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Chapel is an emerging parallel language designed for productive parallel computing at
scale. Chapel originated as part of Cray Inc.Õs participation in the DARPA High Productiv-
ity Computing Systems (HPCS) program, which ran from 2002Ð2012. At present, Chapel
development is focused on transforming the research prototype produced under HPCS into
a production-grade implementation. Cray leads the effort of designing and developing
Chapel, in collaboration with members of the research and open-source communities.

Chapel supports a multithreaded execution model, permitting the expression of far more
general and dynamic styles of computation than the typical single-threaded Single Pro-
gram, Multiple Data (SPMD) programming models that became dominant in the 1990Õs.
Chapel is designed such that higher-level abstractions, such as those supporting data par-
allelism, can be built in terms of lower-level concepts in the language, permitting the user
to select between various levels of abstraction or control as necessitated by their algorithm
or its performance requirements.

This chapter provides a brief introduction to Chapel, starting with a condensed history
of the project (Section 6.1). It then describes ChapelÕs motivating themes (Section 6.2),
followed by a survey of its main features (Section 6.3), and a summary of the projectÕs
status and future work (Chapter 6.4).

6.1 A Brief History of Chapel

6.1.1 Inception

DARPAÕs HPCS program was launched in 2002 with Þve teams, each led by a hardware
vendor: Cray Inc., Hewlett-Packard, IBM, SGI, and Sun. The program challenged the
teams to develop technologies that would improve the productivity of HPC users in terms of
performance, portability, programmability, and robustness. The vendors were encouraged
to reconsider all aspects of their system stack with the goal of delivering technologies that
would be revolutionary and distinct from their established roadmap. Along with changes
to their processor, memory, and network architectures, the vendor teams also proposed new
and enhanced software technologies, including novel programming languages.

In 2003, the HPCS program transitioned to phase II, and a programmatic downselect
occurred, enabling the Cray, IBM, and Sun teams to pursue their proposed research plans.
At the outset of this phase, the initial designs of the new programming languages began to
emerge, with the Cray team pursuing the Chapel language, IBM starting work on X10 [76,
246], and Sun (later acquired by Oracle) developing Fortress [10].

CrayÕs HPCS project was namedCascadeafter the prominent mountain range just east
of its corporate headquarters in Seattle. The project was led by Burton Smith, Chief Sci-
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entist of Cray at the time. Though he believed that existing HPC programming models
were a productivity limiter for high-end systems, Burton was initially hesitant to pursue a
new programming language under HPCS, due to skepticism about whether languages de-
signed by lone hardware vendors could be successful. He soon reconsidered this position,
however, after an enumeration of well-established programming languages in both HPC
and mainstream computing revealed that most of them had originally been developed by a
single hardware vendor. In most cases, the key to a language’s long-term success involved
a transition to a broader, more community-oriented model at an appropriate point in its life
cycle. In January–February 2003, the Cascade team announced its intention to pursue a
new language at various HPCS reviews and meetings. Work on Chapel began in earnest
that year under the leadership of David Callahan.

The Chapel language took its name as an approximate acronym for Cascade High Pro-
ductivity Language, coined by Callahan. The team generally felt lukewarm-to-negative
about the name, in large part due to its possible religious implications. However, nobody
came up with a preferable alternative quickly enough, and the name stuck. When asked
about it, team members would occasionally quip, “We’ll wait until we’ve gotten the lan-
guage to a point that we’re thoroughly happy with it and then switch to a truly great name.”

6.1.2 Initial Directions

Chapel’s initial design was shaped primarily by four people who set the language on the
path that it continues to follow today: David Callahan, its chief architect from Cray Inc.;
Hans Zima, an academic partner within the Cascade program representing CalTech/JPL;
Brad Chamberlain, a recent graduate from the ZPL project at the University of Washington;
and John Plevyak, an independent contractor who joined the Chapel project in late 2003,
bringing with him a strong background in iterative flow analysis and type inference [233].

To a great extent, Chapel’s feature set reflects a combination of the backgrounds of these
four initial architects: David Callahan established the overall vision for the language and,
from his extensive experience with the Tera MTA (Multi-Threaded Architecture), brought
the notion of a general, multithreaded execution model with lightweight, data-centric syn-
chronization [11]. Hans Zima was a founding contributor to the High Performance For-
tran (HPF) language in the 1990s, and brought with him the lessons learned from that
high-profile endeavor [161]. Brad Chamberlain’s dissertation focused on the benefits of
supporting first-class index set concepts in parallel languages [65], so he contributed an
alternative model for data parallelism with the goal of improving upon the array abstrac-
tions supported by HPF and ZPL. And finally, John Plevyak’s experience filled an exper-
tise gap in the group that Callahan correctly believed would be crucial for the language’s
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successÑsupporting static type inference with the goal of making parallel programming
more productive, particularly as a means of supporting generic functions and classes.

With this combined background, the initial team set off to deÞne Chapel. Much of the
early brainstorming was guided by explorations of parallel computations that had posed
challenges for previous parallel languages. Examples included Þnite element methods,
fast multipole methods, connected components algorithms,n-body simulations, and the
like. Draft codes and documents to explain them were circulated, punctuated by marathon
design summits where the virtues and ßaws of various options were debated, often pas-
sionately and at length. In the fall of 2004, David Callahan took on the task of writing
an initial draft of the language speciÞcation, which served as a straw man for subsequent
debate, reÞnement, and implementation. With that, the Chapel project was off and running.

6.1.3 Phases of Development under HPCS

The Chapel projectÕs history during the course of HPCS can be thought of as falling into
three distinct periods: For the Þrst period, from 2003 to early 2006, the project was in
a molten state, with team members splashing around and trying to construct a common
vision of the language that they could all agree upon and conceivably implement. This
period saw the Þrst publication describing Chapel [57], as well as the formation of the
initial development team who would get Chapel up and running.

The second period, from 2006Ð2008, marks the timeframe in which both ChapelÕs de-
sign and the compiler architecture began stabilizing [66], permitting a number of mile-
stones to be achieved at regular intervals: In April 2006, task-parallel Chapel codes were
run for the Þrst time. In December 2006, the Þrst release was made available to external
users and evaluation teams on a by-request basis. July 2007 saw the execution of the Þrst
distributed-memory task-parallel programs. In June 2008, the Þrst data-parallel constructs
started working, and by September 2008, the Þrst distributed-memory data-parallel codes
were executing. During this period the core Chapel development team at Cray kept their
heads tucked down, to move the implementation along as far and fast as possible.

The third period, from 2008Ð2012, constitutes the time when the Chapel team began to
increasingly look outward in an attempt to attract users to Chapel and get feedback on its
design and implementation. During these years, Chapel moved to a SourceForge-based
open-source control repository, switched to a public release mechanism, started support-
ing early users, and established a number of collaborations with academics, lab staff, and
members of industry outside of Cray. The Chapel team also stepped up its level of outreach
during this period, particularly in terms of giving tutorials on Chapel in forums like the an-
nual SC conference series and PRACE community events. All the while, improvements
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were made to the implementation to flesh out missing features and boost performance in
order to make progress and retain the interest of early users.

6.1.4 Life After HPCS

At the time of publication, the Chapel project remains an active and ongoing effort. By
the end of the HPCS program in late 2012, Chapel had successfully achieved its program-
matic requirements and, more importantly, had sparked substantial interest among HPC
users. As a result, the Cray team embarked on a five-year effort to improve Chapel from
the research prototype that was developed under HPCS to a production-grade implementa-
tion [69]. The goals of this effort are: to improve Chapel’s performance and scalability; to
address immature aspects of the language; to port Chapel to emerging node architectures
involving deeper memory hierarchies and heterogeneous processors; to improve its inter-
operability features; to nurture the Chapel user and developer communities; and to explore
the transition of Chapel’s governance to a neutral body external to Cray.

With this overview of Chapel’s history in mind, we now move on to describe some of
the motivating themes and concerns that helped shape Chapel’s design.

