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Abstract

This paper introduces user-defined domain maps, a novel

concept for implementing distributions and memory lay-

outs for parallel data aggregates. Our domain maps im-

plement parallel arrays for the Chapel programming lan-

guage and are themselves implemented using standard

Chapel features. Domain maps export a functional in-

terface that our compiler targets as it maps from a user’s

global-view algorithm down to the task-level operations

required to implement the computation for multicore

processors, GPUs, and distributed memory architectures.

Unlike distributions in HPF and ZPL, Chapel’s domain

maps are designed for generality and do not rely on hard-

coding a fixed set of distributions into the compiler and

runtime. The chief contributions of this paper are its de-

scription of our motivating principles and an overview of

our framework.

1 Introduction

Chapel is a novel language being developed by Cray Inc.

to support general, productive parallel programming.

Chapel strives to be general by supporting arbitrary par-

allel algorithms on diverse parallel architectures. In

terms of productivity, it aims to improve the programma-

bility of large-scale parallel systems while matching or

beating the performance and portability achieved by cur-

rent programming models like MPI and OpenMP. Chapel

is being developed in an open-source manner and the

concepts described in this paper can be used in their cur-

rent form by downloading Chapel [7].

One of Chapel’s most promising concepts for improv-

ing parallel programmability is its support for global-

view arrays—data aggregates whose elements may be

stored using distinct memories, yet whose indices are ex-

pressed in toto using a single logical index set. While ex-

isting languages like High Performance Fortran (HPF),

ZPL, and UPC also support global-view arrays [20, 4,

15], each supports at most a handful of distributions

whose semantics are built into their compilers and run-

times. This helps with productivity when the built-in dis-

tributions suit a user’s needs, but constitutes a linguistic

dead-end when they do not.

In contrast, our work strives to support user-defined

distributions that permit advanced users to specify their
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own global-view array implementations. We achieve this

using a concept called a domain map which serves as a

recipe for implementing parallel arrays. We refer to do-

main maps that target a single shared memory segment

as layouts. Domain maps that target multiple distinct

memories, as on large-scale distributed memory systems

or heterogeneous node architectures, are called distribu-

tions. In both cases, domain maps permit the Chapel

compiler to lower a user’s high-level code down to the

fragmented, per-node data structures and tasks that im-

plement its parallel operations.

This paper represents the first published description of

Chapel’s strategy for user-defined domain maps. Pre-

vious work proposed a possible approach to distribu-

tions in Chapel [13], yet that proposal was never im-

plemented and, in our opinion, was too minimalist in its

design to support Chapel’s performance goals. Our two

approaches share some characteristics due to our com-

mon foundations [12, 25] and early collaborations. To

our knowledge, this paper represents the first time that a

programming language has supported natively-specified

user-defined distributions via a functional interface.

This paper is organized as follows: The next section

provides a brief overview of Chapel as background. Sec-

tion 3 contrasts our work with the most relevant previ-

ous work. Section 4 outlines our philosophy and goals

for user-defined domain maps in Chapel while Section 5

describes a number of motivating domain maps and their

current status. Our software framework for domain maps

is introduced in Section 6. Section 7 wraps up by sum-

marizing and outlining our next steps.

2 Chapel Overview

This section provides a brief overview of Chapel for the

purposes of understanding this paper. For more informa-

tion, please refer to Chapel’s documentation [5, 10, 8].

Chapel’s features are organized in distinct layers,

where higher-level concepts are built upon lower-level

ones. For example, Chapel’s domain maps are its

highest-level concept, implemented in terms of lower-

level features for expressing task parallelism and local-

ity. Unlike HPF, Chapel’s users can shed its high-level

data parallel features and program at lower levels to ob-

tain more explicit control over the computation. We refer

to this as a multiresolution language design.

The lowest level of Chapel’s feature set is a rich

base language with support for compile-time computa-



tion, range and tuple types, objects, function overload-

ing, CLU-style iterator functions [21], static type infer-

ence, and generic programming. By and large, this set

of features was selected in order to provide good support

for specifying user-defined domain maps in Chapel.

Chapel’s locality-oriented features permit the pro-

grammer to refer to architectural regions of locality via

an abstract locale type. For most parallel platforms,

the Chapel compiler maps locales to multicore or SMP

nodes. A Chapel program can refer to the set of locales

on which it is executing using a built-in array of locale

values. Programmers specify the number of locales at

program execution time via command-line flags.

