Globhal-View Abstractions
for User-Defined Reductions and Scans

Steven J. Deitz  David Callahan
Bradford L. Chamberlain

Cray Inc.
{deitz,bradc}@cray.com,d.callahan@microsoft.com

Abstract

Since APL, reductions and scans have been recognized asfpbwe
programming concepts. Abstracting an accumulation loeduc-
tion) and an update loop (scan), the concepts have efficaatlpl
implementations based on the parallel prefix algorithm.yTdre
often included in high-level languages with a built-in sétop-
erators such as sum, product, min, etc. MPI provides librany
tines for reductions that account for nearly nine perceratldf1PI
calls in the NAS Parallel Benchmarks (NPB) version 3.2. Sogre
searchers have even advocated reductions and scans astiygapr
tool for parallel algorithm design.

Also since APL, the idea of applying the reduction control
structure to a user-defined operator has been proposed,eand s
eral implementations (some parallel) have been reporteid. Ja-
per presents the firgtobal-view formulation of user-defined scans
and an improved global-view formulation of user-definedued
tions, demonstrating them in the context of the Chapel @progr
ming language. Further, these formulations are extendadies-
sage passing context (MPI), thus transferring global-\ééstrac-
tions tolocal-view languages and perhaps signaling a way to en-
hance local-view languages incrementally. Finally, exsare
presented showing global-view user-defined reductionsafihg
up” and/or “speeding up” portions of two NAS benchmarks, il a
MG. In consequence, these generalized reduction and setlaeb
tions make the full power of the parallel prefix techniqueilatde
to both global- and local-view parallel programming.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—concurrent, distributed and
parallel languages

General Terms Languages

Keywords parallel programming, reductions, scans, parallel pre-
fix, MPI, Chapel
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Figure 1. An illustration of a parallel reduction divided into an
accumulate phase and a combine phase. In the accumulat phas
the processes independently compute partial sums. In thbeioe
phase, the processes communicate (indicated by the arnoadyl
together the local sums and compute the total sum.

1. Introduction

Reductions and scans are useful primitives for parallelmgimg
because they map well to both application and architectortne
NAS Parallel Benchmarks (NPB) version 3.2 [1], nearly 9%haf t
MPI calls are reductions. Reductions have been supportéu wi
special-purpose hardware on some parallel systergs, CM-5,
and scans are efficiently implemented by the parallel-prafio-
rithm [11]. So ubiquitous are the operations abstractedebolyc-
tions and scans that Blelloch has advocated them as thegainc
abstractions for parallel computation [3].

Definition. Thereduction operation takes a binary opera-
tor @ and an ordered set of valugs, as, . . ., a,] and re-
turns the value

ar a2 ®--- D an.

For example, ifp is addition then the reduction of the ordered
set[6,7,6,3,8,2,8,4,8, 3] is 55.

If the & operator is associative then an efficient parallel imple-
mentation exists for the reduction. Figure 1 illustratesasafbel
execution of the sum reduction in two phases. In the accumula
phase, the local data is summed to form a local sum. Then in the
combine phase, these partial sums are added together talerm
total sum. In the figure, the arrows identify communicatibatt
generalizes to a log tree.

If the @ operator is commutative, there is potential for a
more efficient implementation than if the operator is non-
commutative. If the branching factor on the log tree is great



than two (common for many parallel machines), then redostif
commutative operators can immediately combine whicheeer p
tial results are available whereas reductions on non-cdative
operators must stick to a predefined order. Additionallypmmu-
tative operator allows for potentially taking better acheaye of the
network by routing the values based on the physical locatfdhe
processors without concern for the order of the set.

and local parallel programming practice, resulting in bgtbater
clarity and (often) better performance.

