
Parallel programming languages for micrometeorological research:
the case for Chapel.

Nelson Luís Dias

Department of Environmental Engineering, Federal University of Paraná, Brazil
Q: nelsonluisdias@gmail.com ®: www.nldias.github.io

XIV Brazilian Micrometeorology Workshop, 21-24 Oct Nov 2025

1

nelsonluisdias@gmail.com
www.nldias.github.io

2/33

Acknowledgements

This topic is the result of collaboration with many people: Livia Freire Grion, Anna Jesus Felix, Willian Lesinhovski, Paulo
Henrique Laba, Marcelo Chamecki, Greg Torkelson, Henrique Ferro Duarte, . . .

The Chapel development team, led by Brad Chamberlain, is gratefully acknowledged for answering many questions on
my part about the language, as well as giving permission to slides in this presentation.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

3/33

Thanks
for the invitation:

It is an honor.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

4/33

Contents

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

⟳⟳⟳ 5/33

Introduction 5

The Chapel programming language 13

Real Applicatons 24

Conclusions 28

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Introduction ⟳⟳⟳ 6/33

Introduction

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Introduction ⟳⟳⟳ 7/33

The boundary-layer approximation
Atmospheric turbulence studies started by borrowing concepts from Mechanical Engineering and the flow in channels
and in pipes. In many cases these flows are almost homogeneous along the x direction, and viscosity effects are felt in a
thin layer close to the wall (Prandtl, 1905, 1928; Tani, 1977; Anderson, 2005). Generalization to turbulent boundary layers
generally implies

∂u

∂z
≫ ∂u

∂x
,

∂T

∂z
≫ ∂T

∂x
,

and this leads to the well-known Prandtl boundary-layer equations in different forms.

Figure from Prandtl (1928)

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Introduction ⟳⟳⟳ 8/33

BL “eliminates” scales and boundary conditions

• Downstream boundary conditions no longer needed: elliptic → hyperbolic.
• Dimensionless quantities can now be defined.
• A dimensionless ODE can now be solved (Blasius’ solution).

A simpler example: instant injection of a tracer in an infinite domain

∂c

∂t
= D

∂2c

∂x2
, c (x ,0) = M

A
δ (x), c (±∞, t) = 0,∫ +∞

−∞
c (x , t)dx =

M

A
, [t .

In principle we need to find a function of two variables, c (x , t). However, because there is no explicit x scale (because
the domain is infinite in x), we find two dimensionless variables only,

ξ =
x

√
4Dt
, χ =

c (x , t)A
√
4Dt

M
,

χ = f (ξ), . . .

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Introduction ⟳⟳⟳ 9/33

. . . reducing the problem to . . .

d
dξ

[
df
dξ

+ 2ξf
]
= 0, f (±∞) = 0, ⇒ f (ξ) = 1

√
π
e−ξ

2
,

c (x , t) = M

A
√
4Dt

exp
[
− x2

4Dt

]
.

If you add scales, the solution depends on more variables:

∂c

∂t
= D

∂2c

∂x2
, c (x ,0) = c0f (x), c (0, t) = c (L, t) = 0,

c (x , t) = c0

∞∑
n=1

Ane
−n2π2D

L2
t sin

nπx

L
, An =

2

L

∫ L

0
f (x) sin nπx

L
dx ,

and now there are 3 dimensionless variables:
c

c0
,

x

L
,

Dt

L2
.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Introduction ⟳⟳⟳ 10/33

Few scales leads to (semi)analytical success
The combination of dimensionless variables obtained from relatively few length scales in prototypical problems has
led to many sucesses in Fluid Mechanics:

• In laminar boundary-layer theory, to the Blasius’s solution.

• In flow in ducts under pressure, to the log velocity profile and the Moody diagram for head loss calculations.

• ...

• In Monin-Obukhov Similarity Theory, we no longer have fully closed equations, but we still assume a few “infini-
ties” (homogeneity in x , no influence of the height of the atmospheric boundary-layer), and hope that a flat terrain
and the existence of an inertial sublayer will help.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Introduction ⟳⟳⟳ 11/33

But will them?

