Documentation Improvements

Chapel Team, Cray Inc.
Chapel version 1.11
April 2"d 2015

COMPUTE | ANALYZE

Safe Harbor Statement .

~

Kl'his presentation may contain forward-looking statements that are
based on our current expectations. Forward looking statements
may include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and

Qhese forward-looking statements.)

Copyright 2015 Cray Inc.

Outline

e Background

e Standard Module Documentation

e \Website Updates

e Other Documentation Improvements

e Documentation Priorities and Next Steps

Chapel Docs: Background

$ tree doc/
doc/
README
README. bugs
README.building
o : READNE. conp1ing
e Existing Chapel documentation: READHE. executing
README.multilocale
e Chapel Spec README prereas
Quick Reference Guide patrorns T

[)
. . README. cray
e READMES in doc/ directory README cyguin
. . .knc
e Online tutorials mconx
o

.Sgi

Primers .tilera

quickReference.pdf
C | [faculty.knox.edu/dbunde/teaching/chapel/ technotes

README.atomics

1.4. Hello World! -auxIo
.chpldoc
.comm—-diagnostics

Let's begin with writing one of the simplest programs in any .curl

named hello.chpl: .dsi
.extern
.fileUtil

writeln("Hello world!"); .firstClassFns
.format
) L . .) .formattedIO

And that's it. To complle it from a terminal in the same direc .gmp

.hdfs

.10

.libraries

. Llvm

This invokes the Chapel compiler chpl, which translates he .local

because the program has been translated all the way into n -;g;glemdﬂs

.module_search
./hello . regexp
.sets
.Subquery
.typeQueries

chpl -o hello hello.chpl

If the result is not "Hello world!” then you should be concerr

2 directories, 44 files

http://pixshark.com/download-pdf-button-png.htm
https://github.com/chapel-lang/chapel/tree/1.10.0/doc/release
http://faculty.knox.edu/dbunde/teaching/chapel/

Chapel Docs: More Background

e Module documentation spread out
e Not easily searchable

e As aresult, not updated often

/C‘:% COMPUTE | STORE

=/ Copyright 2015 Cray Inc.

ANALYZE

http://british-hungarian.org.uk/n/83cfd98604
http://www.toledoblade.com/Religion/2004/03/13/Dead-Sea-Scrolls-other-items-on-display.html

Chapel Docs: This Effort

e Module documentation on the web

e Improved introduction to Chapel on website
e “Hello, World!” examples on website
e Code sample front-and-center on main page

http://networklessons.com/cisco/how-to-use-cisco-documentation-for-ccie/

\

X

Standard Module Documentation

Chapel Docs: Module Docs on the Web

URL: http://chapel.cray.com/docs/latest/

&= C [chapel.cray.com/docs/latest/index.html

chpldoc

Docs » chpldoc documentation

chpldoc documentation chpldoc documentation

Module: AdvancedlIters

Module: Assert Contents:

Module: BitOps

+« Module: AdvancediIters

+ Module: Assert

Module: CommDiagnostics » Module: BitOps

+« Module: Buffers

+« Module: CommDiagnostics
+ Module: Curl

+ Module: Error

———

Module: Buffers

Module: Curl

Module: Error

Module: FFTW

View page source

http://chapel.cray.com/docs/latest/
http://chapel.cray.com/docs/latest/
http://chapel.cray.com/docs/latest/
http://chapel.cray.com/docs/latest/

Chapel Docs: Module Documentation A

e One page per module
e Module description at top

e Based on code comments
e Updated chpldoc tool

e Supports rich formatting:

Emphasis
Bold

Links
Section titles
etc

Module: FileSystem

A file utilities library

The FileSystem module focuses on file and directory properties and operations. It does not cover
every interaction involving a file— for instance, path-specific operations live in the prath module,

while routines for opening, writing to, or reading from a file live in the 10 module. Rather, it covers

cases where the user would prefer a file or directory to be handled wholesale and/or with minimal
interaction. For example, this module contains File/Directory Manipulations and functions for
determining the File/Directory Properties. Also included are operations relating to the current
process's file system state, which are performed on a specified locale (Locale State Functionality). The
module also contains iterators for traversing the file system (File System Traversal Iterators).

File/Directory Manipulations

copy copyFile copyTree mkdir remove symlink chmod chown copyMode rename

File/Directory Properties

getGID getMode getUID exists | isDir | isFile | islink disMount sameFile

Locale State Functionality

locale.chdir locale.cwd locale.umask

File System Traversal Iterators

glob listdir walkdirs findfiles

Constant and Function Definitions

const S_IRUSR: int

S_IRUSR and the following constants are values of the form S_I[R | W | X][USR | GRP | OTH],
S_IRWX[U | G| O], 5_ISUID, 5_ISGID, or S_ISVTX, where R corresponds to readable, W

roarracnnnde faouritahla ¥ rarraenande fa avacikahla 11IED and | crarraenand +oocar DD and

®

http://chapel.cray.com/docs/latest/modules/standard/FileSystem.html

Chapel Docs: Cross References (links) RIS

e Supports inter-documentation links \
e Reader can quickly find types, procedures, etc.

