
Five Powerful Chapel Idioms∗

Steven J. Deitz Bradford L. Chamberlain Sung-Eun Choi David Iten Lee Prokowich

Cray Inc.

Abstract

The Chapel parallel programming language, under development at Cray Inc., aims to deliver high performance to more
programmers with less effort than current practices. In this paper, we look at five idioms that illustrate the following points:

1. Chapel makes it easy to write simple data-parallel computations.

2. First-class, user-defined data distributions enable plug-and-compute functionality for distributed arrays.

3. Composable abstractions support tasks that can be both asynchronous and remote.

4. Chapel’s data- and task-parallel abstractions support nested parallelism.

5. Support for local and remote transactions make distributed, multi-threaded programming easier.

1 Introduction

Chapel is a new parallel programming language being de-
veloped at Cray Inc. It aims to deliver high performance
to more programmers with less effort than current practices.
Specifically, the design of Chapel strives to improve the
programmability of large-scale, distributed-memory systems
while matching or exceeding the performance and portability
of MPI and OpenMP, today’s leading technologies.

Chapel increases programmer productivity by supporting
general and global-view parallel programming while provid-
ing the programmer with control of locality and supporting
mainstream language features. In support of general parallel
programming, Chapel supports both task and data parallelism
as well as their arbitrary composition, and it targets both fine-
grain and coarse-grain parallelism available in a diversity of
systems.

Chapel supports global-view programming that makes it far
easier to write a particular, but common, style of program on
distributed-memory systems. The central abstraction support-
ing global-view parallelism is the concept of a global array.
A global array is an entity that can be treated as a whole even
though its elements are partitioned across a system’s locales.
Chapel’s support for global-view parallel programming is dis-
cussed in more detail in Sections 2 and 3.

Chapel supports programmer control of locality by allowing
the programmer to explicitly control the affinity of both tasks
and data to locales. Chapel supports a locale type allowing a

∗This material is based upon work supported by the Defense Advanced
Research Projects Agency under its Agreement No. HR0011-07-9-0001.
Any opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views
of the Defense Advanced Research Projects Agency.

programmer to map data and tasks to the locales. A locale is
defined in an architecture-dependent way so that accesses to
the memory associated with remote locales are more expen-
sive than accesses to the memory associated with the local
locale. The number of locales may be specified at program
startup, and an array of the locales on which the program is
running is part of the standard context of every Chapel pro-
gram.

The five sections of this paper present examples of five pow-
erful Chapel idioms that make parallel programming easier.
These idioms illustrate some of the key features provided in
Chapel, but are not meant to provide a complete introduction
to Chapel. For a more complete discussion of the Chapel lan-
guage, the reader is referred to the language specification [5].

Section 2 presents an idiom for data-parallel computations.
This idiom makes it easy for Chapel programmers to write
the large class of programs that exhibit data parallelism.

Section 3 presents an idiom for data distribution. Using this
idiom, Chapel programmers can easily experiment with dif-
ferent data distributions on large arrays. Moreover, Chapel’s
data distributions may be user-defined.

Section 4 presents an idiom for asynchronous remote tasks.
Two Chapel abstractions, one for asynchronous tasks and one
for remote tasks, can be composed to support both asyn-
chronous and remote tasks.

Section 5 presents an idiom for nested task and data paral-
lelism. By allowing programmers to arbitrarily compose the
abstractions in Chapel that introduce parallelism, there is no
limit to the degree of parallelism that an algorithm can ex-
press.

Section 6 presents an idiom for transactions, which can be



either local or remote. Using such transactions makes dis-
tributed, multi-threaded programming easier.

The Chapel codes listed in this paper are compatible with ver-
sion 1.1 of the compiler [4] as documented in version 0.795 of
the language specification [5]. The one exception is atomic
transactions, described in Section 6, which are not yet imple-
mented.

2 An Idiom for Data-Parallel Computations

With the right abstractions, data-parallel codes are as easy to
write as a b c. Consider a data-parallel computation over the
elements of the three arrays A, B, and C. Idiom 1 shows the
Chapel code for one such simple data-parallel computation
featuring a zippered forall loop:

Idiom 1. Data-parallel computing via zippered iteration

forall (a,b,c) in (A,B,C) do
a = b + alpha * c;

In a zippered forall loop over multiple iterators, the iterations
proceed simultaneously such that if the body of the loop sees
the ith element from one iterator, it sees the ith element from
every other iterator too.