From: https://www.attoproject.org/adjustments-to-the-law-of-the-wall-above-an-amazon-forest/

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

https://www.attoproject.org/adjustments-to-the-law-of-the-wall-above-an-amazon-forest/
nelsonluisdias@gmail.com

Introduction ⟳⟳⟳ 12/33

What is going on? TKE budget estimated from LES

T h +Π +Ah + P h
u + P h

v + P h
w

εe
≡ N

εe
,

− S

εe
+
P z
u + P z

w

εe
+ B

εe
+T

z +Az

εe
+ N

εe
= 1.

Normalized TKE budget terms derived from the LES The last column is the sum of all terms: if the subgrid-scale stresses
and pressure terms are sufficiently small, the columns should sum to 1

Laba et al. (2025): LES TKE
for the ATTO site

Height (m) P z
u /εe P z

w/εe P h
u&w/εe T z/εe T h/εe Az/εe Ah/εe S/εe

∑
LES averaged over 3 stencil points (6 m) in the vertical

35 0.9069 −0.0235 0.0489 0.1906 0.1117 −0.1366 0.0592 −0.0274 1.1298

42 1.7069 −0.0206 0.0708 −0.2342 0.0928 −0.1755 0.0814 −0.0487 1.4730

50 1.8621 0.0082 0.0644 −0.6071 0.0469 −0.0361 −0.0220 −0.0491 1.2673

81 0.5208 −0.0569 0.1168 0.0809 0.0596 −0.0004 0.3518 −0.0796 0.9929

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Introduction ⟳⟳⟳ 13/33

Upshot

• We are now facing complicated geometries due to topography, surface features, urban environments, . . .

• This may introducemany new length scales, velocity scales, scalar scales, etc..

• The elegant approach of dimensionless solutions and dimensionless empirical functions may not work anymore.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Introduction ⟳⟳⟳ 13/33

Upshot

• We are now facing complicated geometries due to topography, surface features, urban environments, . . .

• This may introducemany new length scales, velocity scales, scalar scales, etc..

• The elegant approach of dimensionless solutions and dimensionless empirical functions may not work anymore.

We need (many more) numerical simulations:

• They should be easy to develop and deploy.

• They should be possible to run in our desk computers.

• Note that high-end personal computers with 8, 16, 32, . . .cores are becoming increasingly common and more
affordable.

• Several nodes and/or several cores means parallel programming.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 14/33

The Chapel programming language

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 15/33

From Kayraklioglu, Laurendeau & Zayni, Adv Model and Simul Seminar Series, NASA Ames Research Center Feb 20th
2025: https://www.nas.nasa.gov/assets/nas/pdf/ams/2025/AMS_20250220_Kayraklioglu.pdf

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

https://www.nas.nasa.gov/assets/nas/pdf/ams/2025/AMS_20250220_Kayraklioglu.pdf
nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 16/33

A short list of nice features (personal view)

• Easy to start using.

• Easy to translate an existing [Fortran or C or Python or . . .] code to Chapel.

• Interoperability: Can link a Fortran, or C, or Python library with Chapel. This allows reuse of existing software
libraries without the need to re-program everything from scratch.

• Modular, Python-style: every Chapel file (extension chpl) is a module: it can be a program or it can be a library.
There is no separate compilation of Chapel modules: this is simpler than the separate compilation schemes of C
and Fortran.

• Powerful arrays, Fortran-style. Arbitrary lower and upper bounds; slicing possible (but not as efficient as Fortran).

• Memory-safe, except for some uses of classes (https://chapel-lang.org/blog/posts/memory-safety/).

• Runs anywhere, from notebooks to supercomputers. Runs in CPUs and GPUs.

• Powerful but simple commands for parallelization. Much easier than OpenMP and MPI.

• Simple and straightforward distribution of arrays and tasks among cores in a single node, and among many nodes
(of a cluster).

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

https://chapel-lang.org/blog/posts/memory-safety/
nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 17/33

Good resources to program in Chapel

• Excellent community suport
• Good on-line documentation https://chapel-lang.org/
• Syntax highlighting for emacs, vi, vs-code

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

https://chapel-lang.org/
nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 18/33

Chapel’s hello world

1 // ---
2 // hello -pu: a hello world per processing unit
3 // (== core)
4 // ---
5 writeln("-"*20);
6 writeln("here␣=␣",here);
7 writeln("computer␣name␣=␣",here.name);
8 const npus = here.numPUs(true);
9 writeln("number␣of␣logical␣processing␣units␣=␣",npus);

10 writeln("-"*20);
11 coforall p in 0..npus -1 do {
12 writeln("hello␣from␣processing␣unit␣",p);
13 }
14 writeln("-"*20);

In Chapel, locales are the nodes of a cluster; processing
units are the cores in each locale.
This program runs on a single locale, and parallelizes over
16 cores.