This paper is organized as follows. The next section dessrib
a local-view abstraction for user-defined reductions arahsclt
shows how MPI implements it. Section 3 describes the glotmai-
abstraction for user-defined reductions and scans. It stmus
Chapel implements it. Section 4 introduces RSMPI, an eitans

Operators that are non-associative must be performed in theto MPI, which implements the global-view abstraction foe us

order specified by the semantics of the language, thus tigittie
potential for parallelism. Although programmers tend tmkthof
applying reduce and scan to operators that are associapiphing
them to non-associative operators still has the advantbgiing
a more abstract statement of the computation.

Definition. The scan operationtakes a binary operatap
and an ordered set of values|a1, as, . . ., a,] and returns
the ordered set of values

a1 ®az® - D anl.

The exclusive scan operatiorreturns instead the ordered
set of values

[a1,a1 D az,..

[i,a1,a1 P az,...,a1 Baz B - B an—1]

where: is the identity of®.

For example, if® is addition then the scan of the ordered set
[6,7,6,3,8,2,8,4,8,3]is

[6,13,19, 22, 30, 32, 40, 44, 52, 55]
and the exclusive scan is
[0,6,13,19,22, 30, 32, 40, 44, 52].

The standard definition of scan can be called itetusive scan
because it includes the initial element. Exclusive scaneisird
able because it enables the elegant recursive definitionsutif-
dimensional scans. Notice also that the inclusive scan eatieb
fined in terms of the exclusive scan. The elements in the set pr
duced by the inclusive scan can be computed by applyingtthe
operator to the elements in the original set and the eleniemie
set produced by the exclusive scan. The content of this paper
unaffected by which definition is chosen as the standard.

The subject of this paper is global-view abstractions farus
defined reductions and scans. To give some intuition beltied t
difference between local-view and global-view abstrattjoecon-
sider Figure 1. At the local-view level, the user must thitdoat
the per-processor code. The abstraction provided thusagppires
to the combine phase of the reduction. At the global-viewlighe
reduction applies to both the combine and accumulate phases

This paper’s contributions are as follows:

¢ |t extends previously proposed abstractions for user-défie-
ductions [9] and adds support for user-defined scans. It demo

strates how these abstractions can be made more flexible an

robust in a modern object-oriented language such as Chapel.

e It adapts this global-view abstraction to MPI, raising theel
of abstraction for user-defined reductions and scans in MPI.
This suggests the potential for incremental improvemeants t
lower level approaches to parallel programming by appropri
ating ideas from higher level global-view languages.

o |t illustrates the abstraction with many examples and ident
fies two places in the NAS kernel benchmarks where user-
defined reductions can improve readability and sometimes pe
formance.

The combined message of these results is the extensioreof cle
and efficient mechanisms for reductions and scans to bothablo

an MPI program. This section also evaluates the abstrautitire
context of RSMPI and rewrites of the NAS benchmarks. It shows
shorter, better abstracted code, and comparable or imgpmfor-
mance. Section 5 discusses related work, and Section 6 simesa
the results of this paper.

2. Local-View Abstraction

Local-view parallel programming is the most common form af-p
allel programming in use today. In this model, each proaesse-
cutes a separate copy of the program independently, congattini
ing with one another via some mechanism. The end result o thi
model is that the programmer must manage explicitly whaheac
processor is doing at all times and how the data is distrébatel
communicated.

A local-view reduction or scan is relatively straightfomgtao
implement. The abstraction assumes each processor haatae d
value for each resulting value. In Figure 1, this means that t
accumulate phase of the reduction has already been compnted
each processor, and now the processors are ready to corhbine t
partial sums. Note that each processor may have accumuetesl
than one data value, but then the end result of the redudtiatso
more than one data value. We discuss this technique of aafgrgg
reductions later.

In order to implement a user-defined operator for the local-
view abstraction, the user must define two functions: antiten
function and a combine function. The identity function cangs
the identity of the operator, and the combine functions oatep
the reduction of two values. For a reduction of multiple esiuthe
combine function can be used in the implementation of thel[ehr
log tree as illustrated by Figure 1.