This particular parallel loop iterates over the elements of ar-
rays A, B, and C element-wise such that the body of the loop
sees the respective elements a, b, and c. On each iteration,
the sum of b and the product of the scalar constant alpha
and c is written to a.

This particular computation can also be written more con-
cisely by applying assignment and operations to whole arrays:

A = B + alpha * C;

The implementation is comparable. Sidebar 1 illustrates the
compiler transformations to implement this whole-array com-
putation. If a loop’s body contains more elaborate computa-
tions, they may not be easily expressed in this shortened form,

so we use the explicit forall loop to illustrate the more general
idiom.

This particular idiom may look similar to parallel loops in
other languages, but it is more flexible and more powerful
than the similar-looking support available with today’s tech-
nologies due to its applicability to structures more varied than
C- or Fortran-style arrays. To wit, parallel iteration in Chapel
is supported over distributed arrays, associative arrays, sparse
arrays, unstructured arrays, index sets, and user-defined iter-
ators or data structures:

• Data parallelism over distributed arrays. This Chapel
code will work even if the arrays are distributed across
the locales of a large-scale, distributed-memory com-
puter. Unfortunately, the most popular methods for par-
allel programming today make this simple computation
more difficult to write than necessary. For example,
MPI provides no support for holistically computing on
distributed data structures, requiring the programmer to
manage the low-level details of partitioning and synchro-
nization. In Chapel, the algorithmic decisions related
to distribution are separated from the computation using
the abstractions described in Section 3.

• Data parallelism over arrays with different distribu-
tions. Parallel iteration over arrays with different distri-
butions is supported. For example, array A may be dis-
tributed with a block distribution, B with a cyclic distri-
bution, and C with a recursive bisection distribution. Of
course, the increased communication costs will result in
a less efficient loop than if the arrays all had the same
distribution, but this can be weighed against the cost of
redistribution when considering overall performance.

• Data parallelism over associative, sparse, or unstruc-
tured arrays. Associative, sparse, and unstructured ar-
rays in Chapel support many of the same operations as
the more standard arrays, including parallel iteration.
For example, array B could be sparse or all of the arrays
could be associative. There is a restriction that the arrays
have the same shape as defined by the rank of the array

Sidebar 1. A high-level view of the Chapel compiler transformation of a whole-array statement. This sidebar illustrates, in
Chapel, the steps that the compiler takes to lower whole-array statements to data-parallel loops. Steps 1 and 2 promote the product and
sum operators over arrays C and B, producing equivalent code to introducing forall expressions around these operators. Step 3 collapses
the nested forall loops to form a single forall expression. In the compiler, the collapse is a result of lowering the iterators that are created
by the compiler to implement forall expressions. Step 4 expands the whole-array assignment into a zippered forall statement. Step 5,
like step 3, collapses the nested forall loops, producing the code of Idiom 1.

Initial Code A = B + alpha * C;

1. Promotion of * A = B + (forall c in C do alpha * c);

2. Promotion of + A = (forall (b, f) in (B, (forall c in C do alpha * c)) do b + f);

3. Collapse of foralls A = (forall (b, c) in (B, C) do b + alpha * c);

4. Expansion of = forall (a, f) in (A, (forall (b, c) in (B, C) do b + alpha * c)) do a = f;

5. Collapse of foralls forall (a, b, c) in (A, B, C) do a = b + alpha * c;

2



and the extent in each dimension. Note that the shape of
associative arrays is incompatible with non-associative
arrays and, consequently, associative arrays cannot be
zippered with non-associative arrays.

• Data parallelism without data. Data parallelism does
not actually require any data. A domain in Chapel is a
first-class index set over which arrays are declared. Do-
mains support parallel iteration on their own. For large
iteration spaces, this allows programmers to use the sim-
plicity of data parallelism without necessarily allocat-
ing data proportional to the size of the iteration space.
Such loops are more akin to those supported in OpenMP
although, in Chapel, the index sets can be distributed
across multiple locales.

• Data parallelism over user-defined iterators. Chapel
supports user-defined parallel iterators that can be at-
tached to classes. Thus, for this computation, A, B, and
C could be trees or graphs where each node is a class in-
stance, allocated either locally or remotely, provided that
this data structure supports parallel iteration.

