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Abstract
Since APL, reductions and scans have been recognized as powerful
programming concepts. Abstracting an accumulation loop (reduc-
tion) and an update loop (scan), the concepts have efficient parallel
implementations based on the parallel prefix algorithm. They are
often included in high-level languages with a built-in set of op-
erators such as sum, product, min, etc. MPI provides libraryrou-
tines for reductions that account for nearly nine percent ofall MPI
calls in the NAS Parallel Benchmarks (NPB) version 3.2. Somere-
searchers have even advocated reductions and scans as the principal
tool for parallel algorithm design.

Also since APL, the idea of applying the reduction control
structure to a user-defined operator has been proposed, and sev-
eral implementations (some parallel) have been reported. This pa-
per presents the firstglobal-view formulation of user-defined scans
and an improved global-view formulation of user-defined reduc-
tions, demonstrating them in the context of the Chapel program-
ming language. Further, these formulations are extended toa mes-
sage passing context (MPI), thus transferring global-viewabstrac-
tions to local-view languages and perhaps signaling a way to en-
hance local-view languages incrementally. Finally, examples are
presented showing global-view user-defined reductions “cleaning
up” and/or “speeding up” portions of two NAS benchmarks, IS and
MG. In consequence, these generalized reduction and scan abstrac-
tions make the full power of the parallel prefix technique available
to both global- and local-view parallel programming.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—concurrent, distributed and
parallel languages

General Terms Languages

Keywords parallel programming, reductions, scans, parallel pre-
fix, MPI, Chapel
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Figure 1. An illustration of a parallel reduction divided into an
accumulate phase and a combine phase. In the accumulate phase,
the processes independently compute partial sums. In the combine
phase, the processes communicate (indicated by the arrows)to add
together the local sums and compute the total sum.

1. Introduction
Reductions and scans are useful primitives for parallel computing
because they map well to both application and architecture.In the
NAS Parallel Benchmarks (NPB) version 3.2 [1], nearly 9% of the
MPI calls are reductions. Reductions have been supported with
special-purpose hardware on some parallel systems,e.g., CM-5,
and scans are efficiently implemented by the parallel-prefixalgo-
rithm [11]. So ubiquitous are the operations abstracted by reduc-
tions and scans that Blelloch has advocated them as the principal
abstractions for parallel computation [3].

Definition. The reduction operation takes a binary opera-
tor ⊕ and an ordered set of values[a1, a2, . . . , an] and re-
turns the value

a1 ⊕ a2 ⊕ · · · ⊕ an.

For example, if⊕ is addition then the reduction of the ordered
set[6, 7, 6, 3, 8, 2, 8, 4, 8, 3] is 55.

If the ⊕ operator is associative then an efficient parallel imple-
mentation exists for the reduction. Figure 1 illustrates a parallel
execution of the sum reduction in two phases. In the accumulate
phase, the local data is summed to form a local sum. Then in the
combine phase, these partial sums are added together to formthe
total sum. In the figure, the arrows identify communication that
generalizes to a log tree.

If the ⊕ operator is commutative, there is potential for a
more efficient implementation than if the⊕ operator is non-
commutative. If the branching factor on the log tree is greater



than two (common for many parallel machines), then reductions of
commutative operators can immediately combine whichever par-
tial results are available whereas reductions on non-commutative
operators must stick to a predefined order. Additionally, a commu-
tative operator allows for potentially taking better advantage of the
network by routing the values based on the physical locationof the
processors without concern for the order of the set.

Operators that are non-associative must be performed in the
order specified by the semantics of the language, thus limiting the
potential for parallelism. Although programmers tend to think of
applying reduce and scan to operators that are associative,applying
them to non-associative operators still has the advantage of giving
a more abstract statement of the computation.

Definition. The scan operationtakes a binary operator⊕
and an ordered set ofn values[a1, a2, . . . , an] and returns
the ordered set of values

[a1, a1 ⊕ a2, . . . , a1 ⊕ a2 ⊕ · · · ⊕ an].

