., FT size B, IS size A

 0

 2

 4

 6

 8

 10

 12

 14

1.10
1.11

T
im

e
 (

s
e

c
o

n
d
s
)

knucleotide: Chapel Local versus No-local

chpl 1 chpl 1 no-local

 0

 5

 10

 15

 20

 25

1.9
1.10

1.11

T
im

e
 (

s
e

c
o

n
d
s
)

fasta: Chapel Local versus No-local

chpl 1 chpl 1 no-local

 0

 5

 10

 15

 20

 25

 30

1.10 1.11

T
im

e
 (

s
e

c
o

n
d

s
)

Release

Chapel Local Versus No-local Timing: FT Size A

Chapel FT no-local - size A

Chapel FT - size A

C O M P U T E | S T O R E | A N A L Y Z E

Single Locale Performance

Copyright 2015 Cray Inc.
12

● Improvements to sparse iterators helped CG performance

 0

 1

 2

 3

 4

 5

 6

1.9 1.10 1.11

T
im

e
 (

s
e

c
o
n

d
s
)

Release

Chapel Versus Reference Timing: CG Size A

Chapel CG - size A Reference

C O M P U T E | S T O R E | A N A L Y Z E

Compiler Performance Trends

Copyright 2015 Cray Inc.
13

C O M P U T E | S T O R E | A N A L Y Z E

Compiler Performance

Copyright 2015 Cray Inc.
14

● Compilation time has improved by ~1 second for all tests

C O M P U T E | S T O R E | A N A L Y Z E

Multi-Locale Performance Trends

Copyright 2015 Cray Inc.
15

C O M P U T E | S T O R E | A N A L Y Z E

Multi-locale Performance

Copyright 2015 Cray Inc.
16

● Most benchmarks have remained the same or improved slightly

C O M P U T E | S T O R E | A N A L Y Z E

Multi-locale Performance

Copyright 2015 Cray Inc.
17

● miniMD has gotten ~10% slower for gasnet-aries
● seemingly related to local class optimization

● regression discovered while assembling this report

● not yet sure what happened yet

C O M P U T E | S T O R E | A N A L Y Z E

ugni+qthreads Performance Trends

Copyright 2015 Cray Inc.
18

C O M P U T E | S T O R E | A N A L Y Z E

ugni+qthreads Performance

Copyright 2015 Cray Inc.
19

● ugni+qthreads is sometimes competitive with ugni+muxed

C O M P U T E | S T O R E | A N A L Y Z E

ugni+qthreads Performance

Copyright 2015 Cray Inc.
20

● In other cases ugni+qthreads outperforms ugni+muxed

C O M P U T E | S T O R E | A N A L Y Z E

Performance Scalability Study

Copyright 2015 Cray Inc.
21

C O M P U T E | S T O R E | A N A L Y Z E

Scalability Study: Background

Copyright 2014 Cray Inc.
22

● We continued the scalability study from last release
● HPCC Stream: EP and Global

● HPCC RA: atomic, on-based, and remote memory operations (rmo)
● these test network atomics, active messages, and puts/gets, respectively

● Reduction of an array

● All experiments shown here were performed on a Cray XC
● 1-256 locales (up from 1-64 from last release)

● ugni+muxed and ugni+qthreads runtimes

● The following slides highlight a few notable cases

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: STREAM-EP Efficiency

Copyright 2015 Cray Inc.
23

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: STREAM Global Efficiency

Copyright 2015 Cray Inc.
24

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: RA Performance

Copyright 2015 Cray Inc.
25

● for RA, ugni+muxed has not changed significantly
● More interesting is ugni+muxed vs. ugni+qthreads

C O M P U T E | S T O R E | A N A L Y Z E

Scalability: Reductions Efficiency

Copyright 2015 Cray Inc.
26

0 %

20 %

40 %

60 %

80 %

100 %

 8 32 64 128 256

%
 E

ff
ic

ie
n

c
y

(r
e
la

ti
v
e

 t
o
 1

 l
o

c
a
le

)

Locales

Efficiency of Reductions

1.10 u+m 1.11 u+m 1.11 u+q

C O M P U T E | S T O R E | A N A L Y Z E

Performance Priorities and Next Steps

Copyright 2014 Cray Inc.
27

C O M P U T E | S T O R E | A N A L Y Z E

Performance Priorities and Next Steps

Copyright 2014 Cray Inc.
28

● Continue to explore ugni+qthreads performance
● understand differences compared to ugni+muxed

● if possible, close performance gap and retire muxed tasking

● NUMA-aware performance
● more focus on NUMA locale model

● particularly execution-time address representation

● improve array initialization (parallel, appropriate first-touch)
● currently gated by constructor/default init/noinit capabilities

● explore the impact of using NUMA by default

● Continue scalability studies
● Reduce unnecessary communication code

● Improve implementation of reductions

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2014 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2014 Cray Inc.

29

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