6.2 Chapel’s Motivating Themes

To understand Chapel’s features, it can be helpful to understand the themes that influenced
what would or would not be included in the language. In this section, we provide an
overview of these themes to establish a framework for the language features described in
Section 6.3.

6.2.1 Express General Parallelism

One of the first and most important themes in Chapel is the concept of supporting general
parallel programming. In particular, Chapel’s goal is to be a language in which users
will never hit a point where they conclude “Well, that was fun while I was trying to do
x and y; but now that I want to do z, I’ll have to go back to using MPI,” (or whatever
technology they had been using). This approach is in strong contrast to the host of parallel
languages from the 1990s that focused on a specific type of parallelism, to the exclusion
of other styles—e.g., HPF and ZPL’s overriding focus on data-parallelism to the detriment
of task-parallelism and nested parallelism. Chapel’s founders believed that while focusing
on a single style of parallelism was a prudent approach for an academic project, for a new
language to truly be adopted within a field as diverse as HPC, it had to support a wide
variety of computational styles.
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To this end, Chapel was designed with features to support data parallelism, coopera-
tive task parallelism, and synchronization-based concurrent programming. In addition,
these styles were designed so that they could be composed arbitrarily to support nested
parallelism.

In addition to permitting diverse styles of parallelism, Chapel was also designed to sup-
port general granularities of parallelism, both in the userÕs program and the target hardware.
In practice, algorithms tend to contain parallelism at multiple levels: computational mod-
els, function calls, loop iterations, and even individual statements or expressions. Mean-
while, modern hardware typically supports parallelism across multiple machines or cabi-
nets, network nodes, and processor cores, as well as vector operations that support paral-
lelism in the instruction set. Most conventional parallel programming models target only
a subset of these software and hardware granularities, and often just one. As a result, pro-
grammers must use hybrid programming models that mix multiple concepts and notations
in order to take full advantage of all available parallelism in their algorithm and hard-
ware. For example, a parallel program wanting to take full advantage of a petascale system
today might use MPI to express executable-level parallelism across the nodes, OpenMP
(Chapter 12) to express loop or task parallelism across the processor cores, and CUDA
(Chapter 15), OpenCL (Chapter 16), or OpenACC [1] to ofßoad parallel kernels to an ac-
celerator. In contrast, Chapel strives to support the expression of all parallelism in a userÕs
program while targeting all available hardware parallelism with a single, uniÞed set of
language concepts.

6.2.2 Support a Multithreaded Execution Model

At the time of ChapelÕs inception, like today, most of the deployed distributed-memory
programming languages and notations exposed programming and execution models based
on single-threaded cooperating executables, with SPMD models as a particularly common
case. The Chapel team attributes much of the lack of productivity and generality within
HPC programming to this restriction since it forces users to take a process-centric view of
their computation rather than describing and orchestrating the parallelism as a whole.

Chapel chose instead to adopt a multithreaded execution model in which each process
will typically be composed of multiple threads. Users express parallelism within their pro-
grams in terms oftasksthat represent units of computation that can, and should, execute in
parallel. These tasks are then executed by the threads, potentially creating additional tasks,
either within the same process or a remote one. The result is a programming and execution
model that is far more dynamic and general than traditional single-threaded SPMD models.
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6.2.3 Enable Global-View Programming

Another way in which Chapel diverges from most adopted HPC notations is by supporting
what its designers refer to as aglobal viewof data structures and control ßow. The concept
is to move away from requiring computations on distributed data structures, like arrays, to
be expressed in terms of the subarrays owned by each process, as is typical in conventional
approaches like MPI or Fortran 2008Õsco-arrays. Instead, the programmer can declare and
compute on distributed data structures as they would for a completely local version. Such
variables are referred to asglobal-view data structuressince they can be declared using a
global problem size and accessed using global indices rather than via per-processor extents
and local indices. Since large-scale programs are almost always data-intensive, Chapel also
supports a wide variety of global-view array types, including multidimensional rectangular
arrays, sparse arrays, associative arrays, and unstructured arrays.

ChapelÕsglobal view of controlrefers to the fact that a Chapel program begins executing
using a single task and then introduces parallelism through the use of additional language
constructs. This is in contrast to SPMD programming models in which users write their
program with the assumption that multiple copies ofmain() will execute simultaneously.

It is important to note that while previous languages, like HPF and ZPL, also supported
global-view concepts, they did not provide a rich means of escaping these abstractions in
order to exert more control over execution details. Recognizing that high-level abstraction
is not ideal for every scenario, Chapel was designed such that users could selectively avoid
using global-view abstractions and drop down to more explicit local-view constructs. As
a speciÞc example, Chapel programmers can choose to write traditional single-threaded
SPMD programs using manually-distributed data structures, and even message passing, if
they so choose. In summary, providing a global view of computation for programmability
should not preclude the expression of more explicit parallelism, since having a greater
degree of control can also play a crucial role in productivity.

6.2.4 Build on a Multiresolution Design

The previous sectionÕs notion of programming at higher levels of abstraction or greater
degrees of control as needed is part of what Chapel refers to as itsmultiresolution design
philosophy. The idea is to have the language support higher- and lower-level features,
permitting the user to beneÞt from abstractions like global-view arrays when appropri-
ate, while still being able to do more explicit low-level programming when desired or
necessary. Moreover, Chapel was designed such that its higher-level abstractions are im-
plemented in terms of the lower-level ones. This ensures that they are all compatible,
permitting users to mix and match between different levels arbitrarily.
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As a speciÞc example, ChapelÕs data-parallel loops and global-view arrays are higher-
level features that are implemented in terms of its lower-level features like task-parallelism
and explicit control over locality. Another example of a multiresolution feature is ChapelÕs
support forhierarchical locale models, which permit advanced users to specify how Chapel
is mapped to a target architecture by creating classes representing the processors and mem-
ories of a systemÕs compute nodes. The user implements tasking and memory interfaces
for these classes which are targeted by the compiler.

6.2.5 Enable Control over Locality

Because Chapel was designed to execute on large-scale systems where locality and afÞnity
are crucial for performance, locality is considered a core concept in Chapel along with
parallelism. ChapelÕs locality features provide control over where data values are stored
and where tasks execute so that users can ensure parallel computations execute near the
variables they access, or vice-versa.

Chapel supports a Partitioned Global Address Space (PGAS) memory model [288] in
which a userÕs code can refer to any lexically visible variable regardless of whether it is
stored in a local or remote memory. If the variable is remote, the compiler and runtime
are responsible for implementing the communication that is required to load or store the
variable over the network. Users can reason about the location of a variable statically using
Chapel semantics, or dynamically using a variety of execution-time queries.

Chapel supports expression of locality using distinct language concepts from those used
to introduce parallelism. This contrasts sharply with SPMD programming models in which
each copy of the executable serves as both the unit of parallelism and of locality for the
program. By separating these concerns into two distinct feature sets, Chapel permits pro-
grammers to introduce additional parallelism within a single process, or to execute code on
a distinct compute node without introducing parallelism. This orthogonal design results in
a clean, natural separation between parallelism (Òwhat should run simultaneously?Ó) and
locality (Òwhere should it run?Ó).

6.2.6 Support Data-Centric Synchronization

Another motivating theme in Chapel is the expression of synchronization in a data-centric
manner. This has two primary beneÞts. The Þrst is that by associating synchronization
constructs with variables, the locality of the abstraction is well-deÞned since each variable
has a speciÞc location on the target machine. The second is that since most synchronization
is designed to guard access to data structures or values, combining the synchronization
constructs with the variables being accessed typically results in a more elegant expression
of the algorithm.
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6.2.7 Establish Roles for Users vs. the Compiler

Chapel has been designed so that the responsibility of identifying parallelism and managing
locality rests on the user rather than the compiler. Although Chapel is often characterized
(correctly) as being a large and feature-rich language, it was intentionally designed to avoid
reliance on heroic compilation or promises that the compiler would automatically manage
everything for the user. To this end, Chapel was designed to avoid relying on the compiler
to introduce parallelism and manage locality. While nothing in the language precludes an
aggressive compiler from performing such transformations automatically, such technology
is not expected of a Chapel compiler (and conversely, identifying parallelism and locality
is expected from users).