Chapel’s data parallel features are based on a first-

class representation of an index set called a domain. Do-

mains are used to describe iteration spaces and to declare

arrays. Chapel’s domains are a generalization of the re-

gion concept pioneered by the ZPL language [4], sup-

porting dense, sparse, strided, associative, and unstruc-

tured data aggregates. Domains support iteration, inter-

section, set-oriented queries, and operations for creating

other domains. They are also used to declare, slice, and

reallocate arrays. Chapel arrays are one-to-one mappings

from a domain’s indices to a set of variables of arbitrary

but homogeneous type.

Each Chapel domain—and by extension its arrays—

has an associated domain map which defines its imple-

mentation. Domain maps specify how domain indices

and array elements are mapped to locales, how they are

stored in memory, and how operations such as accesses,

iteration, and slicing are implemented. If no domain map

is explicitly specified by the user, the compiler uses a de-

fault domain map that targets a single locale, implement-

ing parallel operations using its processor cores.

When multiple domains share a single domain map,

they are considered to be aligned since a given index

will map to the same locale within each domain. One

of the benefits of exposing domains and domain maps as

first-class language concepts in Chapel is that overheads

associated with implementing arrays can be amortized

across multiple aligned arrays and domains. In addition,

domain maps improve the ability for compilers and users

to reason about the semantics of parallel programs.

The following Chapel code declares a domain map

myDist that is an instance of the distribution DistClass.

This domain map is used to declare two aligned 1-

dimensional domains, D1 and D2, each of which is then

used to declare a pair of arrays:

const myDist = new dmap(new DistClass(. . .));

const D1: domain(1) dmapped myDist = [1..m],

D2: domain(1) dmapped myDist = [0..m+1];

var A1, B1: [D1] real,

A2, B2: [D2] real;

3 Related Work

As mentioned previously, the most important predeces-

sors for our work are the High Performance Fortran

family of languages [19, 20, 16, 9, 1] and ZPL [22].

HPF supports arrays whose dimensions can each be dis-

tributed using regular block, cyclic, and block-cyclic

schemes. HPF-2 added support for indirect distributions

that could support arbitrary mappings of data to proces-

sors [25, 17], while other efforts proposed support for

distributed compressed sparse row (CSR) arrays by hav-

ing the programmer write code in terms of distributed

versions of the underlying data structures [23].

ZPL is more closely related to our work due to its sup-

port for first-class index sets known as regions [4], de-

signed to help the compiler and user reason about dis-

tributed array semantics. For most of its lifetime, ZPL

only supported block distributions. Late in the ZPL

project, a lattice of distribution types was designed to ex-

tend ZPL’s generality [12]. However, only a few of these

distributions were ever implemented.

ZPL and HPF implementations have relied on build-

ing the semantics of their distributions into compilers

and runtime libraries. In contrast, our approach only

requires the implementation to know about general op-

erations that a domain map can support—like iteration

or slicing—rather than any specific knowledge about its

semantics—such as which locales will own neighboring

elements in a block distribution. Moreover, we believe

that our approach provides users with the ability to spec-

ify arbitrary distributions more efficiently in time and

space than previous efforts like HPF-2’s indirect distri-

bution. We also assert that our framework can support

more general distributions than previous approaches.

4 Chapel Domain Map Design Goals

In previous sections, we described the basic role of user-

defined domain maps in Chapel. Here, we provide a

number of additional goals and themes that have guided

our design.

Support for General Array Formats A primary con-

cern in our philosophy is that developers should be able

to describe any reasonable array representation that they

can envision. In particular, the domain map framework

strives to avoid imposing arbitrary constraints on the

author due to our potential shortsightedness. In carv-

ing out our design space we wanted to make sure to

support a framework that was rich enough to support

not only standard distributions as in HPF and ZPL, but

also richer mappings such as various sparse matrix for-

mats, recursive bisections, multidimensional multipar-

titionings [11], hierarchically tiled arrays [2], Morton-

ordered arrays [24], graph partitioned data structures [18,

3], or any other mapping of data elements to locale mem-

ories that a computation may require.



Specification via a Functional Interface Due to our

desire to support very general array implementations, we

define our domain maps via an object-oriented interface

in order to say as little as possible about how they should

be implemented, focusing instead on the operations that

they must support. Section 6 discusses this functional

interface in more detail.