As in standard FFTW usage, the flow is to:

1. Create plan(s) using the plan_dft* routines.

2. Execute the plan(s) one or more times using execut
3. Destroy the plan(s) using destroy_plan . W

4. Call cleanup .

proc execute(const plan: fftw_plan)

L= Execute an FFTW plan.

Arguments: plan: fftw plan - The plan to execute, as computed by a plan_dft*() routine.

7= COMPUTE | STORE | ANALYZE

=/ Copyright 2015 Cray Inc.

http://chapel.cray.com/docs/latest/modules/standard/FFTW.html#module-fftw
http://chapel.cray.com/docs/latest/modules/standard/FFTW.htmlFFTW.execute

Chapel Docs: Procedures and lterators CooN

e Procedure docs include: ~

e Signature and procedure documentation
e Arguments, return type and description

e Supports rich formatting

proc copyTree(src: string, dest: string, copySymbolically: bool = false) %

Will recursively copy the tree which lives under src into dst, including all contents, permissions,
and metadata. dst must not previously exist, this function assumes it can create it and any missing
parent directories. If copySymbolically is true, symlinks will be copied as symlinks, otherwise their
contents and metadata will be copied instead.

Will halt with an error message if one is detected.

Arguments: + src:string - The root of the source tree to be copied.
« dest: string - The root of the destination directory under which the contents of src
are to be copied (must not exist prior to this function call).
+ copySymbolically : bool - This argument is used to indicate how to handle symlinks in

COMPUTE | STORE | ANALYZE

Copyright 2015 Cray Inc. @

http://chapel.cray.com/docs/latest/modules/standard/FileSystem.htmlFileSystem.copyTree

Chapel Docs: Procedures and Iterators S

" ist tring): bool
o Arguments, returnfyield P Sxistsinamesiingiboo

have s ep arate section Determines if the file or directory indicated by

® Typ es can link to class or Will halt with an error message if one was dete
record docs Arguments: name: siring - The file or directory
Returns: true if the provided argument corre

otherwise. Also returns false for bri

Return type: bool

iter glob(pattern=""")

Yields filenames that match a given glob pattern
(zippered or non-).

Arguments: pattern:string - The glob pattern to

Yields: The matching filenames as strings

http://chapel.cray.com/docs/latest/modules/standard/FileSystem.htmlFileSystem.glob
http://chapel.cray.com/docs/latest/modules/standard/FileSystem.htmlFileSystem.exists

Chapel Docs: Classes and Records .

record list

e Class/record description Asinglylinkedlist.

destroy must be called to reclaim any memory used by the list.

e Member docs

e Method and iterators

type eltType

e Cross-reference all items

The type of the data stored in every node.

var length: int

The number of nodes in the list.

iter thesel()

Iterate over the list, yielding each element.

Yield type: eltType

proc append|e: eltType)

Append e to the list.

/5 COMPUTE | STORE | ANALYZE
=

=/ Copyright 2015 Cray Inc.

http://chapel.cray.com/docs/latest/modules/standard/List.htmlList.list

Chapel Docs: Enums, Types, Configs RIS
e $ \
e ENnUMS enum MemUnits [Bytes, KB, MB, GB }
The amount of memory returned by locale.physicalMemory C:
bytes or as chunks of 2**10, 2**20, or 2**30 bytes.
o TypeS type c_int =integral

e Supports extern types

The type corresponding to the C int type
e And standalone types

e Confi gs config param noFFTWsizeChecks =false %

e Su pports var/const too Controls execution-time array size checks inthe FFTW pla
e Globals also supported

checks).
/C‘-l COMPUTE | STORE | ANALYZE
=/ Copyright 2015 Cray Inc.

http://chapel.cray.com/docs/latest/modules/standard/Memory.htmlMemory.MemUnits
http://chapel.cray.com/docs/latest/modules/standard/gen/doc/SysCTypes.htmlSysCTypes.c_int
http://chapel.cray.com/docs/latest/modules/standard/FFTW.htmlFFTW.noFFTWsizeChecks

Chapel Docs: Chapel Module Index

e Module Index lists all mods
e Brief description of each mod

e Links directly to modules

Chapel Module Index

albl|cle[f[g|h[ill|m|n|p|r|s|t]|u

a
AdvancedIters

Assert

b
BitOps
Buffers

[o
CommDiagnostics

Curl

Error

f
FFTW
FFTW_MT

FileSystem

GMP

This module contains several iterators that can be used to
Support for simple assert() routines.