The exclusive scan operationreturns instead the ordered
set of values

[i, a1, a1 ⊕ a2, . . . , a1 ⊕ a2 ⊕ · · · ⊕ an−1]

wherei is the identity of⊕.

For example, if⊕ is addition then the scan of the ordered set
[6, 7, 6, 3, 8, 2, 8, 4, 8, 3] is

[6, 13, 19, 22, 30, 32, 40, 44, 52, 55]

and the exclusive scan is

[0, 6, 13, 19, 22, 30, 32, 40, 44, 52].

The standard definition of scan can be called theinclusive scan
because it includes the initial element. Exclusive scan is desir-
able because it enables the elegant recursive definitions ofmulti-
dimensional scans. Notice also that the inclusive scan can be de-
fined in terms of the exclusive scan. The elements in the set pro-
duced by the inclusive scan can be computed by applying the⊕
operator to the elements in the original set and the elementsin the
set produced by the exclusive scan. The content of this paperis
unaffected by which definition is chosen as the standard.

The subject of this paper is global-view abstractions for user-
defined reductions and scans. To give some intuition behind the
difference between local-view and global-view abstractions, recon-
sider Figure 1. At the local-view level, the user must think about
the per-processor code. The abstraction provided thus onlyapplies
to the combine phase of the reduction. At the global-view level, the
reduction applies to both the combine and accumulate phases.

This paper’s contributions are as follows:

• It extends previously proposed abstractions for user-defined re-
ductions [9] and adds support for user-defined scans. It demon-
strates how these abstractions can be made more flexible and
robust in a modern object-oriented language such as Chapel.

• It adapts this global-view abstraction to MPI, raising the level
of abstraction for user-defined reductions and scans in MPI.
This suggests the potential for incremental improvements to
lower level approaches to parallel programming by appropri-
ating ideas from higher level global-view languages.

• It illustrates the abstraction with many examples and identi-
fies two places in the NAS kernel benchmarks where user-
defined reductions can improve readability and sometimes per-
formance.

The combined message of these results is the extension of clean
and efficient mechanisms for reductions and scans to both global

and local parallel programming practice, resulting in bothgreater
clarity and (often) better performance.

This paper is organized as follows. The next section describes
a local-view abstraction for user-defined reductions and scans. It
shows how MPI implements it. Section 3 describes the global-view
abstraction for user-defined reductions and scans. It showshow
Chapel implements it. Section 4 introduces RSMPI, an extension
to MPI, which implements the global-view abstraction for use in
an MPI program. This section also evaluates the abstractionin the
context of RSMPI and rewrites of the NAS benchmarks. It shows
shorter, better abstracted code, and comparable or improved perfor-
mance. Section 5 discusses related work, and Section 6 summarizes
the results of this paper.

2. Local-View Abstraction
Local-view parallel programming is the most common form of par-
allel programming in use today. In this model, each processor exe-
cutes a separate copy of the program independently, communicat-
ing with one another via some mechanism. The end result to this
model is that the programmer must manage explicitly what each
processor is doing at all times and how the data is distributed and
communicated.

A local-view reduction or scan is relatively straightforward to
implement. The abstraction assumes each processor has one data
value for each resulting value. In Figure 1, this means that the
accumulate phase of the reduction has already been computedon
each processor, and now the processors are ready to combine the
partial sums. Note that each processor may have accumulatedmore
than one data value, but then the end result of the reduction is also
more than one data value. We discuss this technique of aggregating
reductions later.

In order to implement a user-defined operator for the local-
view abstraction, the user must define two functions: an identity
function and a combine function. The identity function computes
the identity of the operator, and the combine functions computes
the reduction of two values. For a reduction of multiple values, the
combine function can be used in the implementation of the parallel
log tree as illustrated by Figure 1.

The local-view abstractions can be supported by four rou-
tines. Two reduction routines, LOCALALLREDUCE and LO-
CAL REDUCE, compute a reduction and, respectively, leave the
result on all of the processors or a single processor. These rou-
tines take two arguments: the combine function and a single value
on each processor that is to be reduced. Two scan routines, LO-
CAL XSCAN and LOCALSCAN, compute exclusive or inclusive
scans respectively. These routines take three arguments, the extra
argument being the identity function, which is necessary for the
exclusive scan.