Multidimensional Distributions Unlike HPF in

which each dimension of an array is distributed in-

dependently, in our work we choose to distribute

multidimensional index sets holistically in order to

support distributions like recursive bisection that cannot

be defined as a composition of dimensional distributions.

Our approach subsumes the per-dimension approach

because multidimensional distributions can be defined

that are themselves parameterized by a list specifying

how each dimension should be partitioned.

Target Locale Sets In order to support coarse-grain

task parallelism and coupled computation models,

Chapel’s distributions typically take a target set of lo-

cales to which the domain indices and array elements are

mapped. By convention, locales that are not part of the

target set do not store data for that distribution, and paral-

lel loops over the distribution’s domains and arrays will

only utilize processors in the target locale set. In this

way, distributions can target disjoint or overlapping sets

of machine resources. This flexibility is enabled in part

by Chapel’s support for dynamic and nested parallelism

rather than being limited to single-threaded SPMD exe-

cution models.

Plug-and-play Chapel’s semantics for domain and ar-

ray operations are intended to be independent of the do-

main maps used to implement them. To this end, chang-

ing a domain’s domain map should only impact the im-

plementation and performance of a program, not the cor-

rectness of its execution. This permits users to first de-

velop and debug a single-locale program before incre-

mentally adding support for multi-locale execution and

performance optimizations simply by changing the do-

main maps used to declare their domains.

Separation of Roles Chapel domain maps are intended

to separate the use of high-level parallel array operations

from the low-level details required to implement global-

view semantics on large-scale distributed-memory sys-

tems. In this sense, the clients of domain maps are in-

tended to be applications programmers who understand

the concept of using parallel operators on arrays, yet who

need not be well-versed in the details of implementing

parallel data structures. Such skills are required by au-

thors of domain maps. This separation of concerns is

designed to permit computational scientists and parallel

computing experts to each focus on their area of exper-

tise without unnecessarily intertwining their code within

a Chapel program.

Domain Map Libraries Supporting libraries of do-

main maps will be important in order to reuse code across

projects and reduce the need for users to develop do-

main maps from scratch. Chapel is designed to include

a standard library of domain maps to support common

data layouts and distributions. Like any standard library,

the implementations of these domain maps can vary from

one target platform to the next in order to tune for each

system’s capabilities. Additionally, we envision there be-

ing open-source community repositories for Chapel do-

main maps so that developers can share their code with

the community and benefit other users.

Performance Chapel’s multiresolution design is not

meant to suggest that using higher-level features will

necessarily result in a sacrifice of performance. While

the use of lower-level features will always admit perfor-

mance improvements through increased effort, our do-

main map framework is designed to result in good perfor-

mance for global-view data structures. Our performance

results in ZPL competed with and outperformed hand-

coded Fortran+MPI [4, 12], giving us reason to believe

that well-designed domain maps can support global-view

abstractions without sacrificing performance. Our initial

scalability results for the Chapel block distribution also

support this belief, achieving 10.8 TB/s and 0.122 GUPs

for two of the HPC Challenge benchmarks on 2048 quad-

core processors [6, 14]. We are implementing Chapel’s

standard domain maps using the same mechanisms that

an end-user would to ensure that our design does not

result in a performance cliff between “built-in” domain

maps and those defined by an end-user.

Parameterization of Domain Maps Chapel domain

maps are parameterizable so that a single domain map

implementation can be used in multiple contexts. As-

pects of this parameterization may be encoded in the do-

main map for convenience and portability—for example,

a domain map might query a locale’s cache line sizes

or number of processor cores in order to optimize loop

structure. In addition, domain maps may support user-

supplied arguments so that clients can manually tune the

way a domain map is implemented rather than requiring

a distinct domain map for each potential context.

Implemented Using Lower-level Features In the

spirit of Chapel’s multiresolution design, domain maps

are authored using lower-level concepts in Chapel. For

example, rather than introducing new concepts for gen-

erating parallelism within a program, domain maps are

implemented in terms of Chapel’s standard features for

task parallelism and locality. As mentioned previously,

most of Chapel’s base language features are very useful

for managing the complexity of implementing domain

maps, including its support for OOP, generic program-

ming, type inference, tuples, iterators, overloading, and

the compile-time language.