The local-view abstractions can be supported by four rou-
tines. Two reduction routines, LOCAARLLREDUCE and LO-
CAL_REDUCE, compute a reduction and, respectively, leave the
result on all of the processors or a single processor. Thase r
tines take two arguments: the combine function and a sirajlesv
on each processor that is to be reduced. Two scan routines, LO
CAL _XSCAN and LOCALSCAN, compute exclusive or inclusive
scans respectively. These routines take three argumbastextra
argument being the identity function, which is necessarytlie
exclusive scan.

As an example, Listing 1 shows the two functions one would
write in C to implement thenink reduction. In this reduction, each

rocessor starts with a vector bfelements in sorted order from
igh to low. The reduction combines these values so thatethatr
contains thé: minimum values in all of the vectors.

Note that the inclusive scan is less important than the sikau
scan because it can be computed (without communicatioengiv
the exclusive scan. The converse is not true. Given the sivelu
scan, it is impossible to compute the exclusive scan witkont-
munication if the combine function cannot be inverted. Bare-
ple, a function that computes the minimum of two values cénno
be inverted. In this case, the exclusive scan can only be atadp
from the inclusive scan by shifting the values across thegssors.

2.1 Aggregation

Aggregation is an important extension to the local-viewuaibn.
It allows the programmer to compute multiple reductionsudiaz



Listing 1. The mink operator in C.

1 void ident (int v[1) {

2 int i;

3 for (4 = 0; i < k; i++)

4 v[i] = INT_MAX;

5 F

7 void combine (int vi1[l, int v2[]) {
8 int i, j, tmp;

9 for (4 = 0; i < k; i++)

10 if (vil[il < v2[0]) {

11 v2[0] = vi1[i];

12 for (j = 1; j < k; j++)
13 if (v2[j-11 < v2[j]) {
14 tmp = v2[jl;

15 v2[j]l = v2[j-11;

16 v2[j-1]1 = tmp;

17 }

18 }

19 }

neously, thus saving the overhead of many smaller messages.
local-view routines discussed above can be augmented wigix-a
tra argument for the number of values each processor isiregiun
addition, arrays of the values must be passed to the routitiesr
than just the values.

For example, the min reduction can be aggregated to compute

the element-wise minimums of the values in arrays of integer
Note that this aggregation is different from the user-defimenk
reduction in that the element-wise minimums are computsiau

of the overall minimums. Indeed, the mkimeduction can itself be
aggregated to compute the element-wkiseinimums of the values
in arrays of vectors.

2.2 MPI Constructs

MPI provides twelve built-in operations for reductions aswns:
maximum, minimum, sum, product, logical and, bit-wise dod;
ical or, bit-wise or, logical xor, bit-wise xor, maximum v and
location, and minimum value and location. It allows the usare-
ate user-defined operations in the form of a combine fundtiah
is extended for aggregation.

MPI provides routines that correspond exactly to the local-
view routines described earlier. However, MPI does not irequ
an identity function. Instead, the first element in the reséilan
exclusive scan is undefined.

3. Global-View Abstraction

The global-view abstraction computes both the accumulate a
combine phases of the reduction in Figure 1. It takes a mareag)!
view of the computation by pushing the per-processor coibelive
abstraction. For example, the rkimeduction used as an example
for the local-view abstraction would look different whenpgla-
mented with the global-view abstraction. Given an array: of-
tegers distributed over processors where is much larger thap,
the user-defined minreduction computes theminimum integers.
In the local-view abstraction, the programmer computetedorec-
tors of thek minimums before calling into the reduction.

The global-view abstraction allows for the type of the input
values to be different than the type of the output value. érctise of
the mirk operator, the input type is an integer and the output type is
a vector ofk integers. The abstraction works by defining separate
functions for the accumulate and combine phases. In additio
allowing the input type and the output type to be differein, type

Listing 2. Algorithm for the global-view reduction.

