
C O M P U T E | S T O R E | A N A L Y Z E

Tool Improvements

Chapel Team, Cray Inc.

Chapel version 1.11

April 2, 2015

C O M P U T E | S T O R E | A N A L Y Z E

This presentation may contain forward-looking statements that are

based on our current expectations. Forward looking statements

may include statements about our financial guidance and expected

operating results, our opportunities and future potential, our product

development and new product introduction plans, our ability to

expand and penetrate our addressable markets and other

statements that are not historical facts. These statements are only

predictions and actual results may materially vary from those

projected. Please refer to Cray's documents filed with the SEC from

time to time concerning factors that could affect the Company and

these forward-looking statements.

 Safe Harbor Statement

Copyright 2015 Cray Inc.
2

C O M P U T E | S T O R E | A N A L Y Z E

Tools Overview

Copyright 2015 Cray Inc.
3

● Prototype Chapel Interactive Programming Environment

● chpltags: source code navigation aid

● chpldoc: source-to-documentation tool

● Tool Priorities and Next Steps

C O M P U T E | S T O R E | A N A L Y Z E

Prototype Chapel IPE

(Interactive Programming Environment)

Copyright 2015 Cray Inc.

C O M P U T E | S T O R E | A N A L Y Z E

Executive Summary

Copyright 2015 Cray Inc.
5

● Foundation for interpreter developed
● Taking a depth-first approach in implementing features

● Initially support narrow feature set, sprinting toward parallelism/locality

● Then broaden iteratively

● Recent focus
● Managing scopes / environments

● Scope/Function resolution

● Incremental application development

● Primary challenges
● Sequencing of transformations

● Currently applied on a program-wide basis

● IPE must operate on single statements

● Current implementation of resolve is complex
● Implemented in multiple passes

● Interleaved with other passes esp. normalization

C O M P U T E | S T O R E | A N A L Y Z E

Status of Prototype

Copyright 2015 Cray Inc.
6

C O M P U T E | S T O R E | A N A L Y Z E

What Can It Do?

Copyright 2015 Cray Inc.
7

1> proc PowerOfTwo(n : int) : int

 {

 var i = 0;

 var res = 1;

 while (i < n)

 {

 i = i + 1;

 res = res * 2;

 }

 return res;

 }

2> writeln(‘2**10 = ‘, PowerOfTwo(10));

 2**10 = 1024

C O M P U T E | S T O R E | A N A L Y Z E

Simple Operations

Copyright 2015 Cray Inc.
8

● Arithmetic operations on int, real
● Unary +,-

● Binary +, -, *, /

● Equality comparison on int, real, bool
● ==, !=

● Ordered comparison on int, real
● <, >, <=, >=

● Misc
● abs

● _cond_test: implicit conversion to bool for conditionals

● primitive version of writeln

● Expressed as module code in ChapelBase

C O M P U T E | S T O R E | A N A L Y Z E

Simple Control Flow

Copyright 2015 Cray Inc.
9

● if-then and if-then-else statements

● while-do statement
● no break or continue

● return statement
● If present, must be final statement of procedure

C O M P U T E | S T O R E | A N A L Y Z E

User-defined Functions

Copyright 2015 Cray Inc.
10

● Fixed number of formals
● Types must be specified

● Return type must be specified
● Can be void

● At most 1 return statement
● Must be last statement

C O M P U T E | S T O R E | A N A L Y Z E

Interactive Console

Copyright 2015 Cray Inc.
11

● Enter statements interactively
● Variable definitions

● Procedure definitions

● If statements

● While-Do statements

● Function calls

● Output using limited version of writeln()

1> var x = 8;

2> writeln(‘x = ‘, x);

 x = 8

3> x = 12 + 4 * x;

