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Talk Outline .

sm Chapel Background |
sm Communication Optimization Motivation

sm Memory Consistency Models constrain optimization

sm Sequential Consistency for Data Race Free Programs

sm Optimizing communication with a cache for remote data

sm Using LLVM to optimize communication



What is Chapel?
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Chapel’s Origins: HPCS .o

DARPA HPCS: High Productivity Computing Systems \

e Goal: improve productivity by a factor of 10x
e Timeframe: summer 2002 — fall 2012

e Cray developed a new system architecture, network, software, ...
e this became the very successful Cray XC30™ Supercomputer Series




Chapel Motivation KSR

Q: Why doesn’t parallel programming have an equivalent to \

Python I Matlab / Java l C++ / (your favorite programming language here) ?
e one that makes it easy to quickly get codes up and running
e one that is portable across system architectures and scales
e one that bridges the HPC, data analysis, and mainstream communities

A: We believe this is due not to any particular technical

challenge, but rather a lack of sufficient...
...long-term efforts

...resources

...community will

...co-design between developers and users

...patience

Chapel is our attempt to change this
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Chapel's Implementation

e Being developed as open source at GitHub
e Licensed as Apache v2.0 software

e Portable design and implementation, targeting:
e multicore desktops and laptops
e commodity clusters and the cloud
e HPC systems from Cray and other vendors
e jn-progress: manycore processors, CPU+accelerator hybrids, ...

COMPUTE I STORE ANALYZE

o=
f\l it )
'\:-s"_/ Copyright 2015 Cray Inc.



Chapel is a Collaborative, Community Effort . :
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Sustained Performance Milestones SR

1 GF - 1988: Cray Y-MP; 8 Processors
Static finite element analysis
Fortran77 + Cray autotasking + vectorization

1 TF — 1998: Cray T3E; 1,024 Processors
Modeling of metallic magnet atoms
Fortran + MPI (Message Passing Interface)

1 PF — 2008: Cray XT5; 150,000 Processors
» Superconductive materials

C++/Fortran + MPI + vectorizaton .~~~ T -y -
LN T T T T

1 EF —~20__: Cray ; ~10,000,000 Processors Or, perhaps

« TBD: C/C++/Fortran + MPI + OpenMP/OpenACC/CUDA/OpenCL? something
completely
different?
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STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures:
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STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel:
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STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory):
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STREAM Triad: a trivial parallel computation .o

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory multicore):
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STREAM Triad: MPI
#include <hpcc.h> m

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPT Comm comm = MPI_ COMM WORLD;

MPI Comm size( comm, &commSize );
MPI_Comm_rank( comm, &myRank ) ;

rv = HPCC_Stream( params, 0 == myRank) ;
MPI Reduce( &rv, &errCount, 1, MPI_ INT, MPI_SUM, O,

comm ) ;

return errCount;

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize( params, 3,
sizeof (double), 0 );

a = HPCC_XMALLOC( double, VectorSize );
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );

SR —

if ('a || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b); \
if (a) HPCC_free(a);
if (doIO) {
fprintf( outFile, "Failed to allocate memory (%d).\n",
VectorSize ) ;
fclose( outFile );

}

return 1;

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;
c[j] = 1.0;
}
scalar = 3.0;

for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[j];

HPCC_free(c);
HPCC_free(b) ;
HPCC_free(a);



STREAM Triad: MPI+OpenMP e — . o

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI Comm size( comm, &commSize );
MPI_Comm_rank( comm, &myRank ) ;

rv = HPCC_Stream( params, 0 == myRank) ;
MPI Reduce( &rv, &errCount, 1, MPI_ INT, MPI_SUM, O,
comm ) ;

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize( params, 3,
sizeof (double), 0 );

a = HPCC_XMALLOC( double, VectorSize );
b = HPCC_XMALLOC( double, VectorSize );
c = HPCC_XMALLOC( double, VectorSize );

SR —

MPI + OpenMP

@8I B8 B '

if ('a || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b); \
if (a) HPCC_free(a);
if (doIO) {
fprintf( outFile, "Failed to allocate memory (%d).\n",
VectorSize ) ;
fclose( outFile );
}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;
}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]l+scalar*c[]];

HPCC_free(c);
HPCC_free(b) ;
HPCC_free(a);



STREAM Triad: MPI+OpenMP vs. CUDA

MPI + OpenMP

#ifdef _OPENMP
#include <omp.h>

#endif
static int VectorSize; - -
static double *a, *b, *c; . I . I
]
int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;

int rv, errCount;
MPI Comm comm = MPI COMM_WORLD;

MPI_Comm size( comm,
MPI Comm \_rank ( comm,

&commSize ) ;
&myRank ) ;

rv = HPCC_Stream( params, 0 == myRank);