1 forall processors g in 0..p—1

2 s_q — fident()

3 if n >0

4 Sq — fp're_accum(sq; an(o) s ees)

5 for ¢ in 0..n—1

6 Sq faccum(sq, an(l) s e D)

7 if n >0

8 Sq — Jfpost_accum (8q, ing(n—1), ...)
9 LOCAL_REDUCE (feombines Sq)

o forall processors g in 0..p—1
11 outy — fred_gen (Sq)

-

of the state—the value that is accumulated into and theredass
between the processors—may also be different.

If the input type, output type, and state type are the sane®, th
the global-view abstraction reduces to the local-view ratosion.
The identity function, f;4en:, @and combine functionf.ompine,
need to be specified by the programmer. The combine funcdion i
then used to accumulate the values into a local result. Thetref
the combine function is then returned.

If the input type is different, then an accumulate function,
faccum, Must also be specified. These functions have the following
type signatures if the input type is and the output type isut:

: () — out
(in x out) — out
: (out X out) — out

fident
faccum :

fcombine

If the output type is different than the state type, then segatie
function must also be specified. For a reduction, the geaéuat-
tion returns the single value from a final state value. Foraa sit
returns a value from each of the states. These functionsadiezic
fred_gen @Nd fscan_gen respectively. They have the following type
signatures where the state typeiate:

: () — state

: (in X state) — state
feombine : (state X state) — state
fred_gen : (state) — out

: (in X state) — out

fident
faccum

scan-gen

Note that the scan generator can produce a different vakezan
the input value at each position.

In addition to these functions, it is useful to allow a fupetito
act on the state based on the first value on the processorebefor
accumulating and another function to act on the state based o
the last value on the processor after accumulating. Thesifuns
are calledfpre_accum and fpost_accum and have the same type
sighature asfaccum .- Listing 7 illustrates a situation where these
functions are useful.

Listings 2 and 3 outline the algorithm for computing the glbb
view reduction and scan in terms of the local-view abstoasti
Note that the global-view scan listing computes an excéusian.
By interchanging lines 12 and 13, this algorithm is made tm-co
pute an inclusive scan.

The accumulate function often has a substantially fastptam
mentation than the combine function, and it should be opzchi
at the combine function’s expense. The functions definedim t
section take advantage of this property. Alternative fiomst that
translate the input values into state values rather thannagiate
the input values into state values would result in worse goerf
mance.

3.1 Examples in Chapel

Chapel is a new parallel programming language being degdlop
by Cray Inc. in conjunction with Caltech/JPL as part of DARPA



Listing 3. Algorithm for the global-view exclusive scan.

1 forall processors g in 0..p—2

2 Sq fident()

3 if n >0

4 Sq — fp're_accum(sq, an(o) s e )

5 for ¢ in 0..n—1

6 Sq faccum(sq, inq(i), L)

7 if n >0

8 Sq — fpost_accum (8q, ing(n—1), ...)
9 LOCAL_XSCAN (fident » [feombine » Sq)

10 forall processors q in 0..p—1

11 for ¢ in 0..n—1

12 Oth(i) — fscan_gen (Sq , ing ), ...)
13 Sq faccum(sq 5 inq (1) s e L)

Listing 4. An implementation of the mithoperator in Chapel.

1 class mink {
2 type in_t;

3 const k integer;

4 var v: [1..k] in_t = in_t.max;
5 function accum(x: in_t)

6 if x < v[1] {

7 v[1] = x;

8 for i in 2..k

9 if v[i-1] < v[i] {

10 var tmp = v[il;

11 v[i] = v[i-1];

12 v[i-1] = tmp;

13 }

14 }

15 function combine(s: mink(in_t))
16 for i in 1..k

accum(s.v[i]);
function gen ()
19 return v;

20 }

HPCS High-Productivity Computing Systems) program. Chapel
allows the programmer a more global view of the computatiwh a
is well-suited to the global-view abstraction presentetthis paper.
As an object-oriented language that supports generic anoging
and type inference, Chapel improves the abstraction in swne
trivial ways.

