
Steve Deitz, Brad Chamberlain, Sung-Eun Choi,
David Iten, Lee Prokowich

Cray Inc.

 A new parallel programming language
 Under development at Cray Inc.

 Supported through the DARPA HPCS program

 Availability
 Version 1.1 release April 15, 2010

 Open source via BSD license

http://chapel.cray.com/

http://sourceforge.net/projects/chapel/

2CUG '10: Five Powerful Chapel Idioms

http://chapel.cray.com/
http://sourceforge.net/projects/chapel/

 Improve programmability over current languages

 Writing parallel codes

 Reading, changing, porting, tuning, maintaining, ...

 Support performance at least as good as MPI

 Competitive with MPI on generic clusters

 Better than MPI on more capable architectures

 Improve portability over current languages

 As ubiquitous as MPI

 More portable than OpenMP, UPC, CAF, ...

 Improve robustness via improved semantics

 Eliminate common error cases

 Provide better abstractions to help avoid other errors

CUG '10: Five Powerful Chapel Idioms 3

 What is Chapel

 The Five Idioms

 Data distributions

 Data-parallel loops

 [Asynchronous] [remote] tasks

 Nested parallelism

 [Remote] transactions

 Performance Study

4CUG '10: Five Powerful Chapel Idioms

 Syntax

domain-expr dmapped distribution-expr

 Semantics
 Index set of domain-expr is partitioned via distribution-expr

 Partitioned across ‘locales’ of a system

 Locale – abstraction of memory and processing capability

CUG '10: Five Powerful Chapel Idioms 5

const D = [1..n, 1..n]; // domain – index set

var A: [D] real; // array – data values

const DD = D dmapped X(...); // distributed domain

var DA: [DD] real; // distributed array

 Standard Block distribution

CUG '10: Five Powerful Chapel Idioms 6

const D = [1..n, 1..m];

var A: [D] real;

const DD = D dmapped Block(boundingBox=D);

var DA: [DD] real;

D A

Locales

0 1

2 3

DD DA

 Standard Cyclic distribution

CUG '10: Five Powerful Chapel Idioms 7

const D = [1..n, 1..m];

var A: [D] real;

const DD = D dmapped Cyclic(startIdx=D.low);

var DA: [DD] real;

D A

Locales

0 1

2 3

DD DA

 User-defined MyBanded distribution

CUG '10: Five Powerful Chapel Idioms 8

const D = [1..n, 1..m];

var A: [D] real;

const DD = D dmapped MyBanded(startIdx=D.low);

var DA: [DD] real;

D A

Locales

0 1 2 3

DD DA

 Syntax

forall (index-exprs) in (iterable-exprs) do

loop-body-stmts

 Semantics

 Zipped (element-wise) iteration

 Shapes of iterable expressions must match

CUG '10: Five Powerful Chapel Idioms 9

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

 Example 1: Non-distributed arrays

CUG '10: Five Powerful Chapel Idioms 10

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

=

+

α •

A

B

C

 Example 2: Block-distributed arrays

CUG '10: Five Powerful Chapel Idioms 11

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

=

+

α •

A

B

C

Locales 0 1 2 3

 Example 3: Unaligned block-distributed arrays

CUG '10: Five Powerful Chapel Idioms 12

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

=

+

α •

A

B

C

0 1 2 3Locales

 Example 4: 2D Block-distributed arrays

CUG '10: Five Powerful Chapel Idioms 13

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

= + α •

A B C

0 1

2 3

Locales

 Other possibilities

 Associative, sparse, and unstructured arrays

 Domains and iterators with no associated data

 A distributed tree or graph that supports iteration

 Preferred way of writing simple computations:

A = B + alpha * C;

CUG '10: Five Powerful Chapel Idioms 14

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

Initial Code:

A = B + alpha * C;

1. Promotion of scalar multiplication:

A = B + [c in C] alpha*c;

2. Promotion of scalar addition:

A = [(b,f) in (B,[c in C] alpha*c)] b+f;

3. Collapse of foralls:

A = [(b,c) in (B,C)] b+alpha*c;

4. Expansion of assignment:

forall (a,f) in (A,[(b,c) in (B,C)] b+alpha*c) do

a=f;

5. Collapse of foralls:

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

CUG '10: Five Powerful Chapel Idioms 15

 Syntax

on expr do stmt

begin stmt

 Semantics
 On-statement evaluates locale of expr

Then executes stmt on that locale

 Begin-statement creates a new task to execute stmt

Original task continues with the next statement

CUG '10: Five Powerful Chapel Idioms 16

on loc do begin f();

 Picture

CUG '10: Five Powerful Chapel Idioms 17

on loc do begin f();

0 1

 Locales
 Abstraction of memory and processing capability

 Architecture-dependent definition optimizes local accesses

 Tasks
 Abstraction of computation or thread

 Execution is on a locale

 Programming model support

CUG '10: Five Powerful Chapel Idioms 18

Chapel OpenMP MPI UPC CAF Titanium

Locales Processes Threads Images Demesnes

Tasks Threads

 Task parallelism of data parallelism

 Data parallelism of task parallelism

CUG '10: Five Powerful Chapel Idioms 19

begin

forall (a, b, c) in (A, B, C) do

a = b + alpha * c;

forall (d, e, f) in (D, E, F) do

d = e + beta * f;

forall i in D do

if i >= 0 then

A(i) = f(i);

else

on A(i) do begin A(i) = g(i);

 Syntax

atomic stmt

 Semantics

 Executes stmt with transaction semantics so that

stmt appears to take effect atomically

Note: atomic statements are not implemented

CUG '10: Five Powerful Chapel Idioms 20

on A(i) do atomic A(i) = A(i) ^ i;

 What is Chapel

 The Five Idioms

 Performance Study

 HPCC Global Stream

 HPCC EP Stream

21CUG '10: Five Powerful Chapel Idioms

const BlockDist = new dmap(new Block([1..m]));

const ProblemSpace:

domain(1,int(64)) dmapped BlockDist = [1..m];

var A, B, C: [ProblemSpace] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

CUG '10: Five Powerful Chapel Idioms 22

coforall loc in Locales do on loc {

local {

var A, B, C: [1..m] real;

forall (a,b,c) in (A,B,C) do

a = b + alpha * c;

}

}

CUG '10: Five Powerful Chapel Idioms 23

Machine Characteristics

Model Cray XT4

Location ORNL

Nodes 7832

Processor 2.1 GHz Quadcore AMD Opteron

Memory 8 GB per node

CUG '10: Five Powerful Chapel Idioms 24

Benchmark Parameters

STREAM Triad Memory Least value greater than 25% of memory

Random Access Memory Least power of two greater than 25% of memory

Random Access Updates 2n-10 for memory equal to 2n

CUG '10: Five Powerful Chapel Idioms 25

0

2000

4000

6000

8000

10000

12000

14000

1 2048

G
B

/s

Number of Locales

Performance of HPCC STREAM Triad (Cray XT4)

MPI EP PPN=1

MPI EP PPN=2

MPI EP PPN=3

MPI EP PPN=4

Chapel Global TPL=1

Chapel Global TPL=2

Chapel Global TPL=3

Chapel Global TPL=4

Chapel EP TPL=4

Chapel URL: http://chapel.cray.com/

Chapel Source: http://sourceforge.net/projects/chapel

Contact: chapel_info@cray.com

CUG '10: Five Powerful Chapel Idioms 26

http://chapel.cray.com/
http://sourceforge.net/projects/chapel
mailto:chapel_info@cray.com