MPI Reduce( &rv, &errCount, 1, MPI_INT, MPI_SUM, 0,

return errCount;

™

HPCC_XMALLOC( double, VectorSize );
b HPCC_XMALLOC( double, VectorSize );
c HPCC_XMALLOC( double, VectorSize );

if (a || 'b || 'e) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_ free(a);

if (doIO) {
fprintf( outFile,
fclose( outFile );

}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

a

#endif
for (j=0; j<VectorSize; j++) {
b[3j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return 0;

comm ) ;

"Failed to allocate memory (%d).\n",

VectorSize ) ;

e

#define N 2000000
int main() { 1 ! :
float *d_a, *d b, *d _c; 1 061 @

}

}

float scalar;

cudaMalloc((void**)&d a,
cudaMalloc((void**)&d b,
cudaMalloc((void**) &d c,

sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

d1m3 d1mBlock(128)

P

e dd g avy g

.5f£, N);
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set_array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;

if (idx < len) cl[idx] =

a[idx]+scalar*b[idx];

STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar,
cudaThreadSynchronlze(),
cudaFree (d_a);
cudaFree (d_b) ;
cudaFree (d_c);
__global _ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;
__global _ void STREAM Triad( float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

HPC suffers from too many distinct notations for expressmg parallelism and locality

N) ;



Why so many programming models? o

HPC has traditionally given users...
...low-level, control-centric programming models
...ones that are closely tied to the underlying hardware
...ones that support only a single type of parallelism

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable
Intra-node/multicore OpenMP / pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator Open[MP|CL|ACC]/ CUDA SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes



Rewinding a few slides...
CeEfrTE T
*

#ifdef _OPENMP
#include <omp.h>

#endif
static int VectorSize; - -
static double *a, *b, *c; . I . I
]
int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;

int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

&commSize ) ;
&myRank ) ;

rv = HPCC_Stream( params, 0 == myRank);
MPI Reduce( &rv, &errCount, 1, MPI_INT,

MPI_Comm size( comm,
MPI Comm rank( comm,

MPI_SUM, O,

return errCount;

™

a
b
c

HPCC_XMALLOC( double, VectorSize );
HPCC_XMALLOC( double, VectorSize );
HPCC_XMALLOC( double, VectorSize );

if (a || 'b || 'e) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_ free(a);

if (doIO) {
fprintf( outFile,
fclose( outFile );

}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

"Failed to allocate memory (%d).\n",

#endif
for (j=0; j<VectorSize; j++) {
b[3j] = 2.0;
c[j] = 1.0;
}
scalar = 3.0;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)

a[j]l] = b[jl+scalar*c[]j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return 0;

comm ) ;

VectorSize ) ;

#define N 2000000
int main() {
float *d_a, *d b, *d c;

float scalar;

cudaMalloc((void**)&d a,
cudaMalloc((void**)&d b,
cudaMalloc((void**) &d c,

d1m3 d1mBlock(128)

P
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set_array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;

if (idx < len) cl[idx] =

sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

e dd g avy g

.5f£, N);

STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar,
cudaThreadSynchronlze()
cudaFree (d_a);
cudaFree (d_b) ;
cudaFree (d_c);
__global _ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;
}
__global _ void STREAM Triad( float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

a[idx]+scalar*b[idx];

HPC suffers from too many distinct notations for expressmg parallelism and locality

N) ;



STREAM Triad: Chapel .
Chapel
config const m = 1000,
alpha = 3.0;
const ProblemSpace = {1..m}(dmapped ..; .__ﬂ“BSpedal
sauce
var A, B, C: [ProblemSpace] real;
B =2.0;
C =1.0;
A =B + alpha * C;
— N —_— —_—
I I I I I I I I I
D) || e D | | O D | | e e e
D || e | | e || e
OO | | O I I I | | T I LI T IO lﬂl‘lﬂ.*.ﬁ-F-h. L
(=] o - I - B - B - B DI DO

Philosophy: Good language design can tease details of locality and

parallelism away from an algorithm, permitting the compiler, runtime,

applied scientist, and HPC expert to each focus on their strengths.