3.1.1 Example 1: mirk

Listing 4 shows an implementation of the rhinperator in Chapel.
The operator is a class that implements an interface allputin

to be used as the operator for a reduction or scan. To make the

operator more flexible, it is parameterized by the type ofvdiaes
being reduced or scanned; Line 2 names this typec. The state
is stored in the fields of the class. Here the state is the ariafy
sizek.

The default constructor computes the identity. In Chapel, a
default constructor is created for all classes if one is pet#ied.
The fields are then initialized. So the default constructorthe
mink class initializes the elements ofto the maximum value of
the input type.

Every class that defines an operator for use in a reductioreor s
must define at least the three functiettzum, combine, andgen.
This is necessary in Chapel because the state type is ngbessa
different from the input and output types since it is the sliaself.
However, if the input and state types are conceptually theesthe
combine function can be implemented to simply call thecum
function.

Listing 5. An implementation of the minoperator in Chapel.

1 class mini {
2 type elt_t;

3 var val: elt_t = elt_t.max;

4 var loc: integer;

5 function accum(x: (elt_t,integer))
6 if x(1) < val then

7 (val, loc) = x;

8 function combine (s: mini(elt_t))
9 call accum((s.val, s.loc));

function gen ()

return (val, loc);

In the implementation, the state used during the reductaf i
the type of the class. The state is then the impkiaits argument
to the methods. Notice that the second state is explicitssgd
into the combine function as the function’s only argumetstiype
is specified to be the class instantiated by the same typeglgam
in_t.

The result of themink reduction is the array ok minimum
values. To call this reduction in Chapel over an array ofgats
A, the programmer declares the array of k integers that isrmetu
from the reduction and calls the reduction directlyfoas in

integer;
reduce A;

var minimums: [1..10]
minimums mink (integer ,10)

The compiler transforms this code based on thek class.
It creates as many instances of that class as are neededdrased
how many processes are used. The details of the reduction are
determined by the functions that are provided by the clasthit
case, there are nere_accum Or post_accum functions, so lines 3
and 4 from Listing 2 are omitted. Also note that then function
is used instead ofed_gen since there is no separated_gen
function. In many cases, reductions and scans can sharartie s
generate functions.

3.1.2 Example 2: min

The min operator finds the minimum value and its location. List-
ing 5 shows an implementation of the miaperator in Chapel.
Chapel’s support for first-class tuples allows multipleves to be
passed into the accumulate function. Given an array of @ntgy
the minimum and its location can be found via thiemi reduction
by writing

var (val, loc)

mini(integer) reduce
[i in 1..n] (A(i), i);

In this code, the result of the reduction is stored in twoalalgs,

val andloc. The source of this reduction is an array expression

created by{i in 1..n]. Conceptually, this expression creates an

array ofn tuples though the array may not be allocated depending

on the implementation.

3.1.3 Example 3: counts

Given a list of particles with locations in one of eight odtsra re-
duction could determine how many particles are in each iocat
A scan could determine a ranking of the particles within each
tant. For example, if ten particles are located in octantsdugh 8
based on the ordered d6t 7,6, 3,8, 2,8, 4, 8, 3], then the reduc-
tion would return the ordered set of eight counts

[0,1,2,1,0,2,1,3]



Listing 6. An implementation of the counts operator in Chapel.
1 class counts {
2 var v: [1..k]
function accum(x:
vx] += 1;
¥

3

4

5

6 function combine(s:
7

8

9

integer;
integer) {

counts) {
v += s.V;
}
function red_gen ()
return v;
function scan_gen (x:
return vi[x];

integer)

Listing 7. An implementation of the sorted operator in Chapel.