As an example, Listing 1 shows the two functions one would
write in C to implement themink reduction. In this reduction, each
processor starts with a vector ofk elements in sorted order from
high to low. The reduction combines these values so that the result
contains thek minimum values in all of the vectors.

Note that the inclusive scan is less important than the exclusive
scan because it can be computed (without communication) given
the exclusive scan. The converse is not true. Given the inclusive
scan, it is impossible to compute the exclusive scan withoutcom-
munication if the combine function cannot be inverted. For exam-
ple, a function that computes the minimum of two values cannot
be inverted. In this case, the exclusive scan can only be computed
from the inclusive scan by shifting the values across the processors.

2.1 Aggregation

Aggregation is an important extension to the local-view reduction.
It allows the programmer to compute multiple reductions simulta-



Listing 1. The mink operator in C.
1 v o i d ident( i n t v[]) {
2 i n t i;
3 f o r (i = 0; i < k; i++)
4 v[i] = INT_MAX ;
5 }

7 v o i d combine ( i n t v1[], i n t v2[]) {
8 i n t i, j, tmp;
9 f o r (i = 0; i < k; i++)

10 i f (v1[i] < v2 [0]) {
11 v2[0] = v1[i];
12 f o r (j = 1; j < k; j++)
13 i f (v2[j-1] < v2[j]) {
14 tmp = v2[j];
15 v2[j] = v2[j-1];
16 v2[j-1] = tmp ;
17 }
18 }
19 }

neously, thus saving the overhead of many smaller messages.The
local-view routines discussed above can be augmented with an ex-
tra argument for the number of values each processor is reducing. In
addition, arrays of the values must be passed to the routinesrather
than just the values.

For example, the min reduction can be aggregated to compute
the element-wise minimums of the values in arrays of integers.
Note that this aggregation is different from the user-defined mink
reduction in that the element-wise minimums are computed instead
of the overall minimums. Indeed, the mink reduction can itself be
aggregated to compute the element-wisek minimums of the values
in arrays of vectors.

2.2 MPI Constructs

MPI provides twelve built-in operations for reductions andscans:
maximum, minimum, sum, product, logical and, bit-wise and,log-
ical or, bit-wise or, logical xor, bit-wise xor, maximum value and
location, and minimum value and location. It allows the userto cre-
ate user-defined operations in the form of a combine functionthat
is extended for aggregation.

MPI provides routines that correspond exactly to the local-
view routines described earlier. However, MPI does not require
an identity function. Instead, the first element in the result of an
exclusive scan is undefined.

3. Global-View Abstraction
The global-view abstraction computes both the accumulate and
combine phases of the reduction in Figure 1. It takes a more global
view of the computation by pushing the per-processor code into the
abstraction. For example, the mink reduction used as an example
for the local-view abstraction would look different when imple-
mented with the global-view abstraction. Given an array ofn in-
tegers distributed overp processors wheren is much larger thanp,
the user-defined mink reduction computes thek minimum integers.
In the local-view abstraction, the programmer computes sorted vec-
tors of thek minimums before calling into the reduction.

The global-view abstraction allows for the type of the input
values to be different than the type of the output value. In the case of
the mink operator, the input type is an integer and the output type is
a vector ofk integers. The abstraction works by defining separate
functions for the accumulate and combine phases. In addition to
allowing the input type and the output type to be different, the type

Listing 2. Algorithm for the global-view reduction.
1 f o r a l l p r o c e s s o r s q i n 0..p − 1
2 sq ← fident()
3 i f n > 0
4 sq ← fpre accum(sq, inq(0), ...)
5 f o r i i n 0..n− 1
6 sq ← faccum(sq, inq(i), ...)
7 i f n > 0
8 sq ← fpost accum(sq, inq(n− 1), ...)
9 LOCAL_REDUCE(fcombine, sq)

10 f o r a l l p r o c e s s o r s q i n 0..p − 1
11 outq ← fred gen(sq)

of the state—the value that is accumulated into and then passed
between the processors—may also be different.