Bitwise operations implemented using C intrinsics when pc
Support for buffers - regions of memory without a particulc

This module provides support for reporting and counting
Simple support for many network protocols with libcurl

Support for error handling.

Single-threaded FFT computations via key routines from F.
Multi-threaded FFT computations via FFTW (version 3)
A file utilities library

Support for GNU Multiple Precision Arithmetic

http://chapel.cray.com/docs/latest/chpl-modindex.html

Chapel Docs: Search

e Built-in search function

e Google, et al. also work

About 69 results (0.45 seconds)

Module: BitOps — chpldoc 0.0.1 documentation - Cha
chapel.cray.com/docs/latest/modules/standard/BitOps.html = Chape
Find the population count of x . Returns: the number of 1 bits set in x as x|
type: x.type. inline proc parity(x: integral)A]. Find the parity of x .

Module: Search — chpldoc 0.0.1 documentation - Che
chapel.cray.com/docs/latest/modules/standard/Search.html ~ Chape
Data — The sorted array to search; val — The value to find in the array. Ret
indicating (1) if the value was found and (2) the location of the value if it ...

Module: FFTW — chpldoc 0.0.1 documentation - Chaj
chapel.cray.com/docs/latest/modules/standard/FFTW.html ~ Chapel
are either installed in a standard system location or that your C compiler's ¢
variables are set up to find them (alternatively, the Chapel compiler's -I ...

Search Results

Search finished, found 9 page(s) matching the search query.

FileSystem.findfiles (iterfunction, in Module: FileSystem)

Module: BitOps

..bits after the least significant 1 bitin "x" :rtype: “x.type’ .. function:: proc popcount(x: integral) Find
population count of *x". :returns: the number of 1 bits setin X" as "x.type’ :rtype: "x.type’..

Module: Curl

..roc file.setopt(args ...?k) Set curl options on a curl file. It is equivalent to the curl_setopt_array you ir
in PHP. For example, you might do: .. code-block:: chapel curlfile.setopt((curlopt_username....

Module: FFTW

..are either installed in a standard system location or that your C compiler's environment variables a
find them (alternatively, the Chapel compiler's -I"* and ™*-L"" flags can be used to specify these loc:

Module: FFTW_MT

..are either installed in a standard system location or that your C compiler's environment variables a
find| them (alternatively, the Chapel compiler's *-I"* and **-L™" flags can be used to specify these loc:

Module: FileSystem

... File System Traversal Iterators
files’ Constant and Function Definitions

:iter: " glob :iter:"listdir” :iter:"walkdirs™ :it
..data:: const S_IRUSR: int S_IRU.

Module: Regexp

..ing, number of substitutions made) .. method:: proc sub(repl: string, text: ?t, global = true) [Find mz
this regular expression and create a new string in which those matches are replaced by repl....

COMPUTE |

STORE |

Copyright 2015 Cray Inc.

ANALYZE

http://chapel.cray.com/docs/latest/search.html?q=find&check_keywords=yes&area=default
https://www.google.com/search?q=site:chapel.cray.com+find

Chapel Docs: Module Documentation

e All standard modules are documented

e Added and edited a lot of module documentation!
e ~47k words
e ~11Kk lines of reStructuredText
e Every developer on the Cray team contributed docs
e Took ~6 weeks to complete all the documentation

7= COMPUTE | STORE | ANALYZE

=/ Copyright 2015 Cray Inc.

Website Updates

Chapel Docs: Website Updates

e “Hello, World!” examples on website

e New code snippet on front page

The Chapel Parallel Programming Language

Chapel Overview
Chapel Sample Code

What's New?

Upcoming Events
Job Opportunities

Language Definition
Language Evolution
Library Documentation

Presentations
Tutorials

Publications and Papers
Blog Articles
Press

Download Chapel
License

What's Chapel?

If you're new to Chapel, you may want to:

read a short introductory blog article or an even shorter overview statement

read a more in-depth overview paper
browse the slides from a recent Chapel overview talk

download the release

browse six versions of "Hello, world!" in Chapel and learn how to trivially write

distributed-memory computations like this:

use CyclicDist;

config const n = 10eee8;

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln(“Hello from iteration ", i, " of ", n, "

// use the Cyclic distribution Library
// override default using ./a.out --n=<val>

running on node ", here.id);

http://chapel.cray.com/

Chapel Docs: Website Updates

e Hello world examples on the website:

e http://chapel.cray.com/hellos.html

e Concise, yet thorough intro to language

1.
. "Production Grade" version

DA WN

"Hello, world!" Variants in Chapel

Here are six versions of "Hello, world!" from the Chapel release:

Simple version

Data-Parallel version
Distributed-Memory Data-Parallel version
Task-Parallel version
Distributed-Memory Task-Parallel version

For more advanced computations, browse the examples directory from the Chapel
release.