1 class sorted {
2 type in_t;

false;

3 param commutative =

4 var status: boole = true;

5 var first: in_t = in_t.max;

6 var last: in_t = in_t.min;

7 function pre_accum(x: in_t) {

8 first = x;

9 }

10 function accum(x: in_t) {

1 if last > x then

12 status = false;

13 last = x;

14 }

15 function combine(s: sorted(in_t)) {
16 status = status and s.status

17 and last <= s.first;
18 last = s.last;

19 }

20 function gen ()

21 return status;

2 }

and the scan would return the rankings
1,1,2,1,1,1,2,1,3,2].

This operator uses a different generate function depenaling
whether it is being used in a reduction or scan. Listing 6 shaw
implementation of the counts operator in Chapel.

3.1.4 Example 4: sorted

Given an ordered set of values, the sorted reduction detesmi
whether the values are in sorted order. This non-commetatv
duction keeps track of the first and last elements in the aotatm
function. The combine function then ensures that each opants
that are accumulated are sorted and that the boundary diearen
in sorted order as well.

Listing 7 shows an implementation of the sorted operator in
Chapel. This class specifies that the operator is non-coatinet
by specifying the param” in line 3. This compile-time constant al-
lows different reduction algorithms to be selected. If itiglefined,
it is assumed to be true by the compiler.

4. RSMPI: An Extension to MPI

This section proposes adding support for global-view st
reductions to MPI. It does this by proposing an extension Bi,M

Listing 8. An implementation of the sorted operator in C+RSMPI.

1 rsmpi operator sorted {
2 non-commutative

state {

int first,
int status;

last;

void ident(state s) {
s->first = INT_MAX;
s->last = INT_MIN;
s->status = 1;

3
4
5
6 }
7
8
9

10
1 }
12 void pre_accum (state s,
13 s->first = 1i;

14 }

15 void accum(state s,
16 if (s->last > i)
17 s->status = 0;
18 s->last = i;

19 }

20 void combine(state sl1, state s2) {
21 sl->status &= s2->status &&

int

int i) {

22 (s1->last <= s2->first);
23 sl->last = s2->last;

24 }

25 int generate (state s) {

26 return s->status;

27 }

28 }

called RSMPI (Reduce and Scan MPI), that requires a simple
preprocessor to convert RSMPI code to MPI code. This section
explains how RSMPI works, discusses how its usage cleans up
MPI code in the context of the NAS benchmarks, and shows some
performance results that demonstrate its advantages.

Since RSMPI is transformed to MPI, it is always possible to
write MPI that is as fast as RSMPI. The global-view abstoactn
RSMPI, however, makes it significantly easier to use. It reake
possible to build up a library of operators that compute airesn
reduction or scan, not just the combine portion.

RSMPI faithfully implements the global-view abstractianan
example is sufficient to explain it. Listing 8 shows an impésta-
tion of the sorted operator in C+RSMPI. Superficial changaden
by a preprocessor translate this code into a set of functi@tan
then be used at the call-site.

For example, to use the sorted operator to determine if ay arr
of integers is in sorted order, the programmer first defineitean
ator to describe the values passed to the accumulate foretio
then calls an RSMPI routine to reduce or scan.

rsmpi iterator values {
for (i=0; i<n; i++)
yield 1i;
}

RSMPI_Reduceall(status,
values,

sorted,
Alvalues]);

The call to RSMPIReduceall takes the result, the RSMPI op-
erator, the RSMPI iterator, and the input expression. Tétor
identifies the values that each processor needs to accemiitze
accumulate function is applied to the input expression iwithis
iterator and then inlined into the code.

The RSMPI routine has similar structure to the MPI routine,
though we allow the common case of using the MGOMM_WORLD
communication group as a default if another is omitted.



To evaluate the use of RSMPI, we studied the NAS benchmarks 5. Related Work

and found two places where user-defined reductions coultfsig
icantly simplify the code that the programmer has to writ¢he
main body of the program. These areas of the code were notin th
parts of the benchmark that are timed, but were instead imthe
tialization and verification phases. They represent iditrasshow

up in practice.