If the input type, output type, and state type are the same, then
the global-view abstraction reduces to the local-view abstraction.
The identity function,fident, and combine function,fcombine,
need to be specified by the programmer. The combine function is
then used to accumulate the values into a local result. The result of
the combine function is then returned.

If the input type is different, then an accumulate function,
faccum, must also be specified. These functions have the following
type signatures if the input type isin and the output type isout:

fident : ()→ out
faccum : (in× out)→ out
fcombine : (out× out)→ out

If the output type is different than the state type, then a generate
function must also be specified. For a reduction, the generate func-
tion returns the single value from a final state value. For a scan, it
returns a value from each of the states. These functions are called
fred gen andfscan gen respectively. They have the following type
signatures where the state type isstate:

fident : ()→ state
faccum : (in× state)→ state
fcombine : (state × state)→ state
fred gen : (state)→ out
fscan gen : (in× state)→ out

Note that the scan generator can produce a different value based on
the input value at each position.

In addition to these functions, it is useful to allow a function to
act on the state based on the first value on the processor before
accumulating and another function to act on the state based on
the last value on the processor after accumulating. These functions
are calledfpre accum and fpost accum and have the same type
signature asfaccum. Listing 7 illustrates a situation where these
functions are useful.

Listings 2 and 3 outline the algorithm for computing the global-
view reduction and scan in terms of the local-view abstractions.
Note that the global-view scan listing computes an exclusive scan.
By interchanging lines 12 and 13, this algorithm is made to com-
pute an inclusive scan.

The accumulate function often has a substantially faster imple-
mentation than the combine function, and it should be optimized
at the combine function’s expense. The functions defined in this
section take advantage of this property. Alternative functions that
translate the input values into state values rather than accumulate
the input values into state values would result in worse perfor-
mance.

3.1 Examples in Chapel

Chapel is a new parallel programming language being developed
by Cray Inc. in conjunction with Caltech/JPL as part of DARPA’s



Listing 3. Algorithm for the global-view exclusive scan.
1 f o r a l l p r o c e s s o r s q i n 0..p− 2
2 sq ← fident()
3 i f n > 0
4 sq ← fpre accum(sq, inq(0), ...)
5 f o r i i n 0..n− 1
6 sq ← faccum(sq, inq(i), ...)
7 i f n > 0
8 sq ← fpost accum(sq, inq(n− 1), ...)
9 LOCAL_XSCAN (fident, fcombine, sq)

10 f o r a l l p r o c e s s o r s q i n 0..p− 1
11 f o r i i n 0..n− 1
12 outq(i) ← fscan gen(sq, inq(i), ...)
13 sq ← faccum(sq, inq(i), ...)

Listing 4. An implementation of the mink operator in Chapel.
1 c l a s s mink {
2 t y p e in_t;
3 const k : i n t e g e r ;
4 var v: [1..k] in_t = in_t.max;
5 f u n c t i o n accum(x: in_t)
6 i f x < v[1] {
7 v[1] = x;
8 f o r i i n 2..k
9 i f v[i-1] < v[i] {

10 var tmp = v[i];
11 v[i] = v[i -1];
12 v[i-1] = tmp;
13 }
14 }
15 f u n c t i o n combine (s: mink(in_t ))
16 f o r i i n 1..k
17 accum (s.v[i]);
18 f u n c t i o n gen ()
19 r e t u r n v;
20 }

HPCS (High-Productivity ComputingSystems) program. Chapel
allows the programmer a more global view of the computation and
is well-suited to the global-view abstraction presented inthis paper.
As an object-oriented language that supports generic programming
and type inference, Chapel improves the abstraction in somenon-
trivial ways.