Owing to its PGAS nature, one of the main roles of the compiler (and runtime libraries)
is to implement the global namespace in a manner that transparently and efÞciently trans-
fers data values between their stored location and the tasks that reference them. This com-
munication management forms the Chapel compilerÕs biggest role, along with traditional
compiler concerns of scalar code generation and optimization.

ChapelÕs multiresolution design also serves to distinguish between different user roles.
For example, a parallel programming expert can work at lower levels of the language,
implementing parallel loop schedules and distributed data structures that can then be used
by an applied scientist who does not need to be exposed to all of the implementation details.
ChapelÕs user-deÞneddomain mapsare a key example of this philosophy.

6.2.8 Close the Gap Between Mainstream and HPC Languages

When polling students about which programming languages they are most familiar and
productive with, responses typically focus on modern languages like Python, Java, and
Matlab, along with experience with C and C++ from those who have worked in more
systems-oriented areas. Meanwhile, the HPC community uses Fortran, C, and C++ almost
exclusively along with technologies like MPI and OpenMP with which most students have
no experience. Part of ChapelÕs goal for improving productivity is to narrow this gap in
order to make better use of the graduating workforce while also leveraging productivity
advances enjoyed by mainstream programmers.

To this end, the Chapel design team selected features and themes in productive main-
stream languages and sought ways of incorporating them into a language suitable for HPC
programming. In doing so, the goal was to support features that would neither undermine
the goal of scalable performance nor alienate traditional HPC programmers.

ChapelÕs type inference capability is an example of a mainstream language feature that
was customized to support good performance. Chapel chose to support type inference in
order to give users the ability to quickly prototype code and beneÞt from polymorphism
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in a manner similar to scripting languages like Python and Matlab. However, unlike most
scripting languages, ChapelÕs type inference is implemented in the compiler, resulting in
a Þxed static type for each variable in order to avoid the overheads of dynamic typing
at execution time. The use of type inference is completely optional in Chapel so that
programmers who prefer using explicitly-typed languages (e.g., for clarity or robustness in
library interfaces) can still program in a more traditional style.

ChapelÕs object-oriented programming (OOP) capabilities are an example of a main-
stream feature that was included in a manner that would keep it palatable to more tra-
ditional HPC programmers. In ChapelÕs early years, the design team spoke with HPC
programmers who would offer opinions like ÒIÕm simply not accustomed to using object-
oriented features. If I had to rewrite my code in an object-oriented style it would create a
lot of work for me because itÕs not how IÕve been trained to think.Ó To this end, Chapel sup-
ports object-oriented features for all of the productivity and modularity beneÞts that they
provide, yet intentionally avoids basing the language on a pure object-oriented paradigm
(as with Smalltalk or Java) so that C and Fortran programmers can opt to ignore the OOP
features and write more traditional block-structured imperative code.

6.2.9 Start From Scratch (but Strive for Familiarity)

The decision ChapelÕs designers made that has probably been called into question most
often was the choice to design Chapel from a blank slate rather than as an extension to
an existing language. There are many reasons why Chapel took this approach; perhaps
the simplest is that all adopted languages carry with them a certain amount of baggage
which reßects their original goals of supporting something other than general, large-scale
parallel computing. As a result, most extension-based parallel languages tend to be a
subset of a superset of a sequential language, making them incompatible with preexisting
source code. Moreover, such languages still require a signiÞcant learning curve from users
who must not only learn the new features that have been added, but also remember which
ones have changed. The Chapel teamÕs attitude is that the intellectual effort involved in
learning a new parallel language stems primarily from learning the semantics of its parallel
constructs, not their syntax. Thus, starting from scratch and designing features that express
those new semantics as clearly as possible can have great value when compared to trying
to force them into a language that was not originally designed with parallelism in mind.

That said, Chapel has also tried to avoid inventing concepts simply for the sake of it.
In designing Chapel, the team studied successful (and unsuccessful) languages in order
to learn from them, selecting features that would work well together. ChapelÕs primary
inßuences include C, Modula, Fortran, C++, Java, C#, CLU [180], Scala [219], ML [134],
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Perl, Matlab, ZPL [70, 255], HPF [161], and the Cray MTATM/XMTTMextensions to C and
Fortran [241].

ChapelÕs developers believe that in order to preserve the communityÕs investment in
legacy applications and libraries, it is more important to interoperate with existing lan-
guages than to extend them. To that end, Chapel directly supports interoperability with C,
and has also worked with the Babel project at Lawrence Livermore National Laboratory to
support a greater number of languages [234], including Fortran, Java, and Python.

The Chapel team likes to joke that they chose not to extend an existing language in order
to offend all user communities equally rather than favoring one at the risk of alienating
others. Joking aside, one of the encouraging results of ChapelÕs approach is that users from
diverse language backgroundsÑFortran, C, Java, PythonÑhave described Chapel as being
familiar. That so many users Þnd aspects of Chapel that are familiar and comfortable to
them, while considering others an improvement over what they are used to, is an indication
that the melting pot approach taken by Chapel can help with adoption rather than hindering
it.

6.2.10 Shoot for the Moon

Another early criticism of Chapel was that the project bit off more than it could hope
to complete under HPCS funding alone. This observation accurately reßects the teamÕs
intention. ChapelÕs founders believed that a truly successful, general parallel language
would need to be very broad in its feature set and would need to involve a larger commu-
nity than simply the Cray Chapel team. To this end, many of the original features were
intentionally open research topics as a means of striving for a more productive solution
and encouraging collaborations with the broader community. Examples of such features
include user-deÞned data distributions (which are supported today), distributed software
transactional memory (which resulted in collaborative research [44, 256] that never made
it back into the master branch), and distributed garbage collection (which has not been pur-
sued signiÞcantly, due to a lack of interested collaborators combined with a growing sense
of skepticism about its value to Chapel).

6.2.11 Develop Chapel as Portable, Open-Source Software

The Þnal theme in this discussion is the choice to develop and release Chapel as portable,
open-source software. This decision was made primarily due to the fact that it is nearly
impossible to get any new parallel language broadly adopted, let alone one that is not
freely and generally available. Making the project open-source has also lowered barri-
ers to involving external collaborators and helps potential users be less wary about what
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might happen if support for Chapel ends. As a result, the Chapel project is being devel-
oped as a GitHub project,1 and it is implemented and released under the Apache License,
version 2.0.2

The portability of ChapelÑboth in terms of the compiler and its generated codeÑwas
also considered strategically crucial since nobody would adopt a language that only runs
on systems from a single vendor. Moreover, making ChapelÕs implementation portable
permits users to develop parallel programs on their desktops and laptops, and then move
them to large-scale machines as the programs mature and resources become available. In
order to maximize portability, the Chapel compiler has been developed in ISO C++ and
generates ISO C99. All parallelism in Chapel is implemented using POSIX threads, and all
communication can be implemented using the portable GASNet communication libraryÕs
support for one-sided communication and active messages (Chapter 2). As a result of this
approach, Chapel runs on most parallel systems, whether custom or commodity.

In Summary. The themes in this section have been crucial to deÞning the Chapel lan-
guage and setting it apart from most conventional and competitive technologies. Readers
who are interested in more detailed coverage of ChapelÕs motivating themes and philoso-
phies are referred to various online blog articles [64, 63]. The following sections provide
an overview of ChapelÕs main features, which have been designed with these themes in
mind.

6.3 Chapel Feature Overview

This section gives an introduction to ChapelÕs primary features in order to provide an
overview of the language. By necessity, this description only presents a subset of ChapelÕs
features and semantics. For a more complete treatment of the language, the reader is re-
ferred to the Chapel language speciÞcation [89], materials on the Chapel website,3 and
examples from the Chapel release.4 This section begins with the base language features
and then moves on to those used to control parallelism and locality.

1https://github.com/chapel-lang/chapel (note that the Chapel repository was previously hosted by SourceForge
and the University of Washington).