Motivating Chapel Themes

1) General Parallel Programming

2) Global-View Abstractions

3) Multiresolution Design

4) Control over Locality/Affinity

5) Reduce HPC — Mainstream Language Gap



Motivating Chapel Themes

1) General Parallel Programming

2)

3)

4) PGAS: Control over Locality/Affinity
5)

R
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1) General Parallel Programming .o

With a unified set of concepts... \

...express any parallelism desired in a user’s program
o Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

...target any parallelism available in the hardware
e Types: machines, nodes, cores, instruction

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node Chapel task(or executable)
Intra-node/multicore Chapel iteration/task
Instruction-level vectors/threads Chapel iteration
GPU/accelerator Chapel SIMD function/task



PGAS Programming in a Nutshell .o

Global Address Space: \

e permit parallel tasks to access variables by naming them
e regardless of whether they are local or remote
e compiler / library / runtime will take care of communication

OK to access i, j, and k
wherever they live
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PGAS Programming in a Nutshell .o

Global Address Space: \

e permit parallel tasks to access variables by naming them
e regardless of whether they are local or remote
e compiler / library / runtime will take care of communication

Partitioned:

e establish a strong model for reasoning about locality
e every variable has a well-defined location in the system
e |ocal variables are typically cheaper to access than remote ones

| and j are remote, so e
need to “get” their values SN X

S -
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Images / Threads / Locales / Places / etc. (think: “compute nodes”)
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PGAS Programming in a Nutshell .o

Global Address Space: \

e permit parallel tasks to access variables by naming them
e regardless of whether they are local or remote
e compiler / library / runtime will take care of communication

Partitioned:

Communication is implicit!
One sided GET and PUT.

Images / Threads / Locales / Places / etc. (think: “compute nodes”)

C 3
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TRAIN BANDWIDTH Sy

Bandwidth tons/min

| 2 4 8 |6 32 64 128

_ Number of Cars
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INFINIBAND (IB) LATENCY ==

\

* with small 10-node cluster, QDR 1B y

Latency (ns)

8 |6 32 64 128 256 512 1024
Request Size (bytes)



INFINIBAND (IB) BANDWID TH Tkt

e \

* with small 10-node cluster, QDR 1B y

Max BVV:
5000 MB/s

Bandwidth MB/s

8 |6 32 64 128 256 512 1024
Request Size (bytes)
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A RACY PROGRAM

Thread 1 Thread 2
X =42; while 0 == notify { /* wait */ }
notify = 1; compute with(x);



A RACY PROGRAM <y

N e

Thread 1
X =42;
notify = 1;

Thread 1
r1=42;

notify = 1; x = r1;

Thread 2
while 0 == notify { /* wait */ }

compute_with(x);

compiler or processor

Thread 2
r2 = notify; while 0 ==r2 { /* wait */ }

compute with(x);



prefetch

load x

= A[l]

Compiler and processor would like to start loads earlier in order
to hide memory latency. We’'ll call that prefetch.

COMPUTE

STORE

ANALYZE



Compiler and processor would like to complete stores later in order
to hide memory latency. We’ll call that write behind.

B[i] = ...

store y

write behind

COMPUTE

STORE

ANALYZE
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Overlap loads (start early) 00
Reuse values from earlier load \
prefetch Aggregate loads (cache lines)
load x
store y
Overlap stores (finish later) write behind

Aggregate many stores into
a single store
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PGAS Programming in a Nutshell .o

Global Address Space: \

e permit parallel tasks to access variables by naming them
e regardless of whether they are local or remote
e compiler / library / runtime will take care of communication

Partitioned:

Communication is implicit!
One sided GET and PUT.

Images / Threads / Locales / Places / etc. (think: “compute nodes”)
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Overlap GETs (start early) S ‘\
Reuse values from earlier GET \
prefetch Aggregate GETs (cache lines)
load-x
GET x
store-y
PUT y
Overlap PUTs (finish later) write behind
Aggregate many PUTs into

a single PUT

= COMPUTE STORE ANALYZE
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REMEMBER THE RACY cmas

PROGRAM!?

Thread 1
X =42;

notify = true;

Thread 1
r1=42;

notify = 1; x = r1;

Thread 2
while 0 == notify { /* wait */ }

compute_with(x);

compiler or processor

| Thread 2

r2 = notify; while 0 ==r2 { /* wait */ }

compute with(x);



\
C=RANY |
Q \
) \
\
acquire
\
load x
store y
release
COMPUTE STORE ANALYZE



acquire

load x

store y

release

atomic, sync
provide both
acquire, release

acquire lock
release lock

P COMPUTE

STORE

ANALYZE
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Memory model for
Cll,C++11,Chapel.
data race free programs are
sequentially consistent

See Adve, S.V,, Boehm, H.-J. 2010. Memory models: a case for rethinking parallel languages and
hardware. Communications of the ACM 53(8): 90—101. http://cacm.acm.org/magazines/
2010/8/966 1 0-memory-models-a-case-for-rethinking-parallel-languages-and-hardware/fulltext

Chapel has a new specification chapter describing the memory consistency model. See http://
chapel.cray.com/spec/spec-0.98.pdf section 29, page 217.

= COMPUTE STORE ANALYZE
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CONFIGURABLE SC-DRF SRl

e atomic operations in Chapel and C++ support: \
e memory_order _relaxed "atomic only"
e memory_order_acquire "acquire"
e memory _order _release "release™
e memory_order_seq _cst "sequentially consistent”

e Beware! No global total order for relaxed, acquire, and
release. Instead, the order is per atomic variable.
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Program Order

Memory Order




Program Order

Memory Order




Program Order
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Memory Order




Program Order
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Memory Order




Program Order Memory Order

x=1; 7 = 4;
y = 3;

~ W

N <

Some re-orderings are
allowed.