4> writeln(‘x = ‘, x);

 x = 44

C O M P U T E | S T O R E | A N A L Y Z E

Development Strategy

Copyright 2015 Cray Inc.
12

● Initially narrow and deep
 Manage modules

 Simple expressions on default integers, reals, bools, cstring

 Simple control flow and function calls

 Simple interactive console

● Tasks within a single locale e.g. implement begin statement

● Multi-locale e.g. implement on statement

● Then widen iteratively
● Remaining primitive types

● Remaining sequential control flow

● Generic functions

● Iterators

● Classes, records, enums, etc

● Remaining parallel control flow

C O M P U T E | S T O R E | A N A L Y Z E

Compatibility with Static Chapel

Copyright 2015 Cray Inc.
13

● Static Chapel programs are valid interactive programs
● Currently

● Very small fraction of static Chapel supported

● Nearer-term
● Multi-tasking within a single locale

● Increasing support for breadth of static Chapel

● Investigation to support multi-locale programs

● Longer-term
● Full support for sequential static Chapel

● Multi-locale programs

● Scalable support for extern C procedures

● Strive to make interactive programs valid static programs
● Some challenges exist due to nature of interactivity

● e.g. incremental definition and redefinition of functions

C O M P U T E | S T O R E | A N A L Y Z E

Common Codebase

Copyright 2015 Cray Inc.
14

C O M P U T E | S T O R E | A N A L Y Z E

Mostly Positive for Compiler and Interpreter

Copyright 2015 Cray Inc.
15

● Pros
● Compiler provides a mature infrastructure for Chapel

● Existing parser, AST, transformations

● Development for IPE benefits compiler
● Improved abstraction in AST e.g. introduction of Loop statements

● Interactive console => pure parser

● Chapel language and implementation still maturing
● Interpreter and compiler grow together

● Additional changes to AST

● Refinement of scope/function resolution

● Cons
● Existing pipeline tailored to compiler

● Limited abstraction

● Largely fixed-order program-wide transformations

● Refactoring reduces initial rate of progress for IPE

C O M P U T E | S T O R E | A N A L Y Z E

Refactoring Driven By IPE

Copyright 2015 Cray Inc.
16

● Introduced new AST nodes derived from LoopStmt
● Conceived to simplify interpreter’s use of While stmts

● These had been expanded as nested BlockStmts during parsing

● Minor work remains for compiler

● Reduced reliance on BlockStmt::blockInfo for loop management
● Reported to have benefited vectorization effort

● LoopStmt currently derives from BlockStmt
● Should derive from Stmt

● Parser is reentrant (almost)
● Bison/Flex updated to use pure, push API

● No changes to grammar

● Basis to develop a Chapel-rific source include feature
● Will need to complete the removal of global state

C O M P U T E | S T O R E | A N A L Y Z E

Future Contributions to Compiler Front-end

Copyright 2015 Cray Inc.
17

● Interpreter should drive enhancements to AST
● Interpreters should provide source-level error messages and tracing

● Challenging with current AST

● Compiler lowers many statements during parse pass

● Interpreter should drive improvements to resolve
● Interpreter requires statement-oriented version of resolve

● Efficiency argues for performing this once per program statement

● Interpreter and Compiler should share a front-end
● Parser generates source-level untyped AST

● Literals, identifiers, source-level statements, line numbers

● Input for chpldoc and resolution

● Resolution generates typed AST
● Types, variables, fields, expressions, environments