3.1.1 Example 1: mink

Listing 4 shows an implementation of the mink operator in Chapel.
The operator is a class that implements an interface allowing it
to be used as the operator for a reduction or scan. To make the
operator more flexible, it is parameterized by the type of thevalues
being reduced or scanned; Line 2 names this typein_t. The state
is stored in the fields of the class. Here the state is the arrayv of
sizek.

The default constructor computes the identity. In Chapel, a
default constructor is created for all classes if one is not specified.
The fields are then initialized. So the default constructor for the
mink class initializes the elements ofv to the maximum value of
the input type.

Every class that defines an operator for use in a reduction or scan
must define at least the three functionsaccum, combine, andgen.
This is necessary in Chapel because the state type is necessarily
different from the input and output types since it is the class itself.
However, if the input and state types are conceptually the same, the
combine function can be implemented to simply call theaccum
function.

Listing 5. An implementation of the mini operator in Chapel.
1 c l a s s mini {
2 t y p e elt_t ;
3 var val : elt_t = elt_t .max;
4 var loc : i n t e g e r ;
5 f u n c t i o n accum(x: (elt_t , i n t e g e r ))
6 i f x(1) < val t hen
7 (val , loc ) = x;
8 f u n c t i o n combine (s: mini(elt_t ))
9 c a l l accum ((s.val , s.loc ));

10 f u n c t i o n gen ()
11 r e t u r n (val , loc );
12 }

In the implementation, the state used during the reduction is of
the type of the class. The state is then the implicitthis argument
to the methods. Notice that the second state is explicitly passed
into the combine function as the function’s only argument. Its type
is specified to be the class instantiated by the same type, namely,
in_t.

The result of themink reduction is the array ofk minimum
values. To call this reduction in Chapel over an array of integers
A, the programmer declares the array of k integers that is returned
from the reduction and calls the reduction directly onA as in

var minimums : [1..10] i n t e g e r ;
minimums = mink( i n t e g e r ,10) reduce A;

The compiler transforms this code based on themink class.
It creates as many instances of that class as are needed basedon
how many processes are used. The details of the reduction are
determined by the functions that are provided by the class. In this
case, there are nopre_accum or post_accum functions, so lines 3
and 4 from Listing 2 are omitted. Also note that thegen function
is used instead ofred_gen since there is no separatered_gen
function. In many cases, reductions and scans can share the same
generate functions.

3.1.2 Example 2: mini

The mini operator finds the minimum value and its location. List-
ing 5 shows an implementation of the mini operator in Chapel.
Chapel’s support for first-class tuples allows multiple values to be
passed into the accumulate function. Given an array of integersA,
the minimum and its location can be found via themini reduction
by writing

var (val , loc) =
mini( i n t e g e r ) reduce

[i i n 1..n] (A(i), i);

In this code, the result of the reduction is stored in two variables,
val andloc. The source of this reduction is an array expression
created by[i in 1..n]. Conceptually, this expression creates an
array ofn tuples though the array may not be allocated depending
on the implementation.

3.1.3 Example 3: counts

Given a list of particles with locations in one of eight octants, a re-
duction could determine how many particles are in each location.
A scan could determine a ranking of the particles within eachoc-
tant. For example, if ten particles are located in octants 1 through 8
based on the ordered set[6, 7, 6, 3, 8, 2, 8, 4, 8, 3], then the reduc-
tion would return the ordered set of eight counts

[0, 1, 2, 1, 0, 2, 1, 3]



Listing 6. An implementation of the counts operator in Chapel.
1 c l a s s counts {
2 var v: [1..k] i n t e g e r ;
3 f u n c t i o n accum(x: i n t e g e r ) {
4 v[x] += 1;
5 }
6 f u n c t i o n combine (s: counts ) {
7 v += s.v;
8 }
9 f u n c t i o n red_gen ()

10 r e t u r n v;
11 f u n c t i o n scan_gen (x: i n t e g e r )
12 r e t u r n v[x];
13 }

Listing 7. An implementation of the sorted operator in Chapel.
1 c l a s s sorted {
2 t y p e in_t;
3 param commutative = f a l s e;
4 var status : b o o l e = t r u e ;
5 var first : in_t = in_t.max;
6 var last: in_t = in_t.min;
7 f u n c t i o n pre_accum (x: in_t) {
8 first = x;
9 }