By providing support for data-parallel computations, Chapel
makes it easy to write this important category of codes. At the
same time, Chapel provides the abstractions a programmer
needs to write more complicated codes that are efficient.

3 An Idiom for Data Distribution

Chapel’s data distribution abstraction allows an array or do-
main to be distributed across the memories of multiple lo-
cales. The computation can remain the same regardless of
the specific distribution. This separation of concerns enables
a plug-and-compute functionality that allows the distribution
of an array to change from block to cyclic, for example, with-
out any other code rewrites.

The type of the distribution must be known at compilation
time. The compiler-generated code can change dramatically
when switching distributions since it is similar to low-level
code like Fortran and MPI.

Idiom 2 shows a declaration of a non-distributed domain D, a
non-distributed array A, a distributed domain BD defined with
the same index space as D, and a distributed array BA.

Idiom 2. Specifying data distributions

const D = [1..n, 1..n];
var A: [D] real;
const BD = D dmapped Block(boundingBox=D);
var BA: [BD] real;

The dmapped keyword creates distributed domains. This par-
ticular example uses the standard Block distribution defined
with a single argument called boundingBox. This argu-
ment is used to partition the space of all indices across the
system by evenly blocking the indices within the bounding

box and mapping indices outside of the bounding box to the
same locale to which the nearest index in the bounding box is
mapped.

Since array BA is defined over the Block-distributed domain,
it is a Block-distributed array. The declaration of the array
uses the same syntax that is used for non-distributed arrays.
As discussed in Section 2, computations over such arrays can
use the same idioms as non-distributed arrays.

Distributions in Chapel can be user-defined [3]. This distin-
guishes Chapel from languages like HPF and ZPL where dis-
tributions were built into the system.

One important design point related to Chapel’s standard dis-
tributions is that they are written entirely in Chapel. This
ensures that switching to user-defined distributions will not
necessarily result in a performance loss.

In addition to distributions, domains and arrays may be de-
clared over layouts. A layout is like a distribution except the
indices in a domain and the elements in an array are not par-
titioned across the locales of a system, but rather reside on a
single locale. The keyword dmapped applies to both distribu-
tions and layouts, collectively called domain maps. When the
dmapped keyword is omitted, the domain is declared over an
implicit layout called the default layout.

The plug-and-compute nature of distributions supports writ-
ing code that is easier to read, maintain, and change because
the partitioning is associated with the declarations instead of
the computation.

4 An Idiom for Asynchronous Remote Tasks

Popular tools for parallel programming do not provide good
support for creating asynchronous remote tasks. Chapel pro-
vides better support by distinguishing between tasks, an ab-
straction of computation, and locales, an abstraction of a
node.

The begin statement is given by the following syntax:

begin statement

This compound statement creates a separate task to execute
statement. The parent task continues executing immediately
with the next statement. For example, the code

begin writeln("hello, world");
writeln("goodbye");

results in parallel execution of the two calls to writeln. The
output of this program will either be

hello, world
goodbye

or

goodbye
hello, world

3



Since writeln is atomic, the letters will never become inter-
leaved.

The on statement is given by the following syntax:

on expression do statement

The execution of statement is transferred to the locale that
stores expression. Once statement completes, control resumes
on the original locale with the next statement. For example,
the code

on A[i] do
A[i] = 1;

A[j] = 2;

results in serial execution where the ith element of array A is
assigned the value 1 on the locale that stores A[i], and then

the jth element is assigned the value 2 on the locale that the
original task was executing.

The following idiom shows how the orthogonal natures of on
and begin allow them to be naturally composed to invoke re-
mote, asynchronous tasks:

Idiom 3. Composing ’on’ with ’begin’
on loc do begin f();

In this code, the call of function f is executed on the locale
given by loc, and control continues immediately on the orig-
inal locale with the next statement.

It is possible to write a Chapel program that creates a single
task to run on every locale at program starup (or at any other
time). Such a task group can then be written in the SPMD

Sidebar 2. An implementation of the classic MPI ring example by fragmenting main in Chapel to subsume the MPI local-view
programming model. In the ring example, the processors are arranged in a clock-wise ring. The last processor reads an integer value
from standard input and sends this value to the next processor, namely, processor zero. Then each processor receives this value from
the previous processor and sends it to the next processor. The token thus makes its way around the ring starting with processor zero.