4.1 NASIS: An RSMPI Case Study

As the last part of the computation, the NAS IS benchmark- veri
fies that the large array of integers is sorted. Rather thamg s
user-defined reduction like the sorted reduction describesiec-
tion 3.1.4, this is written in MPI in the following way. Firsthe
boundary elements are communicated to neighboring process
that it can be determined that the boundary elements aretadso
order. Then, locally on each processor, all the other elésname
checked to make sure they are in sorted order. Finally a sum re
duction is used to determine that all of the processors hanteds
values.

Using MPI's user-defined reduction mechanism, this can be
marginally improved. In the program flow, however, the pesgf
mer must still specify the local portion of the reduction.isTis
awkward compared to using the global-view abstraction d¥IRE
With this abstraction, a single line can apply the sortedicédn to
the conceptual entire array of integers.

Figure 2 shows timings of the C+MPI version of NAS IS com-

pared to a C+RSMPI version. The C+RSMPI code was generated

by an experimental prototype of an RSMPI preprocessoremritt
Perl.

The RSMPI version performs better based on a scalar improve-

ment. Since values in the array are stored in a scalar wheg bei
compared to their neighbors, only one memory reference gema
per value in the array. Optimizing the provided NAS C+MPI eod

The importance of user-defined scans and reductions is well-
established. Parallelizing these constructs from se@qleatde has
garnered much attention. Fisher and Ghuloum [10] extenidegle
techniques for recognizing standard reductions and soamasndle
more complicated operators by analyzing conditional kdneadn
loops.

Despite the importance of scans and reductions to paralhet c
puting, however, language support for user-defined variane
lacking from most parallel programming approaches. MPli®a
table exception that has already been discussed. Other gomm
nication libraries vary in their support of user-definedrscand
reductions. PVM [14] supports user-defined reductionslaintd
MPI, but has no support for user-defined scans. ARMCI [12] and
SHMEM [2] provide a small set of built-in reductions, but neew-
defined reductions and no scans.

Support for collective operations is lacking in Co-Arrayrfo
tran [13], Titanium [16], and UPC [5]. Arguments for addingl
lective communication have been made in the literature [6].

The NESL language provides support for many built-in scans
and reductions, but provides no support for user-definedssoa
reductions [4]. This language is novel in its heavy reliamecscans,
demonstrating how effective this primitive can be.

The C** language provides good support for global-view user
defined reductions [15] similar to those described in thipepa
However, they do not support identity or generate functioms
do they support user-defined scans.

MapReduce [7] is a recent programming model used to apply
an operation and a reduction to a large data set. The systapas
ble of taking advantage of associativity by letting the usecify
a “combine” function alongside a “reduce” function. Thesegh-
lel our “accumulate” and “combine” functions. The MapReeluc
model follows a different implementation path than the naech
nisms discussed here because of its design point (querjarge.

to make one memory reference per value in the array closed thedatabase as opposed to scientific computing).

performance gap entirely.

The difference between the parallel RSMPI and MPI version
is non-trivial, though our timings revealed no differente.the
RSMPI version, the reduction requires larger messages ithan
the MPI version and it is non-commutative. The MPI versiom, o
the other hand, requires an initial message to be passecém@tw
neighboring processors.

Previous work on support for user-defined reductions in ZPL
was based on overloading procedures of the same name in or-
der to specify the identity, accumulate, and combine fmsti[9].
(There was neither a generate function nor support for deéned
scans.) There were three main problems with the approackeof o
loading procedures. First, the error messages that arosa thie
procedures were not defined exactly as they should be weze oft

In an experiment to see whether any gains would be made if the misleading or uninformative. Second, the user-definedatiohs

user-defined reduction were commutative, we flagged thectieu
as commutative. This resulted in no speedup, though theagrog
did fail to verify that the array was sorted (as expected).

4.2 NAS MG: An RSMPI Case Study

In the initialization of the NAS MG benchmark, an array isfill
with random numbers. The ten largest numbers and theiritotsat
in the array along with the ten smallest numbers and theittions
in the array are then identified. These positions are thexdfillith
positive ones and negative ones respectively, and the fakeo
array is filled with zeros.