● Can be executed with acceptable efficiency by interpreter

● Compiler can lower/transform as appropriate

C O M P U T E | S T O R E | A N A L Y Z E

What the Interpreter Wants

Copyright 2015 Cray Inc.
18

Read

Lexical scope explicit

Typed literals, variables, fields, expressions

Implies function calls selected

Resolve

Environment chains flattened

Variable locations defined

Function call dispatch streamlined

Optional

Streamline

Evaluate typed/resolved expressions Eval

Literals, Identifiers, Comments, Punctuation

Untyped expressions and statements

File names and line numbers

Source-level untyped AST

Typed AST

Typed AST

Print value Print

Param

Eval

C O M P U T E | S T O R E | A N A L Y Z E

What the Interpreter Gets

Copyright 2015 Cray Inc.
19

Untyped identifiers and symbols

Lowered statements and expressions
Parse

Identifiers mapped to symbols Scope Resolve

Additional lowering of untyped AST Normalize

Variables and expressions typed

Functions resolved
Resolve

Call Destructors

Pass

1

7

9

13

19

AST

AST

AST

AST

addr-of primitive inserted for ref args

C O M P U T E | S T O R E | A N A L Y Z E

What the Compiler Wants

Copyright 2015 Cray Inc.
20

Parse

Lexical scopes explicit

Typed literals, variables, fields, expressions

Implied function calls selected

Resolve

Scalar optimizations

Loop optimizations

Communication optimizations

Optimize

Generate C and invoke platform compiler Codegen

Literals, Identifiers, Comments, Punctuation

Untyped expressions and statements

File names and line numbers

Source-level untyped AST

Typed AST

Low Level AST

Param

Eval

C O M P U T E | S T O R E | A N A L Y Z E

A Shared Future

Copyright 2015 Cray Inc.
21

Parse

Lexical scopes explicit

Typed literals, variables, fields, expressions

Implied function calls selected

Resolve

Scalar optimizations

Loop optimizations

Communication optimizations

Optimize

Invoke platform compiler Codegen

Literals, Identifiers, Comments, Punctuation

Untyped expressions and statements

File names and line numbers

Source-level typed AST

Typed AST

Low Level AST

Param

Eval

Environment chains flattened

Variable locations defined

Call dispatch streamlined
Streamline

Eval typed expressions Eval

Typed AST

Print value Print

Compiler Interpreter

C O M P U T E | S T O R E | A N A L Y Z E

30,000’ View of Interpreter

Copyright 2015 Cray Inc.
22

C O M P U T E | S T O R E | A N A L Y Z E

Focus is on Expressions and Environments

Copyright 2015 Cray Inc.
23

● Expressions
● Literals

● Identifiers

● Definitions

● Control flow (if, while, for, ...)

● Calls

● Environments
● A sequence of frames

● A frame is a table of bindings from identifiers to types and values

● Frames are created by
● parsing a module declaration

● calling a function

● entering a block statement

● Frames related by lexical nesting and use statements

C O M P U T E | S T O R E | A N A L Y Z E

Syntactic Dispatch on Expression Type

Copyright 2015 Cray Inc.
24

● Literals
● Self-evaluating

● Identifiers
● Walk the environment chain to find the current binding

● Definitions
● Extend the current environment frame

● Control flow (if, while, for, ...)
● Handful of special cases to implement

● Calls
● Determine the type of every actual and select required definition

● Construct a new environment and bind formals to actuals

● Evaluate body in new environment

● Drive most of the effort

C O M P U T E | S T O R E | A N A L Y Z E

Efficiency

Copyright 2015 Cray Inc.
25

● Operating on source level statements is inefficient
● walking static environment chains to find binding for an identifier

● resolving functions

● walking dynamic environment chains to find value for a binding

● Opportunities to streamline execution
● Adopt scope resolve to map identifiers to symbols

● Adopt function resolution to select function statically
● Must be able to handle redefinition of functions

● Flatten environments
● Module level variables in common store at depth 0; respect lexical scoping

● Flatten nested block-statement environments within a function

● Inline calls to primitive operations

● Be lazy e.g. do not resolve functions until/unless called

● “Try not to be stupid about things” cuts both ways

C O M P U T E | S T O R E | A N A L Y Z E

Redefine a Function

Copyright 2015 Cray Inc.
26

1> proc square(x : int) : int return x + x; // typo

2> proc sumOfSquares(x : int, y : int) : int

 return square(x) + square(y);

3> writeln(‘sos(3, 4) => ‘, sumOfSquares(3, 4));

 sos(3, 4) => 14 // Oh no!

4> proc square(x : int) : int return x * x;

5> writeln(‘sos(3, 4) => ‘, sumOfSquares(3, 4));

 // 14 or 25?
The call to sumOfSquares()

 resolved the formals and body of sumOfSquares()

The execution of the body of sumOfSquares()

 resolved the formals and body of square()

Natural representation of the first call to square() in sumOfSquares() is
 #<CallExpr #<SymExpr var: #<FnSymbol name: “square”>>

 #<SymExpr var: #<ArgSymbol name: “x”>>>

C O M P U T E | S T O R E | A N A L Y Z E

How Do We Get 25?

Copyright 2015 Cray Inc.
27

● Bookkeeping and back-patching call-sites
● Feels complex and error prone

● Some code updates might result in an observable pause

● Indirection
● Treat a function definition “as if” a variable definition i.e.