The code in main uses a for loop coupled with a begin statement to create one task per locale and an on statement to run each task on
its own locale. On each locale, the function SPMDMain is called. This function is similar to the main function in MPI codes because
each task calls into this function.

The rest of the code is quite similar to an MPI program. First, compute the rank and size of the process (based on the locale ID in
Chapel). Then if this is the last process, read an integer from standard input and send it to process zero. Then all processes receive
and send the token as it comes around. The omitted functions CHPL_Send and CHPL_Recv, simplifications of MPI_Send and
MPI_Recv, take two arguments: the data to send or receive and the locale to which or from which it is sent or received. These
functions can be implemented using on statements and synchronization variables.

def main() {
for loc in Locales do on loc do begin
SPMDMain();

}

def SPMDMain() {
var rank = here.id;
var size = numLocales;

if rank == size-1 {
var token = read(int);
CHPL_Send(token, 0);

}

var token: int;
CHPL_Recv(token, (rank-1+size)%size);
writeln("Locale ", rank, " has token ", token);
CHPL_Send(token, (rank+1)%size);

}

When using Chapel’s programming model with more regard to its global view of computation, this code can be greatly simplified. If the
purpose of the ring code is to serialize control around the ring, then the preferred way of writing this computation in Chapel involves the
serial for loop and the on statement to serialize control around the ring of locales. The following high-level Chapel code is equivalent
to the above computation:

def main() {
var token = read(int);
for loc in Locales do on loc do
writeln("Locale ", here.id, " has token ", token);

}

4



style that is typical of MPI. Sidebar 2 illustrates how such a
program can be written in Chapel.

Chapel provides simple support for asynchronous, remote
tasks that allow a programmer to write task-parallel computa-
tions for codes that do not admit efficient data-parallel solu-
tions.

5 An Idiom for Nested Parallelism

The task- and data-parallel abstractions discussed above can
be arbitrarily composed in Chapel. A common way to want
to nest parallelism is to create two or more data-parallel state-
ments that can run in parallel. The cobegin statement makes
this straightforward in Chapel.

The cobegin statement is given by the following syntax:

cobegin { statement-list }

This statement creates a concurrent task for each statement in
statement-list. Unlike begin, the cobegin statement results in
code with more structure. Control waits to continue past the
cobegin statement until each child concurrent task completes.

Idiom 4 uses cobegin to build on Idiom 1 to create two tasks
that execute data-parallel statements:

Idiom 4. Invoking two data-parallel tasks

cobegin {
forall (a,b,c) in (A,B,C) do
a = b + alpha * c;

forall (d,e,f) in (D,E,F) do
d = e + beta * f;

}

The two data-parallel statements can be executed concur-
rently. This holds even if the arrays are distributed across
a system’s locales.

Task parallelism can be nested inside data parallelism as well.
Consider the following Chapel code:

forall a in A {
if a == 0 then
begin a = f(a);

else
a = g(a);

}

Assume calls to function f take a very long time whereas calls
to g are quick. In the above code, a new task is created when
computing f. This allows the data-parallel task created by the
forall loop to continue with the next iteration it owns without
waiting for the result of f.

Data parallelism is a simple way to structure a program when
it is applicable, but sometimes task parallelism is needed
to achieve high performance, capture the natural parallelism
of an algorithm, or take advantage of compute resources,
e.g., multicore chips and GPUs. By allowing data parallelism
to be used within the context of a task parallel computation,

and vice versa, Chapel supports the simplicity of data-parallel
programming within the context of a general parallel pro-
gramming system.

6 An Idiom for Remote Transactions

Chapel will eventually provide support for transactions via its
atomic statement. Unlike the other idioms discussed in this
paper, this work is not yet implemented, though an active col-
laboration is underway. Chapel support for atomic statements
has been discussed in the literature[1, 6].

The atomic statement is given by the following syntax:
atomic statement

This statement creates an atomic transaction from statement.
It is executed with transactional semantics such that:

• The statement appears to execute entirely or not at all.

• The statement appears to have completed in a consistent
order with respect to other atomic statements.

• No variable assignment is visible to any other atomic
statement until the statement has completely executed.

Note that this definition of an atomic statement is some-
times called weak atomicity because the semantics are atomic
only with respect to the atomic statements. Strong atomic-
ity, on the other hand, is defined so that an atomic statement
is atomic with respect to the rest of the program. Whether
Chapel will support weak or strong atomicity is still to be de-
termined.