Program Order Memory Order

read-after-write order
preserved within tasks

O N
.




Program Order

Memory Order

3;
4;
Y

y
y
b

write-after-write order
preserved within tasks




Program Order

Bad reordering! (ie, compiler bug)

Sequential programs must work
as if executed in program order

@

Memory Order




ASIDE: cRas

Q \

WEAK MEMORY CONSISTENCY R

1 x starts at 0;

1T someOption then

2 X = 2;
1T someOtherOption then
3 X = 3;

4 return X;



WEAK MEMORY CONSISTENCY oS

1 x starts at 0;

2 PUT 2 into x;

3 PUT 3 into x;
4 GET X;

Chapel OpenSHMEM

result must be 3 result could be 0, 2, or 3
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MORE EXAMPLES:
SHARED VARIABLES
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Program Order Memory Order

OxABCD;
X3

(@




Program Order Memory Order

OxABCD;
X3

(@

Bad program: Data Race.
No global order! This

outcome is possible:
c == 0xAB3d




Program Order

ok:

Memory Order




Program Order Memory Order

ok:
X,

Bad program: Data Race.
No global order! This
outcome is possible:

b ==

C ==




Program Order Memory Order

b = atomic A:

atomic A = 2;

b = atomic A:
atomic A = 2;

In Chapel and C++,
atomic vars default to

SC ordering which
includes both acquire

PN and release
(@



Program Order Memory Order

b = atomic A:

atomic A = 2;

b = atomic A:
atomic A = 2;

SC atomic vars create a
global memory order.

C ==2Db == 0not
- possible e.g.




Program Order

b = atomic A:
atomic A = 2;

Memory Order

b = atomic A:

atomic A = 2;




Program Order Memory Order

b = atomic A:

C = X,

atomic A;
X,

SC atomic ops constrain
the code around them

b == 1 implies

C ==




Program Order Memory Order

atomic B == 2);

(
c = atomic A;

c = -1;
if (atomic B == 2)
c = atomic A;

SC atomic vars create a
global total memory order.
C == —1 | | C ==




Program Order

waitFor(atomic B == 2):
c = atomic A;

Is an outcome of C == 0 possible?



Program Order

waitFor(atomic B == 2):
c = atomic A;

Is an outcome of C == 0 possible?

Yes.While atomic vars cannot create race
conditions, relaxed atomics don't create a total
order.
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CACHE FOR REMOTE DATA ==&

Goal: communication aggregation and overlap

Bonus points: avoiding repeated communication

Software cache in Chapel's runtime
One cache per pthread

Write-back cache with dirty bits



CACHE COHERENCY

Simple, local coherency
Discard all cached data on acquire

Wait for pending operations on a release

Strategy used in related work with UPC



CACHE FEATURES Sy

Aggregation |§
" GET
X

Do PUTs in background

Start one PUT per X
contiquous written reqion

Round GETs up to 64-byte X
cache lines

Sequential read-ahead X X
Programmer-provided X

orefetch hints*
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SYNTHETIC BENCHMARKS
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APPLICATION BENCHMARKS ===
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> T GASNet Aries v1.11+ IS
Cray uGNI v1.11+ [

Speedup

. lulesh miniMD PTRANS  SSCA2.4
\ . [e1]



PREFETCH EXAMPLE i

var A:[1..n] int;
on Locales[1] {
var sum:int;
// Optional warm up
for i in 1..k do prefetch(A[f(i)]);
for 1 in 1..n {
if i+k <= n then prefetch(A[f(i+k)]);
sum += A[f(i)]
I3

L
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EXAMPLE Tkt

// X 1S remote

var sum = 0O;

foriin 1..100 {
sum += get(x);

J



// X 1s possibly remote
var sum = 0;
foriin 1..100 {

%1 = get(x);

sum += %1;

}
TO GLOBAL
MEMORY

var sum = 0;

foriin 1..100{
%1 = load <100> %x
sum += %1;

EXISTING LLVM
j OPTIMIZATION

LICM

var sum = 0;
%1 = get(x);

foriin 1..100 {
sum += %1;

}

TO DISTRIBUTED
MEMORY

// existing LLVM opt
var sum = 0;
%1 = load <100> %x
foriin 1..100 {

sum += %rl;

load <100> %x = load 164 addrspace(100)* %x
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Speedup over LLVM-unopt 1 locale
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Performance Improvement

over LLVM-unopt
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Speedup over LLVM-unopt 1 locale
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Speedup LLVM-unopt 1 locale
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