2http://www.apache.org/licenses/LICENSE-2.0.html (note that earlier versions of Chapel were released under
the BSD and MIT licenses).

3http://chapel.cray.com
4Located in $CHPLHOME/examples
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6.3.1 Base Language Features

ChapelÕs base language can be thought of as the set of features that are unrelated to
parallel programming and scalable computingÑessentially, the sequential language on
which Chapel is based. As mentioned in Section 6.2.9, Chapel was designed from scratch
rather than by extending an existing language, and the base language can be thought of
as those features that were considered important for productivity and for supporting user-
speciÞcation of advanced language features within Chapel itself. Overall, the base lan-
guage is quite large, so this section focuses on features that are philosophically important
or useful for understanding Chapel code in subsequent sections.

Syntax. ChapelÕs syntax was designed to resemble CÕs in many respects, due to the fact
that so many adopted languages at the time tended to utilize C syntax to greater or lesser
degrees. Like C, Chapel statements are separated by semicolons, and compound state-
ments are deÞned using curly brackets. Most Chapel operators follow CÕs lead, with some
additional operators added; ChapelÕs conditionals and while-loops are based on CÕs; and
so forth.

In other areas Chapel departs from C, typically to improve upon it in terms of generality
or productivity. One of ChapelÕs main syntactic departures can be seen in its declarations
which use more of a Modula-style left-to-right, keyword-based approach. For example,
the following declarations declare a type alias, a variable, and a procedure in Chapel:

type eltType = complex ; // ‘ eltType ’ is an alias for the complex type

var done: bool = true ; // ‘done’ is a boolean variable , initialized to ‘ true ’

proc abs(x: int ): int { // a procedure to compute the absolute value of ‘x’
if (x < 0) then

return -x;
else

return x;
}

In this example, thetype keyword introduces a new type identiÞer,var introduces a new
variable, andproc introduces a new procedure, as noted in the comments. Other decla-
ration keywords are used to create compile-time constants (param ), run-time constants
(const ), iterators (iter ), and modules that support namespace management (module ).

Chapel uses the left-to-right declaration style in part because it better supports type
inference andskyline arraysÑarrays whose elements are themselves arrays of varying
size. In addition, adopting a left-to-right declaration style aids productivity by making
declarations easier for a nonexpert to read.
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Basic Types. ChapelÕs basic scalar types include boolean values (bool ), signed and
unsigned integers (int anduint ), real and imaginary ßoating point values (real and
imag ), complex values (complex ), and strings (string ). All of ChapelÕs numeric types
use 64-bit values by default, though users can override this choice by explicitly specifying
a bit width. For example,uint(8) would specify an 8-bit unsigned integer. All types
in Chapel have a default value that is used to initialize variables that the user has not
initialized. Numeric values default to zeroes, booleans to false, and strings to empty strings.

Chapel supports record and class types, each of which supports the creation of objects
with member variables and methods. Records are declared using therecord keyword and
result in local memory allocation. Classes are declared using theclass keyword and use
heap-allocated storage. Records support value semantics while classes support reference
semantics. For example, assigning between variables of record type will result in a copy
of the record members by default. In contrast, assigning between variables of class type
results in the two variables aliasing a single object. Records can be thought of as being
similar to C++ structs while classes are similar to Java classes.

Chapel also supports tuple types that permit a collection of values to be bundled in a
lightweight manner. Tuples are useful for creating functions that generate multiple values,
as an alternative to adopting the conventional approach of returning one value directly and
the others through output arguments. Chapel also uses tuples as the indices for multi-
dimensional arrays, supporting a rank-independent programming style. The following
code illustrates some simple uses of tuples in practice:

var t: ( int, real) = (1, 2.3); // a tuple Ô t Õ with int and real components

var (i, r) = t; // de! tuple Ô t Õ into new variables Ô i Õ and ÔrÕ

...t(1)... // refer to Ô t Õs Þrst ( integer ) component

var coord: ( real, real, real), // a homogeneous 3! tuple of reals
coord2: 3 * real; // an equivalent way to declare coord

Range and Array Types. Another built-in type in Chapel is therange, used to represent
a regular sequence of integer values. For example, the range Ò1..n Ó represents the in-
tegers between 1 andn inclusive, while Ò0.. Ó represents all of the nonnegative integers.
ChapelÕs ranges tend to be used to control loops, and also to declare and operate on arrays.
Ranges support a number of operators including intersection ([] ), counting (#), striding
(by ), and setting the alignment of a strided range (align ). The following Chapel code
illustrates some range values and operators:
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1..9 // represents 1, 2, 3, ..., 9
1..9 by 2 // represents 1, 3, 5, 7, 9
1..9 by -1 // represents 9, 8, 7, ..., 1
9..1 // represents an empty range
1..9 # 3 // represents 1, 2, 3
1..9 # -3 // represents 7, 8, 9
(1..9)[6.. by 2] // represents 6, 8
lo..hi by 2 align 1 // represents the odd integers between ÔloÕ and ÔhiÕ ( inclusive )
0..#n // represents 0, 1, 2, ..., n! 1 (the Þrst ÔnÕ elements in 0..)

Chapel has extensive support for arrays, described in greater detail in Section 6.3.3.
However, to introduce the concept, the following declarations create three array variables.

var Hist: [-3..3] int , // a 1D array of integers
Mat: [0..#n, 0..#n] complex , // a 2D array of complexes
Tri: [i in 1..n] [1..i] real ; // a Ô triangular Õ skyline array

The Þrst example declares a 1D array,Hist, whose indices range from! 3 to 3, and whose
elements are integers. The second declaration creates a 2Dn" n array of complex values,
Mat, which uses 0-based indexing. The Þnal example is a 1D skyline array namedTri
that uses 1-based indexing. Each ofTriÕs elements is a 1-based 1D array of reals whose
length is equal to its index in the outer array. This essentially creates a ÒtriangularÓ array
of arrays.

Type Inference. Chapel supports type inference as a means of writing code that is both
concise and ßexible. For example, the type speciÞer of a variable or constant declaration
can be elided when an initialization expression is provided. In such cases, the Chapel
compiler infers the type of the identiÞer to be that of the initialization expression. The
following code illustrates some examples:

param pi = 3.1415; // Ô3.1415Õ is a real , so ÔpiÕ is too
var count = 0; // Ô0Õ is an integer , so ÔcountÕ is too
const perim = 2 * pi * r; // if ÔrÕ is a real /complex, ÔperimÕ will be too
var len = computeLen(); // Ô lenÕ is whatever type computeLen() returns

The Þrst two declarations are fairly straightforwardÑthe type of each initializing literal
expression is well-deÞned by Chapel (real andint , respectively), so the identiÞers being
declared have matching type. In the third line,perimÕs type is based on the type resulting
from multiplying r by an integer and a real. Ifr were areal , perimwould be areal ;
if it were a complex , perim would be acomplex ; etc. In the Þnal line,len will be
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whatever type the procedurecomputeLen() returns. Note that these Þnal two forms
have the advantage of making these declarations ßexible with respect to changes in the
types ofr andcomputeLen() at the cost of making the declarations a little less self-
documentingÑa reader would need to know the types ofr andcomputeLen() in order
to determine the types ofperim andlen.

ChapelÕs type inference also applies to function declarations: a functionÕs argument
and return types may be omitted. Omitted argument types are inferred by the compiler
by inspecting the functionÕs callsites and adopting the types of the corresponding actual
arguments. Such function declarations are generic, and the compiler will create distinct
instantiations of the routine for each unique callsite type signature, resulting in a capability
much like C++Õs template functions. If a functionÕs return type is omitted, it is inferred by
unifying the types of the expressions generated by itsreturn statements.

As a simple example, consider theabs() function shown previously, but written in its
type-inferred form:

proc abs(x) { // ‘x’s type and the return type of abs() will be inferred
if (x < 0) then

return -x;
else

return x;
}

In this version ofabs(), the formal argumentx has no type speciÞer, and no return type is
given. As a result,abs() may be called with any type that supports less-than comparison
against integers and the unary negation operatorÑe.g., integers, ßoating point values, or
any user-deÞned type that supports these operators. The compiler infers the return type
of abs() by noting that both of the returned expressions have the same type5 as x, in
which case the return type will match the argument type. If the function is called within
a userÕs program asabs(3) andabs(4.5), the compiler would create bothint and
real instantiations ofabs().