As an example, atomic statements can be used to implement
critical sections that would otherwise require locks. Chapel
also provides synchronization variables, which support locks.
Synchronization variables are variables that have state asso-
ciated with their implementation alongside their value. This
extra state is binary and we adopt the tradition of calling the
two states full and empty. When a synchronization variable is
written, the state becomes full. When a synchronization vari-
able is read, the state becomes empty. If the state is full, a
write to the synchronization variable will block. If the state is
empty, a read from the synchronization variable will block.

Given a synchronization variable si$ of type int, declared
as follows:

var si$: sync int;

A critical section can be implemented with the following
code:

si$ = true;
critical();
si$;

If multiple tasks execute the above code, only one will make
a call to function critical at a time because the other tasks
will block when writing to si$.

5



This critical section can be implemented with an atomic state-
ment as follows:

atomic critical();

A major advantage to this implementation is that atomic state-
ments are composable whereas locks are not. If there is an-
other atomic statement in the function critical, there is no
problem. On the other hand, for the synchronization variable
implementation, if there is another write to si$ within the
function critical, the program will deadlock waiting for a
read of si$.

One disadvantage to atomic statements is that the code that
can be put into an atomic statement cannot be any arbitrary
code. For example, it is unlikely that system calls can be
made in atomic statements.

Following the pattern of Idiom 3, atomic transactions can be
executed on remote locales. Idiom 5 shows how easy remote
transactions are to write:

Idiom 5. Demarcating a remote transaction
on A[i] do atomic A[i] ˆ= i;

The atomic statement in the above code is executed on the lo-
cale associated with array element A[i]. Although the write
to the array element in this transaction is local to the task
executing the atomic transaction, the read of i may be re-
mote, which would make this transaction remote. Chapel is
expected to support remote reads and writes in atomic state-
ments, making it more powerful than other systems.

7 Conclusion

This paper examined five Chapel idioms, providing a glimpse
of the Chapel features that support productive parallel pro-
gramming. The first and second idioms, for data-parallel
computing and data distributions, allow Chapel programmers
to write high-level codes easily. Such codes have the poten-
tial to achieve high performance with minimal programming
effort, and we are starting to see promising results [2].

The third idiom, for asynchronous, remote tasks, enables
more irregular or complicated parallel control flow in an HPC
code. By decoupling the notion of tasks from the notion of
locales, Chapel supports a programming model with a richer
feature set than today’s technologies.

The fourth idiom, for nested parallelism, shows how the first
three idioms can be used in a single program. In addition

to improving the expressiveness of the language and allow-
ing more levels of parallelism in the hardware to be targeted,
this idiom is useful for writing a large program where most
of the computation can be written using simple, data-parallel
abstractions, but part of the computation requires more elab-
orate parallelism.

The fifth and final idiom, for local and remote transactions,
has the potential to make task-parallel programming substan-
tially easier. Programs that make use of atomic statements
are significantly easier to read and maintain than programs
that use locks or other means of synchronization.

Acknowledgments

We would like to thank everybody who has worked on the
development of Chapel in the past and all of the early users
of Chapel for their patience and insights.

References

[1] Robert L. Bocchino, Vikram S. Adve, and Bradford L.
Chamberlain. Software transactional memory for large
scale clusters. In Proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Program-
ming, 2008.

[2] Bradford L. Chamberlain, Sung-Eun Choi, Steven J.
Deitz, and David Iten. HPC Challenge benchmarks in
Chapel. (available at http://chapel.cray.com), November
2009.

[3] Bradford L. Chamberlain, Steven J. Deitz, David Iten,
and Sung-Eun Choi. User-defined distributions and lay-
outs in Chapel: Philosophy and framework. In USENIX
Workshop on Hot Topics in Parallelism, 2010.

[4] Cray Inc., Seattle, WA. Chapel compiler chpl. (Available
at http://chapel.cray.com/).

[5] Cray Inc., Seattle, WA. Chapel language specification.
(Available at http://chapel.cray.com/).

[6] Srinivas Sridharan, Jeffrey Vetter, and Peter Kogge. Scal-
able software transactional memory for global address
space architectures. Technical report, ORNL FT Tech-
nical Report Series, 2009.

6