10 f u n c t i o n accum(x: in_t) {
11 i f last > x t hen
12 status = f a l s e;
13 last = x;
14 }
15 f u n c t i o n combine (s: sorted (in_t)) {
16 status = status and s.status
17 and last <= s.first;
18 last = s.last;
19 }
20 f u n c t i o n gen ()
21 r e t u r n status ;
22 }

and the scan would return the rankings

[1, 1, 2, 1, 1, 1, 2, 1, 3, 2].

.
This operator uses a different generate function dependingon

whether it is being used in a reduction or scan. Listing 6 shows an
implementation of the counts operator in Chapel.

3.1.4 Example 4: sorted

Given an ordered set of values, the sorted reduction determines
whether the values are in sorted order. This non-commutative re-
duction keeps track of the first and last elements in the accumulate
function. The combine function then ensures that each of theparts
that are accumulated are sorted and that the boundary elements are
in sorted order as well.

Listing 7 shows an implementation of the sorted operator in
Chapel. This class specifies that the operator is non-commutative
by specifying the “param” in line 3. This compile-time constant al-
lows different reduction algorithms to be selected. If it isundefined,
it is assumed to be true by the compiler.

4. RSMPI: An Extension to MPI
This section proposes adding support for global-view scansand
reductions to MPI. It does this by proposing an extension to MPI,

Listing 8. An implementation of the sorted operator in C+RSMPI.
1 rsmpi operator sorted {
2 non - commutative
3 state {
4 i n t first , last;
5 i n t status ;
6 }
7 v o i d ident (state s) {
8 s->first = INT_MAX ;
9 s->last = INT_MIN ;

10 s->status = 1;
11 }
12 v o i d pre_accum (state s, i n t i) {
13 s->first = i;
14 }
15 v o i d accum (state s, i n t i) {
16 i f (s->last > i)
17 s->status = 0;
18 s->last = i;
19 }
20 v o i d combine (state s1, state s2) {
21 s1 ->status &= s2-> status &&
22 (s1 ->last <= s2 ->first );
23 s1 ->last = s2->last;
24 }
25 i n t generate (state s) {
26 r e t u r n s->status ;
27 }
28 }

called RSMPI (Reduce and Scan MPI), that requires a simple
preprocessor to convert RSMPI code to MPI code. This section
explains how RSMPI works, discusses how its usage cleans up
MPI code in the context of the NAS benchmarks, and shows some
performance results that demonstrate its advantages.

Since RSMPI is transformed to MPI, it is always possible to
write MPI that is as fast as RSMPI. The global-view abstraction in
RSMPI, however, makes it significantly easier to use. It makes it
possible to build up a library of operators that compute an entire
reduction or scan, not just the combine portion.

RSMPI faithfully implements the global-view abstraction so an
example is sufficient to explain it. Listing 8 shows an implementa-
tion of the sorted operator in C+RSMPI. Superficial changes made
by a preprocessor translate this code into a set of functionsthat can
then be used at the call-site.

For example, to use the sorted operator to determine if an array
of integers is in sorted order, the programmer first defines aniter-
ator to describe the values passed to the accumulate function and
then calls an RSMPI routine to reduce or scan.

rsmpi iterator values {
f o r (i=0; i<n; i++)

y i e l d i;
}

RSMPI_Reduceall(status , sorted ,
values , A[values ]);

The call to RSMPIReduceall takes the result, the RSMPI op-
erator, the RSMPI iterator, and the input expression. The iterator
identifies the values that each processor needs to accumulate. The
accumulate function is applied to the input expression within this
iterator and then inlined into the code.

The RSMPI routine has similar structure to the MPI routine,
though we allow the common case of using the MPICOMM WORLD
communication group as a default if another is omitted.