For-loops and Iterators. ChapelÕs for-loops are different from CÕs, both syntactically
and semantically. In Chapel, for-loops are used to iterate over data structures and to invoke
iterator functions. ChapelÕs for-loops declareiteration variables that represent the values
yielded by theiterand expression. These variables are local to a single iteration of the
loopÕs body. The following statements demonstrate some simple for-loops:

5. . .assuming that unary negative preservesxÕs typeÑif not, the compiler will attempt to Þnd a unifying type
that supports both returned expressions and throw an error if it cannot.
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for i in 1..n do // print 1, 2, 3, ..., n
writeln(i);

for elem in Mat do // double all elements in ÔMatÕ
elem * = 2;

The Þrst loop iterates over the range Ò1..n Ó, referring to the individual integer values
using the iteration variablei. Each iteration of the loopÕs body gets its own private local
copy of i, so it cannot be used to carry values across distinct iterations. In addition, a
rangeÕs iteration variables are constant, and therefore may not be reassigned within the
loop body.

The second loop iterates over theMat array, referring to its elements using the iteration
variableelem, which is once again local and private to the loop body. When iterating over
an array, the iteration variable refers to the arrayÕs elements; thus, assignments to it will
modify the arrayÕs values. Here, the loop has the effect of iterating over all of the arrayÕs
values, doubling each one.

Chapel loops can also be used to iterate over multiple iterands in a lockstep manner,
known aszippered iteration. As an example, the following loop iterates over the elements
of Hist and the unbounded range Ò1.. Ó in a zippered manner:

for (elem, i) in zip (Hist, 1..) do
writeln("Element #", i, " of Hist is: ", elem);

In addition to looping over standard data types, Chapel programmers can write their
own iterator functions that can be used to drive for-loops. As a simple example, the fol-
lowing declaration creates an iterator which generates the Þrstn elements of the Fibonacci
sequence:

iter fib(n) { // generates ÔnÕ Fibonacci numbers
var current = 0, // Ô current Õ and ÔnextÕ store two consecutive values

next = 1; // from the sequence

for i in 1..n {
yield current; // yield the current value
current += next; // increment it by the next
current <=> next; // swap the two values

}
}

Iterator functions generate results for their callsites usingyieldstatements. For example, in
the Fibonacci iterator above, each iteration yields its value ofcurrentback to the callsite.
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Execution continues after the yield statement until the iterator returns (either via a return
statement or by falling out of the function).

Iterator functions are typically invoked using for-loops. For example, the following loop
would print out the first n Fibonacci numbers:

for (i,f) in zip(1..n, fib(n)) do
writeln("fib(", i, ") = ", f);

In this example, the iteration variable f takes on the values generated by fib()’s yield
statements.

Iterators were included in Chapel for their benefit in abstracting loop-nest implementa-
tion details away from the loops themselves, providing reuse and customization benefits
similar to what traditional functions do for straight-line code. While new users often worry
that iterators may incur unnecessary performance overheads, it is important to note that
most iterators, like the Fibonacci example above, can be implemented simply by inlining
the iterator’s body into the loop invocation and then replacing the yield statement with
the loop body.

Other Base Language Features. In addition to the features described here, Chapel’s
base language also supports a number of additional constructs, including: enumerated
types and type unions; type queries; configuration variables that support command-
line options for overriding their default values; function and operator overloading and
disambiguation; default argument values and keyword-based argument passing; meta-
programming features for compile-time computation and code transformation; modules
for namespace management; and I/O to files, strings, memory, and general data streams.

6.3.2 Task Parallelism

As alluded to in Section 6.2.2, all parallelism in Chapel is ultimately implemented us-
ing tasks—units of computation that can and should be executed in parallel. All Chapel
programs begin with a single task that initializes the program’s modules and executes the
user’s main() procedure. This section provides an overview of Chapel’s features for
creating tasks and synchronizing between them.

Unstructured Task Parallelism. The simplest way to create a task in Chapel is by pre-
fixing a statement with the begin keyword. This creates a new task that will execute the
statement and then terminate. Meanwhile, the original task goes on to execute the state-
ments that follow. As a trivial example, the following code uses a begin statement to
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create a task to execute the compound statement while the original task continues with the
writeln() that follows it.

writeln("The original task prints this");
begin {

writeln("A second task will be created to print this");
computeSomething(); // it will then compute something
writeln("The second task will terminate after printing this");

}
writeln("The original task may print this as the second task runs");

Because the two tasks in this example can execute concurrently, the Þnalwriteln()
could be printed before the second and thirdwriteln() s, between them, or after them,
depending on how the tasks are scheduled.

Tasks in Chapel are anonymous, so there is no way to name a task directly. The two
ways in which a user can check for task completion are through thesync statement or by
coordinating through shared synchronization variables, described below.

The Sync Statement. ChapelÕssync keyword preÞxes a statement and causes the task
encountering it to wait for all tasks created within the statementÕs dynamic scope to com-
plete before proceeding. As an example, the use of thesync statement in the following
code will wait for all the tasks generated by a recursive binary tree traversal to complete
before the original task continues.

sync { traverseTree(root); }
writeln("All tasks created by traverseTree() must now be done");

proc traverseTree(node) {
processNode(node);

if (node.left != nil ) then // If there is a left child ...
begin traverseTree(node.left); // ... create a task to visit it

if (node.right != nil ) then // Ditto for the right child ...
begin traverseTree(node.right);

}

As can be seen, thesync statement is a big hammer. For Þner-grain interactions between
tasks, programmers can use special variable types that support data-centric coordinationÑ
ChapelÕs synchronization and atomic variable typesÑdescribed in the following sections.
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Synchronization Variables. A Chapelsynchronization variableis like a normal vari-
able, except that in addition to storing its value, it also stores afull/empty statethat is used
to guard reads and writes. As mentioned in Section 6.1.2, this concept was adopted from
the similar Tera MTA and Cray XMT features [11, 241]. By default, a read of a synchro-
nization variable blocks until the variable is full, reads the value, and leaves the variable in
the empty state. Similarly, a write blocks until the variable is empty, writes the new value,
and then leaves it full.

As a simple example, the following code implements a bounded-buffer producer/con-
sumer idiom using an array of synchronization variables to implement the buffer:

1 var buff$: [0..#buffsize] sync real ;

3 begin producer(numUpdates); // create a task to run the producer
4 consumer(); // while the original task runs the consumer

6 proc producer(numUpdates) {
7 var writeloc = 0;
8 for i in 1..numUpdates {
9 buff$[writeloc] = nextVal(); // this write blocks until ÔemptyÕ, leaves Ô full Õ
10 writeloc = (writeloc + 1) % buffsize;
11 }
12 buff$[writeloc] = NaN; // write a sentinel to indicate the end
13 }

15 proc consumer() {
16 var readloc = 0;
17 do {
18 const val = buff$[readloc]; // this read blocks until Ô full Õ, leaves ÔemptyÕ
19 processVal(val);
20 readloc = (readloc + 1) % buffsize;
21 } while (val != NaN);
22 }

In this program, line 1 declares an array,buff$, whose elements are of typesync real .
Thus, each element is a synchronized ßoating point value that carries a full/empty state
along with its value. Because the arrayÕs declaration does not contain an initialization ex-
pression, its elements start in the empty state. Since incorrect accesses to synchronization
variables can result in deadlock, Chapel programmers typically name them using a $ by
convention, in order to alert readers to their presence and avoid introducing inadvertent
reads or writes that may never complete.

Continuing the example, line 3 creates a task to execute the producer while the original
task continues on to line 4 where it executes the consumer. The two tasks each sit in a tight
loop, writing (lines 8Ð11) or reading (lines 17Ð21)buff$Õs elements, respectively. Note that
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the typical safety checks required to prevent the producer from overwriting elements or the
consumer from getting ahead of the producer are not required in this implementation—the
full/empty state associated with each buff$ element naturally prevents these error cases
from occurring.