Compiler-Known Concept While a good software en-

gineer could implement domain maps like ours in an

existing object-oriented language using a similar frame-

work, we believe that it is crucial for global-view lan-

guages to support domain maps as a language concept in

order to support compiler optimization of parallel oper-

ations, particularly those utilizing multiple arrays or do-

mains within a single statement. As we will describe

in Section 6, the Chapel compiler’s role is not simply

to manually rewrite global-view operations down to per-

locale operations, but also to inspect a domain map’s sup-

ported interface in order to perform optimizations that

take advantage of its strengths.

Transparent Execution Models One of the common

concerns in using global-view abstractions is that the

high-level nature of the data structures and operations

will prevent a performance-minded programmer from

being able to reason about how their code will execute.

For this reason, it is crucial that domain maps be well-

documented so that the client can understand how indices

are mapped to locales, how data is stored within a locale,

how much parallelism is used for loops over a domain

or array, and how communication is implemented. With-

out such information, a domain map’s client will have

a more difficult time obtaining good performance from

their high-level code.

5 Sample Domain Maps and Status

In this section, we provide a survey of domain maps that

we intend to support in Chapel using our framework. We

start with simpler and more common domain maps and

work our way toward cases that stretch the conventional

notion of what a distribution is. We describe the current

status of our implementation as we go.

Standard Layouts Chapel currently supplies a num-

ber of standard layouts in order to support diverse data

representations within a locale’s memory. Chapel’s

default layouts support dense row-major order arrays,

sparse coordinate storage, and open-address hashing us-

ing quadratic probing. We have also developed standard

layouts that implement column-major storage order and

compressed sparse row (CSR) format. These layouts uti-

lize runtime heuristics and user-supplied arguments to

determine the number of tasks to create for each parallel

loop. In several cases they already result in performance

competitive with hand-coded C. These single-locale do-

main maps are not only useful for implementing parallel

arrays on multicore processors, they also serve as build-

ing blocks for each locale’s contribution to a multi-locale

distribution. Looking ahead, we are interested in imple-

menting hierarchically-tiled arrays, Morton-order arrays,

and diverse implementations of sparse, associative, and

unstructured domains and arrays.

Regular Distributions Chapel’s standard domain map

library will support common regular distributions such

as block, cyclic, and block-cyclic. Our current block and

cyclic distributions are feature-complete and our block-

cyclic distribution is under development. We ultimately

expect to support several variations of block and block-

cyclic distributions in order to support interoperability

with existing libraries and languages. As mentioned ear-

lier, we also plan to implement dimensional distributions

parameterized by per-dimension partitioning rules.

Irregular Distributions All of the distributions de-

scribed so far divide an array’s dimensions between a set

of locales using regularly-spaced hyperplanes to parti-

tion complete dimensions. Our framework also supports

the ability to define irregular distributions such as recur-

sive bisections to distribute an index space in a data-

sensitive way for improved load balance. Another ex-

ample that we have started implementing is support for

distributed hash tables in which elements are first hashed

to a locale and then stored locally using a standard as-

sociative domain. For sparse and unstructured computa-

tions, we plan to support distributions that utilize stan-

dard graph partitioning techniques including geometric

algorithms, spectral methods, and multilevel partitioning

algorithms [18, 3].

Accelerator-based Domain Maps In collaboration

with UIUC, we have recently been exploring the use

of Chapel domain maps that target hardware accelera-

tors. We have prototyped layouts that target NVIDIA

GPUs by generating CUDA to implement array alloca-

tions, data transfers, and parallel operations. Our proto-

type work is promisingly competitive with hand-coded

CUDA and has the benefit of providing users with a uni-

fied set of concepts for targeting CPUs and GPUs rather

than relying on hybrid programming models.

Dynamically Load-Balanced Domain Maps Distri-

butions are typically defined as a static mapping of in-

dices or array elements to machine resources. However,

nothing about our framework requires domain maps to be

so static in nature. In particular, we are exploring the use

of domain maps to implement parallel loops using dy-

namic work distribution patterns like master-worker or

work-stealing. A user’s parallel loops would appear un-

changed while the underlying implementation would be

far more dynamic than a traditional distribution.

Domain Maps for Resiliency Another non-standard

use of our framework would be to support resilient com-

putations by having a domain map utilize redundancy in

storage and/or computation in order to tolerate hardware

failures. For example, clients could specify the degree of

redundancy that they are willing to invest, directing the

domain map to store each array element or perform each

loop iteration redundantly the specified number of times.