To evaluate the use of RSMPI, we studied the NAS benchmarks
and found two places where user-defined reductions could signif-
icantly simplify the code that the programmer has to write inthe
main body of the program. These areas of the code were not in the
parts of the benchmark that are timed, but were instead in theini-
tialization and verification phases. They represent idiomsthat show
up in practice.

4.1 NAS IS: An RSMPI Case Study

As the last part of the computation, the NAS IS benchmark veri-
fies that the large array of integers is sorted. Rather than using a
user-defined reduction like the sorted reduction describedin Sec-
tion 3.1.4, this is written in MPI in the following way. First, the
boundary elements are communicated to neighboring processors so
that it can be determined that the boundary elements are in sorted
order. Then, locally on each processor, all the other elements are
checked to make sure they are in sorted order. Finally a sum re-
duction is used to determine that all of the processors have sorted
values.

Using MPI’s user-defined reduction mechanism, this can be
marginally improved. In the program flow, however, the program-
mer must still specify the local portion of the reduction. This is
awkward compared to using the global-view abstraction of RSMPI.
With this abstraction, a single line can apply the sorted reduction to
the conceptual entire array of integers.

Figure 2 shows timings of the C+MPI version of NAS IS com-
pared to a C+RSMPI version. The C+RSMPI code was generated
by an experimental prototype of an RSMPI preprocessor written in
Perl.

The RSMPI version performs better based on a scalar improve-
ment. Since values in the array are stored in a scalar when being
compared to their neighbors, only one memory reference is made
per value in the array. Optimizing the provided NAS C+MPI code
to make one memory reference per value in the array closed the
performance gap entirely.

The difference between the parallel RSMPI and MPI version
is non-trivial, though our timings revealed no difference.In the
RSMPI version, the reduction requires larger messages thanin
the MPI version and it is non-commutative. The MPI version, on
the other hand, requires an initial message to be passed between
neighboring processors.

In an experiment to see whether any gains would be made if the
user-defined reduction were commutative, we flagged the reduction
as commutative. This resulted in no speedup, though the program
did fail to verify that the array was sorted (as expected).

4.2 NAS MG: An RSMPI Case Study

In the initialization of the NAS MG benchmark, an array is filled
with random numbers. The ten largest numbers and their locations
in the array along with the ten smallest numbers and their locations
in the array are then identified. These positions are then filled with
positive ones and negative ones respectively, and the rest of the
array is filled with zeros.

In the NAS F+MPI version, this portion of the computation,
the ZRAN3 routine, is implemented with forty reductions. Inthe
F+RSMPI version, a single user-defined reduction, similar to the
mink and mini reductions described previously, can be used in-
stead. Figure 3 shows timings of the F+MPI version of NAS MG
compared to a hand-coded F+RSMPI version. The overhead of not
using the single user-defined reduction is seen more sharplyin
smaller problem classes since the reduction accounts for more of
the time. In larger class sizes, more time is taken to traverse and
compute on the array, so the efficiency is more comparable.

5. Related Work
The importance of user-defined scans and reductions is well-
established. Parallelizing these constructs from sequential code has
garnered much attention. Fisher and Ghuloum [10] extended simple
techniques for recognizing standard reductions and scans to handle
more complicated operators by analyzing conditional branches in
loops.

Despite the importance of scans and reductions to parallel com-
puting, however, language support for user-defined variants are
lacking from most parallel programming approaches. MPI is ano-
table exception that has already been discussed. Other commu-
nication libraries vary in their support of user-defined scans and
reductions. PVM [14] supports user-defined reductions similar to
MPI, but has no support for user-defined scans. ARMCI [12] and
SHMEM [2] provide a small set of built-in reductions, but no user-
defined reductions and no scans.

Support for collective operations is lacking in Co-Array For-
tran [13], Titanium [16], and UPC [5]. Arguments for adding col-
lective communication have been made in the literature [6].

The NESL language provides support for many built-in scans
and reductions, but provides no support for user-defined scans or
reductions [4]. This language is novel in its heavy relianceon scans,
demonstrating how effective this primitive can be.

The C** language provides good support for global-view user-
defined reductions [15] similar to those described in this paper.
However, they do not support identity or generate functions, nor
do they support user-defined scans.