In addition to the default read/write semantics, synchronization variables support a num-
ber of methods that permit other modes of reading/writing their values. For example the
readFF() method provides a way to read a synchronization variable, blocking until it is
full, but leaving it full rather than empty. Similarly, readXX() permits the task to peek at
a synchronization variable’s value regardless of the full/empty state.

In addition to providing a controlled way of sharing data, synchronization variables also
play an important role in defining Chapel’s memory consistency model. Typical Chapel
variables are implemented using a relaxed memory consistency model for the sake of per-
formance, which makes them an unreliable choice for coordinating between tasks. By
contrast, loads and stores cannot be reordered across synchronization variable accesses,
which also serve as memory fences. This permits synchronization variables to be used as
a means of coordinating data sharing for larger, more relaxed data structures.

As an example, the following code fragment hands off a buffer of data (buff ) between
two tasks:

1 var buff: [1..n] real ;
2 var buffReady$: sync bool ;

4 begin {
5 fillBuffer(buff);
6 buffReady$ = true ; // signal the buffer is filled by making buffReady$ ‘ full ’
7 }

9 {
10 const val = buffReady$; // block until buffReady$ becomes full
11 processArray(buff); // the implicit memory fence guarantees ‘ buff ’s readiness
12 }

The first task (lines 4–7) fills buff and then signals to the other task that the buffer is ready
by filling the synchronization variable buffReady$. Meanwhile the original task (lines 9–
12) blocks on the buffReady$ flag until it is full (line 10) and only accesses the buffer once
it is. Note that using a normal variable for buffReady$ would not be guaranteed to work
since it would be subject to relaxed consistency and therefore could have its loads/stores
reordered with respect to buff by either the compiler or architecture. Making buff into an
array of synchronization variables would also achieve the desired result, but would add
significant overhead to every access of buff.
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Chapel supports a variation of synchronization variables called single-assignment vari-
ables. They are almost identical except that once their full/empty state is set to full, it
can never be emptied. For this reason, default reads of single-assignment variables use the
readFF() semantics described above.

Single-assignment variables (and synchronization variables, for that matter) can be used
to express future-oriented parallelism in Chapel by storing the result of a begin statement
into them. As an example, consider the following code snippet:

var area1$, area2$: single real;

begin area1$ = computeArea(shape1);
begin area2$ = computeArea(shape2);

doSomethingElse();

const totalArea = area1$ + area2$,
areaDiff = abs(area1$ - area2$);

This program creates two single-assignment variables, area1$ and area2$. It then uses
begin statements to create a pair of tasks, each of which computes the area of a shape
and stores the result into its respective single-assignment variable. Meanwhile, the original
task goes on to do something else. When it is done, it computes the total area by reading
the two single-assignment variables. If the helper tasks have not yet generated their results,
it will block due to the full/empty semantics of the single-assignment variables. Due to the
single-assignment semantics, the variables can then be read again without blocking, for
example to compute areaDiff, the magnitude of the difference between the areas.

Atomic Variables. Chapel also supports data-centric coordination between tasks using
atomic variables. These are variables that support a set of common atomic operations
which are guaranteed to complete without another task seeing an intermediate or incom-
plete result. Chapel’s atomic variables are modeled after those of the C11 standard and
benefit from the design work done there.

As an example of using atomic variables, consider the following program which uses
atomic variables to compute a histogram in a manner that ensures updates will not be lost
due to read-read-write-write ordering issues:

var hist: [0..#histSize] atomic int;
forall elem in Mat {
const bucket = computeBucket(elem);
hist[bucket].add(1);

}
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This program uses a forall-loop (to be introduced in Section 6.3.3) to perform a parallel
iteration over an array named Mat. For each element, elem, the corresponding bucket is
computed and incremented. The increment is performed using the add() method for
atomic variables, causing the argument value to be accumulated atomically into the his-
togram element. Since multiple tasks may update a single bucket value simultaneously, us-
ing a normal array of integers and incrementing them using addition may cause two tasks
to read the same value before either had written its update, causing one of the updates
to be lost. Proper use of atomic variables can guard against such races in a reasonably
lightweight manner, given appropriate hardware support.

Structured Task Parallelism. In addition to the begin keyword, Chapel supports two
statements that create groups of tasks in a structured manner. The first of these is the
cobegin statement—a compound statement in which a distinct task is created for each
of its component statements. The cobegin statement also makes the original task wait
for its child tasks to complete before proceeding. Note that this differs from the semantics
of the sync statement in that only the tasks created directly by the cobegin are waited
on; any others follow normal fire-and-forget semantics. Although the cobegin statement
can be implemented using begin statements and synchronization variables, that approach
adds a considerable cost in verbosity for the user and fails to convey the intent as clearly to
the compiler for the purpose of optimization.

As a simple example, the producer/consumer tasks from the earlier bounded buffer ex-
ample could have been created with a cobegin as follows:

cobegin {
producer(numUpdates);
consumer();

}
writeln("We won’t get here until producer() and consumer() are done");

Chapel’s other form of structured parallelism is the coforall-loop which is like a tradi-
tional for-loop except that it creates a distinct task for each iteration of the loop body. Like
the cobegin statement, coforall has an implicit join that causes the original task to
wait for all of its children to complete before proceeding.

As an example, the following loop creates a distinct task for each element in an array:

coforall elem in Mat do
processElement(elem);

writeln("We won’t get here until all elements have been processed");
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For very large arrays, coforall-loops tend to be overkill since you would not typically
want to create a distinct task for every array element. In such cases, programmers would
typically use the data-parallel constructs of the following section instead. In practice, the
coforall loop tends to be used when the number of iterations is close to the target
hardware’s natural degree of parallelism, or when true concurrency between iterations is
required (e.g., if distinct iterations synchronize with one another).

6.3.3 Data Parallelism

Chapel’s task-parallel features support very explicit parallel programming with all the re-
lated hazards, such as race conditions and deadlock. In contrast, Chapel’s data-parallel
features support a more abstract, implicitly parallel style of programming that is typically
easier to use. The primary features for data parallelism are forall-loops, ranges, domains,
and arrays, described in this section.

forall-loops. The forall-loop is Chapel’s data parallel loop construct. Syntactically, it is
similar to for-loops and coforall-loops. As a simple example, the following code uses a
forall-loop to iterate over a range in parallel:

forall i in 1..n do
A[i] += 1;

The net effect of this loop is to increment elements 1 through n of array A in parallel.
Unlike for-loops, which are executed using a single task, and coforall-loops, which use a

task per iteration, forall-loops use an arbitrary number of tasks, as determined by the loop’s
iterand. For example, in the forall-loop above, the range value “1..n ” determines the
number of tasks used to execute this loop. For typical iterands, this choice is based on the
amount of hardware parallelism available. Many parallel iterators also have arguments that
permit the user to specify or influence the number of tasks used to execute the loop. Like
all loop forms, Chapel’s forall-loops support zippered iteration in which corresponding
elements are generated together in parallel.

Because the number of tasks used to implement a forall-loop is not known a priori,
forall-loops must be serializable. That is, it must be legal to execute the loop using a single
task. A consequence of this is that there can be no synchronization dependences between
distinct iterations of the loop, since there is no guarantee that they would be executed by
distinct tasks.

Forall-loops also support an expression-level form, as well as a shorthand syntax that
makes use of square brackets. For example, the forall-loop above could have been written:
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[i in 1..n] A[i] += 1;. The syntactic similarity between this shorthand and ar-
ray type speciÞers is intentionalÑone can read an array type like[1..n] string as
Òfor all indices from 1 ton, store a string.Ó

As part of ChapelÕs multiresolution approach, advanced users can implement their own
parallel iterators which can be invoked using forall-loops. This is done by writing parallel
iterators that create the tasks to implement the loop and then determine how the iteration
space will be divided amongst them. These iterators are themselves implemented using
ChapelÕs lower-level features, such as task parallelism and base language concepts. With
this mechanism, users can write very simple iterators that statically partition the iteration
space, as well as more complex ones that decompose the iteration space dynamically. The
details of authoring parallel iterators are beyond the scope of this chapter; interested read-
ers are referred to published work [68, 32] and the Chapel release for further details and
examples.