● var square = lambda(x : int) : int return x * x;

● Redefinition becomes a variable assignment

● Sets stage for better support of first-class functions

● At call-site resolve baseExpr to VarSymbol rather than FnSymbol
● Calls fetch value of function variable and apply the value to the actuals

● Indirection could be optimized away for sealed modules

C O M P U T E | S T O R E | A N A L Y Z E

Add an Override

Copyright 2015 Cray Inc.
28

1> proc square(x : real) : real return x * x;

2> proc sumOfSquares(x : int, y : int) : real

 return square(x) + square(y);

3> writeln(‘sos(3, 4) => ‘, sumOfSquares(3, 4));

 sos(3, 4) => 25.0

4> proc square(x : int) : int return x + x; // Deliberate

5> writeln(‘sos(3, 4) => ‘, sumOfSquares(3, 4));

How do we get 14.0?
● Treat functions as collections of typed methods

● Inspired by CLOS’s view of generic functions

● Functions are versioned
● Version id updated if set of methods is altered

● Call sites encode the version id and method offset
● Version id inspected for every call

● Call-site updated if version-id obsolete

C O M P U T E | S T O R E | A N A L Y Z E

IPE Next Steps

Copyright 2015 Cray Inc.
29

● Expand feature set:
● Support for single-locale parallelism (e.g., begin)

● Support for multi-locale execution (e.g., locales and on-clauses)

● Improve compiler/interpreter architecture:
● Additional AST refactorings

● Investigate shared, revamped, early resolution pass---also desired for:
● concepts/constrained generics/interfaces work

● compiler optimization efforts

● reducing generated code size / compile time

● richer support for param computations

● developer community

C O M P U T E | S T O R E | A N A L Y Z E

chpltags: source code navigation aid

Copyright 2015 Cray Inc.
30

C O M P U T E | S T O R E | A N A L Y Z E

chpltags

Copyright 2015 Cray Inc.
31

Background: Navigating the Chapel modules is challenging
● ~47,000 lines of Chapel source as of 1.11 release

This Effort: Create a new utility – chpltags
● Generates ‘tags’ files for Chapel source code
● Passes regular expressions off to ctags or etags

Impact: We now build ‘tags’ for all module code
● Try out the tag support in your favorite editor!

Next Steps: Write a parser-based chpltags
● Regular expressions alone cannot parse all valid Chapel source:

var x, y, z = 5.0; // Only the definition of x will be found

● Not a priority – the current state gives us most of what we need

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: source-to-documentation tool

Copyright 2015 Cray Inc.
32

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: Background

Copyright 2015 Cray Inc.
33

● Modern users expect online library docs

● Ideally, generate docs from source code and comments

● chpldoc prototype present since Chapel 1.6

http://www.smartsoft.co.in/solutions/digitallibrary.aspx

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: chpldoc prototype

Copyright 2015 Cray Inc.
34

chpldoc prototype…

…Parsed code and comments

…Generated text or HTML

/* This is a documentation

 comment */
proc foo (x: int, y): bool {

 …

}

// This is not documentation
proc bar (): int {

 …

}

myfile.chpl:

Module: myfile

 proc foo(x: int(64), y): bool

 This is a documentation

 comment

 proc bar(): int(64)

myfile.txt:

myfile.html:

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: chpldoc prototype (cont)

Copyright 2015 Cray Inc.
35

● HTML output had minimal features
● Minimal UI

● Missing search and cross references (links)

● Limited language support
● Missing some language features

● Bugs in output

● Tightly coupled to compiler
● chpldoc and chpl shared same flags

● chpldoc info hard to find in man page

● Extra build step to get html

https://intotheharvestministries.wordpress.com/2014/12/08/square-peg-round-hole/

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: This Effort

Copyright 2015 Cray Inc.
36

● separate chpldoc from chpl

● Rich HTML output

● Support standard library

● New features

● Fix bugs in existing chpldoc

http://www.clipartpanda.com/categories/bookie-clipart

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: separate chpldoc from chpl

Copyright 2015 Cray Inc.
37

● Built separately: make chpldoc

● Separate flags
● No longer need --doc prefixes

● Separate man pages

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: Rich HTML output

Copyright 2015 Cray Inc.
38

● Comments use reStructuredText formatting

● Sphinx used under the covers
● reStructuredText parsing and formatting

● Rich HTML UI

● Provides cross references (links), search, etc.