Domain Descriptors:
• Create new arrays

• Support whole-domain assignment of index sets

• Modify the domain’s index set by adding, removing, and

clearing indices (irregular domains only)

• Compute index set intersections and ordering

• Iterate over the index set sequentially, in parallel, and in

a zippered manner with other iterable expressions

• Query index set size and membership

Array descriptors:
• Randomly access array elements

• Reallocate the array’s data when its domain is modified

• Create array aliases to support slicing, reindexing, and

rank change (rectangular index sets only for the last two)

• Get and set sparse “zero” values (sparse arrays only)

• Iterate over elements sequentially, in parallel, and in a

zippered manner with other iterable expressions

Figure 1: Summary of the Required Interface for Chapel’s Global Domain and Array Descriptors

6 Domain Map Framework

This section describes the software framework that we

are using to implement domain maps. Due to space lim-

itations, this description is necessarily high-level.

Chapel’s domain maps are implemented using three

descriptor classes: one to represent the domain map it-

self, one to represent its domains, and one for its arrays.

These classes are called global descriptors, and they are

instantiated for each domain map, domain, or array that

the program creates. Multi-locale distributions typically

use a second set of local descriptors to represent the in-

dices and elements owned by a single locale.

Domain map authors define their descriptors by sub-

classing abstract base classes defined by Chapel’s stan-

dard modules. The Chapel compiler makes no assump-

tions about how a domain map’s descriptors store in-

dices and data values; it only interacts with the classes

through their functional interfaces. Descriptors are typ-

ically linked together so that domains can refer to their

domain maps, arrays to their domains, and vice-versa. In

addition, global descriptors need a way to find their con-

stituent local descriptors in order to propagate method

calls to the objects owning the indices in question.

Domain map descriptors support three interface types:

a required interface, optional interfaces, and custom in-

terfaces. Each is described below.

Required Interface The required interface is sufficient

to support all of Chapel’s operations on domains and ar-

rays, though potentially in a suboptimal manner. If this

interface is not implemented, the compiler cannot lower

Chapel’s global-view operations to the lower-level com-

putations required to implement them.

The required interface for the global domain map de-

scriptor is minimal: it must create new domains and,

in the case of distributions, map from indices to lo-

cales. Figure 1 summarizes the required interfaces for

the global domain and array descriptors.

Optional Interfaces Chapel domain maps can also

implement a wide number of optional sub-interfaces

that enable optimizations beyond what the compiler can

achieve with the required interface alone. In lowering

global-view code, the compiler looks for opportunities

to profitably utilize these optional interfaces. When such

opportunities exist, the participating domain maps are in-

spected to see whether the necessary optional interfaces

are supported. If they are, the compiler applies the opti-

mization to improve the quality of the generated code.

We have not yet done much optimization of domain

maps and therefore have not defined many optional in-

terfaces to date. We currently support one to replicate

global descriptors and a second that supports optimized

iteration for aligned domains. In the future we anticipate

adding interfaces for structured communication idioms

and efficient block copies of sub-array assignments.

Custom Interfaces The third class of domain map in-

terface is one that is not known to the Chapel compiler.

Since users are permitted to author their own domain

maps, it makes sense to give them the ability to define

and directly invoke methods on their domain maps, do-

mains, and arrays. Such custom interfaces provide the

user with a finer level of control and the potential for

better performance. However, they also have the disad-

vantage that since they will not be supported by most

domain maps, their use violates the plug-and-play goal

of our approach, making a user’s code more brittle.

7 Summary

In this paper, we have motivated, described, and reported

on a unique framework for implementing user-defined

layouts and distributions for global-view parallel com-

putation. While our use of domain maps has been de-

veloped primarily for large-scale parallel computing, the

mechanism is also general enough to support memory

layouts and parallelization strategies for multicore pro-

cessors and for heterogeneous nodes consisting of tradi-

tional processors coupled with GPU accelerators.

Next Steps The approach described in this paper is

very much a work-in-progress, yet our experiences to

date give us confidence that we are on a constructive

path. Our next steps are to continue writing increasingly

advanced domain maps while continuing to improve the

performance of our current set. Longer-term, we are in-

terested in exploring the role of domain maps in interop-

erability and on emerging exascale architectures.
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