In the NAS F+MPI version, this portion of the computation,
the ZRANS3 routine, is implemented with forty reductions.the
F+RSMPI version, a single user-defined reduction, simiathe
mink and min reductions described previously, can be used in-
stead. Figure 3 shows timings of the F+MPI version of NAS MG
compared to a hand-coded F+RSMPI version. The overhead of no
using the single user-defined reduction is seen more sharply
smaller problem classes since the reduction accounts foe ofo
the time. In larger class sizes, more time is taken to travarsl
compute on the array, so the efficiency is more comparable.

could only be used in simple assignment statements so #habth
rect result type could be determined. Third, if the statetyas the
same as the initial type, there was no way of supplying a coenbi
function that was different than the accumulate functiolthéugh
this is not common, it seems possible given a fairly compéebuc-
tion and initial type. Later work sketched out support in Ziet

a generate function and user-defined scans [8]. This worknats
in an object-oriented framework and was substantially ieulés a
result.

6. Conclusion

Reduce and scan are clean, high-level programming alistract
that admit efficient parallel implementations. Althouglhdts been
common for languages to provide built-in reduce and scarafor
small set of associative and commutative operators, pnumers
have long recognized that the idea is more general.

This paper has formulated the principle of parallel prefimeo
putation in a way that allows users to apply it practicallysar-
vice of their own scan and (degenerately) reduce. The seaplt
ply to both global- and local-view parallel programmingusitions.
Specifically, we present the first user-defined scan forraudor



IS Class A -- IBM P655 IS Class B -- IBM P655 IS Class C -- IBM P655
Verify Time Verify Time Verify Time

S

— — — linear speedup
—a&— C+MPI
[ " —@— C+RSMPI

——

i

o

B
1
i
o
B

1

100

~
o
~
@
I
~
@
I

[&]
N
1

N
ol
[N]
o
1
[N]
o
1

(0.03 seconds in C+RSMPI)
o
=]

(0.03 seconds in C+RSMPI)

o

0 0 T

T T T 1 T T T 1 T T 1
0 32 64 128 256 0 32 64 128 256 0 32 64 128 256
Processors Processors Processors

Figure 2. Efficiency graphs showing the speedup of the verificatiorsplud classes A, B, and C of the NAS IS benchmark on an IBM P655
system with 92 nodes, each containing eight 1.5 GHz powerdesssors and 16 GB of memory.

Efficiency (%) of scaled best 1-processor time
Efficiency (%) of scaled best 4-processor time
(0.03 seconds in C+RSMPI)
al
)

1
Efficiency (%) of scaled best 16-processor time

MG Class A -- IBM P655 MG Class B -- IBM P655 MG Class C -- IBM P655

ZRAN3 Time ZRAN3 Time ZRAN3 Time .
— — — linear speedup

—a— F+MPI
—e— F+RSMPI

[N
o
o
|
i
o
o
|
[N
[
N
1

~
al
1
~
(3
1
©
b
1

N
ol
1
N
@
1

(0.20 seconds in F+RSMPI)
o
=]
1
(0.20 seconds in F+RSMPI)
o
[=]
1
(0.24 seconds in F+RSMPI)
o
o
1

0

0

Efficiency (%) of scaled best 4-processor time
Efficiency (%) of scaled best 32-processor time

Efficiency (%) of scaled best 4-processor time

0 3‘2 6‘4 1%8 2‘56 0 3‘2 6‘4 1%8 2‘56 0 3‘2 6‘4 1%8 2‘56

Processors Processors Processors
Figure 3. Efficiency graphs showing the speedup of the ZRAN3 subreutiiclasses A, B, and C of the NAS MG benchmark on an IBM
P655 system with 92 nodes, each containing eight 1.5 GHz doprecessors and 16 GB of memory.
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trates the application of a global-view language facil@yatlocal- for Parallel Computing, 2003.
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