Domains and Arrays. In Chapel, adomain is a Þrst-class language concept that repre-
sents an index set. Domains are used to drive loops and to declare and operate on arrays.
The following code creates constant domains that describe the size and shape of the arrays
declared in Section 6.3.1:

const HistSpace: domain(1) = {-3..3},
MatSpace = {0..#n, 0..#n},
Rows = {1..n},
Cols: [Rows] domain(1) = [i in Rows] {1..i};

The Þrst line declares a 1-dimensional domain describing the index set from�3 to 3,
inclusive. The second and third lines use ChapelÕs type inference to declare a 2Dn ⇥ n
domain and a 1Dn-element domain. The Þnal declaration creates an array of domains,
using a forall-loop to initialize each element based on its index.

Given these domains, the original array declarations of Section 6.3.1 could be rewritten
as follows:

var Hist: [HistSpace] int,
Mat: [MatSpace] complex,
Tri: [i in Rows] [Cols[i]] real;

The original declarations were equivalent to these ones; they simply resulted in the creation
of anonymous domains. The beneÞt of naming domains is that it permits an index set to be
referred to symbolically throughout a program, providing readers and the compiler with a
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clearer indication of the relationships between arrays and iteration spaces. As an example,
the following loop can be proven to require no array bounds checks sinceHistSpaceis the
domain used to declareHist.

forall i in HistSpace do
Hist[i] = 0;

In addition to dense rectangular domains and arrays, Chapel supports a variety of other
domain types includingassociative, sparse, andunstructureddomains. Associative do-
mains store a set of index values of arbitrary type, such as strings, ßoating point values, or
class object references. An associative array can be thought of as providing a hash table
or dictionary capability, mapping the domainÕs indices to array elements. Unstructured do-
mains have anonymous indices and are designed to represent pointer-based data structures
like unstructured graphs. Sparse domains represent arbitrary subsets of a parent domainÕs
index set. Their arrays store an implicit ÒzeroÓ value for any index that is within the parent
domain but not the child.

All of ChapelÕs domain types support a rich set of operations including serial and parallel
iteration, membership tests, and intersection. Regular domains also support operators and
methods that permit new domains to be created from them; for example, one such method
simpliÞes the creation of boundary conditions.

ChapelÕs arrays support a rich set of operations including serial and parallel iteration,
random access, slicing, reshaping, aliasing, and reindexing. Arrays can also be logically
reallocated by reassigning their domain variables. When a domainÕs index set is modiÞed,
all arrays declared in terms of that domain are logically reallocated to reßect its new index
set. Array values corresponding to indices that persist between the old and new domain
values are preserved.

Promotion. In addition to explicit forall-loops, data-parallelism in Chapel can also be
expressed usingpromotionof scalar functions and operators. When a domain or array ar-
gument is passed to a function or operator that is expecting a scalar argument, the function
is invoked in parallel across all of the domainÕs indices or arrayÕs elements. These pro-
motions are equivalent to forall-loops, but often result in a more compact expression of
parallelism. As an example, the forall loop shown earlier to zero outHist could be written
asHist = 0;Ñeffectively, a promotion of the scalar assignment operator.

When multiple scalar arguments are promoted, the resulting expression is equivalent to a
zippered forall-loop. For example, given the standardexp() function for exponentiation,
the callexp(A, B)with conforming arraysA andB would be equivalent to the following
forall-loop expression:
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forall (a, b) in zip(A, B) do exp(a, b);

Note that both standard and user-defined functions and operators can be promoted in this
way.

Reductions and Scans. Chapel’s other major data-parallel features are reduction and
scan expressions. Reductions can be used to flatten one or more dimensions of a collection
of values while scans are used to compute parallel prefix operations. As an example,
the following statement computes the largest sum of squares value over corresponding
elements of A and B:

var biggest = max reduce (A**2 + B**2);

Note that the exponentiation and plus operators are promoted in this example.
Chapel provides a number of standard reduction and scan operators, such as sum, prod-

uct, logical and bitwise operations, and max/min (with or without location information).
Users can also write their own reduction and scan operators by specifying functions to ac-
cumulate and combine input and state values. Though this topic is beyond the scope of this
paper, our approach can be viewed in the release or read about in published work [95].

6.3.4 Locality Features

Chapel’s final feature area permits a programmer to control and reason about locality. At
the low level, a Chapel programmer can explicitly specify the system resources on which
a task is run or a variable is allocated. At a higher level, Chapel programmers can specify
how domains and arrays are distributed across a system, resulting in distributed-memory
data-parallelism. This section touches on both styles.

The Locale Type. The core of Chapel’s locality features is the locale type. Locales
represent units of the target system architecture that are useful for reasoning about locality
and affinity. For most conventional parallel architectures, a locale tends to describe a
compute node, such as a multicore or SMP processor. Due to Chapel’s PGAS memory
model [288], tasks executing within a given locale can access lexically visible variables
whether they are allocated locally or on a remote locale. However, Chapel’s performance
model indicates that variable accesses within a task’s locale will be cheaper than remote
ones. This approach supports productivity through Chapel’s global namespace, while still
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supporting the ability to obtain scalable performance by being sensitive to where tasks
execute relative to the data they access.

When executing a Chapel program, users specify the number of locales on which it
should run using an execution-time command-line ßag. Within the Chapel source code,
these locales can be referred to symbolically using a built-in, zero-based 1D array named
Locales, which storesnumLocaleslocale values. These values represent the system re-
sources on which the program is executing and permit the user to refer to them and query
their properties. Like any other array,Localescan be reshaped, sliced, reindexed, etc.

As a simple example, the following statement computes the total amount of memory
available to the locales on which a Chapel program is running:

const totalMem = + reduce Locales.physicalMemory();

This idiom uses aphysicalMemory() method that is supported by the locale type,
promoting it across the entireLocalesarray. It then uses a reduction to sum the individual
memory sizes into a single value,totalMem. Other locale methods support queries such
as the number of processor cores, the number of tasks or threads executing, the callstack
limit, the localeÕs name, its ID, and so forth.

On-Clauses. Chapel programmers specify that a statement should execute on a speciÞc
locale using anon-clause. The on-clause takes a single operand that speciÞes which locale
to target. If the expression is a variable, the statement will execute on the locale in which
the variable is stored. As an example, consider the following statements:

on Locales[numLocales-1] do
writeln("Hello from the last locale");

on node.left do
traverseTree(node.left);

The Þrst statement causes a message to be printed from the last locale on which the program
is executing. The second statement speciÞes that thetraverseTree() function should
execute on whichever locale ownsnodeÕs left child. In practice, data-driven on-clauses
like this tend to be preferable since they make the code more independent of the number
of locales on which the program is running.

It is important to emphasize that on-clauses do not introduce parallelism into a pro-
gram, keeping with ChapelÕs theme of using distinct concepts for parallelism and locality.
However, on-clauses and parallel constructs compose naturally. For example, to launch an
asynchronous remote task to traverse the left subtree above, we could have used:
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begin on node.left do
traverseTree(node.left);

Another common idiom is to launch a task per locale via a coforall-loop like the following:

coforall loc in Locales do
on loc do

writeln("Hello from locale ", loc.name);

This loop effectively generates traditional SPMD-like parallelism.
Within a Chapel program, the locale on which a variable is stored, or a task is running,

can be queried. All variables support a.localemethod that returns the locale in which it is
allocated. For tasks, a built-in variable,here, can be used to query the locale on which the
current task is executing.