X

http://chapel.cray.com/hellos.html
http://chapel.cray.com/hellos.html

Chapel Docs: This Effort

e Hello world examples on the website:

e http://chapel.cray.com/hellos.html
e Concise, yet thorough intro to language

Simple Hello World

1 writeln("Hello, world!");

hello.chpl hosted with " by GitHub

Next: "Production-Grade" Hello World

This is the simplest "Hello, world!" in Chapel:

http://chapel.cray.com/hellos.html
http://chapel.cray.com/hellos.html
http://chapel.cray.com/hellos.html
http://chapel.cray.com/hello.html

Chapel Docs: This Effort

e Hello world examples on the website:
e http://chapel.cray.com/hellos.html
e Concise, yet thorough intro to language

\
=AY |
[\
) \
\

"Production-Grade" Hello World

demonstrate a more structured coding style:

/* This program is conceptually very similar to hello.chpl, but it
* uses a more structured programming style, explicitly defining a
* module, a configuration constant, and a main() procedure.

*/

[

// define a module named 'Helle'. If a source file defines no
J/f modules, the filename minus its .chpl extension serves as the
f// module name for the code it contains. Thus, 'hello' would be
18 // the automatic module name for hello.chpl.

11 //

17 module Halla 4

1
2
3
4
5
(5
7
8
9

This version uses a module, main(), and an execution-time configurable message to

7= COMPUTE | STORE | ANALYZE

=/ Copyright 2015 Cray Inc.

http://chapel.cray.com/hellos.html
http://chapel.cray.com/hellos.html
http://chapel.cray.com/hellos.html
http://chapel.cray.com/hello.html
http://chapel.cray.com/hello-module.html

Chapel Docs: This Effort CooN

e Hello world examples on the website: \
e http://chapel.cray.com/hellos.html

1
2
3
4
£3
24
25
26
2/
28

29

38
11

Task-Parallel Hello World

This version uses Chapel's coforall-loop to create a distinct task per iten
which prints its own message:

/* This test uses Chapel’'s task parallel features to create a
* parallel hello world program that utilizes multiple cores on a
* single locale (node)
*/
/7
// Each iteration prints out a message that is unique according to the
// value of tid. Due to the task parallelism, the messages may come
// out in any order. However, the writeln() procedure will prevent
// against finer-grained interleaving of the messages themselves.
/f
coforall tid in ©..#numTasks do
writeln("Hello, world! (from task " + tid + " of " + numTasks + ")");

COMPUTE | STORE | ANALYZE

Copyright 2015 Cray Inc. @

http://chapel.cray.com/hellos.html
http://chapel.cray.com/hellos.html
http://chapel.cray.com/hellos.html
http://chapel.cray.com/hello.html
http://chapel.cray.com/hello-module.html
http://chapel.cray.com/hello-datapar.html
http://chapel.cray.com/hello-datapar-dist.html
http://chapel.cray.com/hello-taskpar.html
http://chapel.cray.com/hello-taskpar.html

Chapel Docs: Status

e Module documentation available online
e Generated from source code and comments

e Hello world programs seen by many web users
e Previously requested by critics
e hellos.html has second-highest pageviews

/5 COMPUTE | STORE | ANALYZE
=

=/ Copyright 2015 Cray Inc.

\

§

Other Documentation Improvements

Other Documentation Improvements .

e Minor improvements to Quick Reference document

e Documented class/record destructors in spec
e Most frequently noted undocumented feature...

e Other spec improvements:
e removed an outdated [] vs. () distinction from the spec
e clarified that integer literals may be ‘uint’s if sufficiently large
e additional updates and improvements

e Added a note for ‘zsh’ users to the top-level README
e Improved documentation for slurm* launchers

e Noted long-standing feature to squash reference counting
e (at the cost of leaking all arrays...)
e a stopgap, see $CHPL_HOME/PERFORMANCE for details

/5 COMPUTE | STORE | ANALYZE
=

=/ Copyright 2015 Cray Inc.

\

§

Documentation Priorities and Next Steps

Documentation Priorities and Next Steps RIS

e Continue to update docs with module changes)

e chpldoc Chapel features that have library-like interfaces
e €.g., arrays-as-vectors, methods on ranges and domains, etc.

e Add primers to web as a broader Chapel tutorial
e Make remaining doc/ READMESs web pages

e Revise “Hello world” comments with web reader in mind

i
- : cRAY
Legal Disclaimer SOON
Information in this document is provided in connection with Cray Inc. products. No license, express or “ \ ‘

implied, to any intellectual property rights is granted by this document.
Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2015 Cray Inc.

ZN

= ®

.com

chapel info@cray.com

=

ey
CcCHAaPRPEL
—

=/

CRANY

THE SUPERCOMPUTER COMPANY

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