● Uses new Chapel domain for Sphinx

http://sphinx-doc.org/rest.html
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/rest.html
http://sphinx-doc.org/
https://sphinxcontrib-chapeldomain.readthedocs.org/
http://sphinx-doc.org/
http://chapel.cray.com/
http://chapel.cray.com/docs/latest/modules/standard/List.html

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: Support standard library

Copyright 2015 Cray Inc.
39

● Module docs online:
● http://chapel.cray.com/docs/latest/

● See “Chapel Documentation”

slides for more detail

http://chapel.cray.com/docs/latest/
http://chapel.cray.com/docs/latest/
http://chapel.cray.com/docs/latest/modules/standard/FileSystem.html

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: New features

Copyright 2015 Cray Inc.
40

● Support for enums and globals

● pragma “no doc” to stifle symbols

● Source-based output ordering

● Hide inline/extern for procs

● “Module Index” listing all modules

● …and many incremental features!

http://www.verticalsol.com/blog/view/whats-new-with-microsoft-dynamics-gp-2013-email-indicator.VS7rqBPF-Qw

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: Fixed bugs

Copyright 2015 Cray Inc.
41

● Addressed several output bugs with:
● Function argument and return types

● Class and record members

● Missing default values in certain places

● No-Paren procs output with parens

● type symbols output as var

● Secondary methods output twice
● E.g. proc MyClass.myProc() {}

● …and many more!

http://www.jomsocial.com/blog/jomsocial-3-0-status-update

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: Impact

Copyright 2015 Cray Inc.
42

● Hardened standalone chpldoc program

● Used chpldoc to create online module documentation

● Added many new features

● And fixed existing bugs

https://tarotreading.wordpress.com/2012/07/30/o-is-for-other/

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: Status and Next Steps

Copyright 2015 Cray Inc.
43

Status:

● chpldoc is first class citizen in project

● Usable by 3rd party library developers

Next Steps:

● Continue fixing bugs

● Support inline tests in docs
● Similar to python doctests

C O M P U T E | S T O R E | A N A L Y Z E

chpldoc: Next steps (cont)

Copyright 2015 Cray Inc.
44

● Support documentation-only files, e.g. READMEs
● And interaction with module docs

● Add class and record index

● Improve error handling for reStructuredText formatting

● Support class inheritance

● Additional output orderings
● Like alphabetical and logical groupings

● Link to source code from docs

C O M P U T E | S T O R E | A N A L Y Z E

Tool Priorities and Next Steps

Copyright 2015 Cray Inc.
45

C O M P U T E | S T O R E | A N A L Y Z E

Tool Priorities and Next Steps

Copyright 2015 Cray Inc.
46

● IPE:
● support for dynamic execution

● support for multi-locale execution

● architect and implement shared resolution pass with compiler

● chpldoc:
● prioritize additional features based on developer/user needs

C O M P U T E | S T O R E | A N A L Y Z E

Legal Disclaimer

Copyright 2015 Cray Inc.

Information in this document is provided in connection with Cray Inc. products. No license, express or
implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to
change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.

Cray uses codenames internally to identify products that are in development and not yet publically
announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames
in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the
user.

Performance tests and ratings are measured using specific systems and/or components and reflect the
approximate performance of Cray Inc. products as measured by those tests. Any difference in system
hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY
and design, SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE,
APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI,
NODEKARE, THREADSTORM. The following system family marks, and associated model number marks,
are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and XT. The registered trademark LINUX is used
pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a
worldwide basis. Other trademarks used in this document are the property of their respective owners.

Copyright 2014 Cray Inc.

47

http://sourceforge.net/projects/chapel/ http://chapel.cray.com chapel_info@cray.com

http://sourceforge.net/projects/chapel/
http://chapel.cray.com/
mailto:chapel-info@cray.com