Domain Maps, Layouts, and Distributions. ChapelÕs locales can also be used to create
global-view, distributed arrays. Every Chapel domain is deÞned in terms of adomain
mapthat speciÞes how it, and its arrays, should be implemented. When no domain map is
speciÞed (as in the preceding sections), a default domain map is used. It maps the domainÕs
indices and arrayÕs elements to the current locale (here). Domain maps like these which
target a single locale are referred to aslayoutssince they only specify how domains and
arrays are stored in local memory. Domain maps can also target multiple locales as a means
of storing distributed index sets and arrays; these are referred to asdistributions.

As a simple example of a distribution, the following redeÞnition ofMatSpacefrom
Section 6.3.3 would result in a distributed Block-Cyclic implementation of its index set
and of theMat array that was declared in terms of it:

const MatSpace = {0..#n, 0..#n}
dmapped BlockCyclic(startIdx=(0,0), blocksize=(8,8));

This declaration says thatMatSpaceÕs domain map should be an instance of the standard
BlockCyclicdistribution. Its arguments specify that8 ! 8 blocks should be dealt out to the
locales, starting at index(0, 0). By default, it will target all of the locales on which the
program is running, reshaping them into a square-ish virtual array of locales. The user can
also pass an optional array of target locales to theBlockCyclicconstructor as a means of
precisely controlling which locales the distribution should target and how they should be
arranged logically.
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Note that because of ChapelÕs global namespace and global-view arrays, a change to a
domain declaration like this is the only thing required to convert a shared-memory paral-
lel program into one that supports distributed-memory execution. Forall-loops over dis-
tributed domains/arrays are typically implemented such that each locale iterates over the
indices/elements that it owns locally, providing a natural model for afÞnity.

User-DeÞned Domain Maps. As part of ChapelÕs multiresolution design, advanced
users can author their own domain maps as a means of controlling the distribution and
layout of domains and arrays, as well as the implementation details of their iterators, ac-
cessor functions, etc. Creating a domain map requires creating three descriptor classes, one
to represent the domain map itself, a second to represent one of its domains, and a third
to represent one of its arrays. These descriptors must support a required interface that the
compiler targets when lowering high-level global-view operations down to the per-locale
data structures and operations required to implement them. They can also support optional
interfaces that the compiler can use for optimization purposes, when present.

Domain maps are considered the highest-level concept in ChapelÕs feature set because
they tend to be written using data parallel features, task parallel features, locality features,
and the base language. As an example, theBlockCyclicdomain map shown above uses on-
clauses to create local descriptors on each target locale to represent its individual portion
of the global domain or array. It uses local domains, arrays, and data parallel operations
to implement each localeÕs portion of the global array. It uses task parallelism and on-
clauses to implement parallel iterators that execute using the target locales. And it uses
classes, iterators, generics, and type inference from the base language to do all of this in a
productive way.

As part of the projectÕs research goals, all arrays in Chapel are implemented using the
same domain map framework that an end-user would. This is done to avoid a situation in
which standard ÒknownÓ domain maps perform well but user-deÞned domain maps result
in a signiÞcant performance penalty. Instead the Chapel team has chosen to use the same
framework for all arrays as a forcing function to ensure that user-deÞned domain maps can
achieve competitive performance.

A more detailed description of user-deÞned domain maps is beyond the scope of this
chapter. Interested readers are referred to the Chapel release and published work for more
information about, and examples of, user-deÞned domain maps [71, 67].

6.4 Project Status

As mentioned previously, Chapel is an active and ongoing effort. At the time of publi-
cation, all of the features described in this chapter are implemented and work correctly,



158 Chapter 6

with one exception: skyline arrays as described in Section 6.3.1 are not yet implemented.
As a result, todayÕs arrays of arrays must have inner arrays that share a common domain.
Workarounds for this feature exist for users who require such data structures today.

The Chapel team creates two Chapel releases per year, each spring and fall. Highlights
of recent releases have included adding support for vectorization of forall-loops in coop-
eration with the back-end compiler; a growing standard library of common operations,
including FFTW routines and Þle system utilities; achpldocutility for source-based docu-
mentation; and improvements to portability and performance. Other nascent efforts include
support for an interpreted Chapel environment, a tool for visualizing communication and
tasking intensity within Chapel programs, and Python interoperability.

ChapelÕs performance remains hit-or-miss at present, depending on the scenario. Gen-
erally speaking, performance has recently been improving signiÞcantly, particularly since
the HPCS program wrapped up.6 For single-locale programs, execution is increasingly
competitive with hand-coded C+OpenMP [32]. Multi-locale executions can be more or
less competitive with conventional approaches, depending on the computational idioms
and target architecture, but have also been improving with time. Generally speaking, more
work is required to optimize ChapelÕs communication, both in terms of applying tradi-
tional global-view communication optimizations [255] and simply by reducing the com-
pilerÕs tendency to insert communication conservatively, which tends to thwart back-end
compilersÕ serial code optimizations.

The user communityÕs reaction to Chapel has been increasingly positive as the project
has progressed. Initially, HPC users expressed a great deal of skepticism about the decision
to pursue a new language, largely due to lingering disenchantment around HPFÕs failure in
the 1990Õs [161]. As the community learned more about Chapel and grew to understand
its philosophical and practical divergences from HPF, pessimism gave way to curiosity and
cautious optimism. At present, many potential users believe that a mature implementation
of Chapel would be very attractive to them, and the number of earnest users who are trying
it out for their projects has grown markedly with recent releases.

Future Directions. Although ChapelÕs primary features are implemented and working,
other aspects of the language are still being improved, both in the implementation and
speciÞcation of the language.

In the base language, a major lack is a capability for handling error conditions in large-
scale codes, whether using exceptions or some other feature more specialized for parallel
execution. This was a known lack in the original design, but one that was deferred due
to resource constraints, and which has become increasingly important as the number of

6http://chapel.sourceforge.net/perf/
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Chapel users grows. Other areas for base language improvements include constrained
generic interfaces, additional support for interoperability with other languages, and im-
proved constructor/destructor features.

As part of ChapelÕs task parallel features, we want to add a notion of identifying logical
teams of tasks. This capability would give users the ability to identify and operate on
subsets of tasks using collective operations such as barriers, broadcasts, reductions, and
eurekasÑthe ability for one task to signal that its team members can stop executing. Task
teams may also serve as a means of assigning distinct execution policies to tasks, such as
Òthese tasks may be work-stolen and load-balancedÓ versus Òthese tasks should be bound
to their own threads and run to completion.Ó

Within ChapelÕs data parallel features, a major lack is support forpartial reductions,
which are crucial for implementing many algorithms effectively, particularly in linear al-
gebra. We would also like to add support for replicated array dimensions similar to ZPLÕs
ßood and grid dimensions [94]. At a lower-level, improvements are planned for ChapelÕs
parallel iterator framework to support increased performance and ßexibility.

The main effort that is underway in the area of locality is support forhierarchical locale
models[274]. ChapelÕs classic deÞnition of locales is very adept at describinghorizon-
tal locality such as that which exists between nodes of a commodity cluster. However,
Chapel programmers have traditionally had no way to target speciÞc processors or mem-
ories on compute nodes involving Non-Uniform Memory Access (NUMA) domains or
heterogeneous resources. Hierarchical locales are designed to address this, using ChapelÕs
multiresolution philosophy to permit programmers to model their target architectures in
terms of objects that support a standard tasking and memory interface. Programmers can
then access such sublocales using traditional on-clauses and distributions. At present, this
framework is in use within every Chapel program, though ongoing work strives to efÞ-
ciently target nonßat compute node architectures.

Summary. Overall, the Chapel language and compiler have demonstrated a great deal
of promise with respect to general, productive, multiresolution parallel programming. We
encourage potential users to give Chapel a try and to report back with feedback and areas
for improvement. In evaluating Chapel, we suggest focusing less on what ChapelÕs cur-
rent performance happens to be, and more on whether you agree that the language will
be able to generate competitive performance as the implementation matures. We believe
that a revolutionary and scalable parallel programming language is unlikely to material-
ize overnight, so urge parallel programmers to exercise patience with new languages like
Chapel rather than giving up hope prematurely. Moreover, being an open-source project,
we encourage programmers to help become part of the solution rather than simply sitting
on the sidelines.