MapReduce [7] is a recent programming model used to apply
an operation and a reduction to a large data set. The system iscapa-
ble of taking advantage of associativity by letting the userspecify
a “combine” function alongside a “reduce” function. These paral-
lel our “accumulate” and “combine” functions. The MapReduce
model follows a different implementation path than the mecha-
nisms discussed here because of its design point (querying alarge
database as opposed to scientific computing).

Previous work on support for user-defined reductions in ZPL
was based on overloading procedures of the same name in or-
der to specify the identity, accumulate, and combine functions [9].
(There was neither a generate function nor support for user-defined
scans.) There were three main problems with the approach of over-
loading procedures. First, the error messages that arose when the
procedures were not defined exactly as they should be were often
misleading or uninformative. Second, the user-defined reductions
could only be used in simple assignment statements so that the cor-
rect result type could be determined. Third, if the state type was the
same as the initial type, there was no way of supplying a combine
function that was different than the accumulate function. Although
this is not common, it seems possible given a fairly complex reduc-
tion and initial type. Later work sketched out support in ZPLfor
a generate function and user-defined scans [8]. This work wasnot
in an object-oriented framework and was substantially bulkier as a
result.

6. Conclusion
Reduce and scan are clean, high-level programming abstractions
that admit efficient parallel implementations. Although ithas been
common for languages to provide built-in reduce and scan fora
small set of associative and commutative operators, programmers
have long recognized that the idea is more general.

This paper has formulated the principle of parallel prefix com-
putation in a way that allows users to apply it practically inser-
vice of their own scan and (degenerately) reduce. The results ap-
ply to both global- and local-view parallel programming situations.
Specifically, we present the first user-defined scan formulation for



0 32 64 128 256
Processors

0

25

50

75

100

E
ff

ic
ie

n
cy

 (
%

) 
o

f 
sc

al
ed

 b
es

t 
1-

p
ro

ce
ss

o
r 

ti
m

e
(0

.0
3 

se
co

n
d

s 
in

 C
+R

S
M

P
I)

IS Class A -- IBM P655
Verify Time

0 32 64 128 256
Processors

0

26

52

78

104

E
ff

ic
ie

n
cy

 (
%

) 
o

f 
sc

al
ed

 b
es

t 
4-

p
ro

ce
ss

o
r 

ti
m

e
(0

.0
3 

se
co

n
d

s 
in

 C
+R

S
M

P
I)

IS Class B -- IBM P655
Verify Time

0 32 64 128 256
Processors

0

26

52

78

104

E
ff

ic
ie

n
cy

 (
%

) 
o

f 
sc

al
ed

 b
es

t 
16

-p
ro

ce
ss

o
r 

ti
m

e
(0

.0
3 

se
co

n
d

s 
in

 C
+R

S
M

P
I)

IS Class C -- IBM P655
Verify Time

linear speedup
C+MPI
C+RSMPI

Figure 2. Efficiency graphs showing the speedup of the verification phase of classes A, B, and C of the NAS IS benchmark on an IBM P655
system with 92 nodes, each containing eight 1.5 GHz power4 processors and 16 GB of memory.
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Figure 3. Efficiency graphs showing the speedup of the ZRAN3 subroutine of classes A, B, and C of the NAS MG benchmark on an IBM
P655 system with 92 nodes, each containing eight 1.5 GHz power4 processors and 16 GB of memory.

higher level languages such as Chapel. We have introduced the
RSMPI software to allow MPI programmers to apply custom scan
and reduce conveniently using a mechanism that encapsulates the
various components of the implementing parallel prefix logic. And,
we have shown how custom scan and reduce outperform repeated
use of built-in scan and reduce for examples from the NAS bench-
marks.

The use of RSMPI to implement custom reduce and scan illus-
trates the application of a global-view language facility to a local-
view language. One possibility for future research would beto ex-
plore whether there are other global-view language features show-
ing great promise that might be supported in an analogous wayin
local-view languages.
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