$chpl hello -pu.chpl
$./hello -pu

here = LOCALE0
computer name = athome
number of logical processing units = 16

hello from processing unit 1
hello from processing unit 3
hello from processing unit 10
hello from processing unit 4
hello from processing unit 11
hello from processing unit 2
hello from processing unit 13
hello from processing unit 12
hello from processing unit 5
hello from processing unit 15
hello from processing unit 9
hello from processing unit 8
hello from processing unit 6
hello from processing unit 7
hello from processing unit 14
hello from processing unit 0

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 19/33

Example: find a root in the complex plane
Obtain the root of z 3 − 1 = 0 with initial guess from each pixel of a 4× 4 square in the complex plane and color-code it
according to the root found: 1+ 0i = red,−1/2+ i

√
3/2 = green,−1/2− i

√
3/2 = blue.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 20/33

Chapel code: zxynewton-p.chpl
1 use IO only openWriter;
2 config const N = 2048;
3 const colors = {0,1,2};
4 var Ncol: [colors] int = 0;
5 var xycolor: [-N..N,-N..N] int(8);
6 var zinit: [-N..N,-N..N] complex;
7 const eps = 1.0e-6;
8 const fou = openWriter("zxynewton -p.out");
9 var dxy = 2.0/N;

10 for i in -N..N {
11 forall j in -N..N {
12 zinit[i,j] = i*dxy + (j*dxy)*1i;
13 var z0 = zinit[i,j];
14 iterate(z0);
15 choosecolor(z0 ,i,j);
16 Ncol[xycolor[i,j]] += 1;
17 }
18 }
19 writeln(Ncol);
20 fouwrite;
21 fou.close ();
22 proc f(const in zin: complex): complex {
23 return (zin**3 - 1.0);
24 }
25 proc fl(const in zin:complex): complex {
26 return (3* zin **2);
27 }

28 proc iterate(ref z0: complex) {
29 var z, fz0: complex;
30 var delta = eps;
31 while (delta >= eps) {
32 fz0 = f(z0);
33 z = z0 - fz0/fl(z0);
34 delta = abs(z - z0);
35 z0 = z;
36 }
37 }
38 proc choosecolor(
39 const in z0: complex ,
40 const in i: int ,
41 const in j: int) {
42 if isClose(z0.im ,0.0, absTol =1.0e-5) {
43 xycolor[i,j] = 0; // red
44 }
45 else if isClose(z0.im,sqrt (3.0)/2.0 , absTol =1.0e-5) {
46 xycolor[i,j] = 1; // green
47 }
48 else {
49 xycolor[i,j] = 2; // blue
50 }
51 }

fouwrite code not shown.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 21/33

What do I get form parallelizing?

program time (s)
zxynewton-p 0m8.738s
zxynewton 0m29.076s

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 22/33

Finally, a case where Chapel parallelizes very efficiently
Consider the two-dimensional diffusion equation

∂φ

∂t
= D

[
∂2φ

∂x2
+ ∂2φ

∂y 2

]
with simple initial and boundary conditions

φ (0,x , y) = 1, 0 < x < Lx , 0 < y < Ly ,

φ (t ,0, y) = φ (t ,Lx , y) = 0, t > 0, 0 ≤ y ≤ M ,

φ (t ,x ,0) = φ (t ,x ,Ly) = 0, t > 0, 0 ≤ x ≤ L.

This has an analytical solution (modified from Kreider et al. (1966, section 13–7)) of the form

φ (t ,x , y) =
∞∑

m=0

∞∑
n=0

Amn sin
(
(2m + 1)πx

Lx

)
sin

(
(2n + 1)πy

Ly

)
× exp

{
−π2D

[
((2m + 1)/Lx)2 + ((2n + 1)/Ly)2

]
t
}
,

where
Amn =

16

π2(2m + 1) (2n + 1)
.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 23/33

Solution with the clever ADI method

φn+1,i ,j −φn,i ,j

∆t
= D

(
φn+1,i+1,j − 2φn+1,i ,j +φn+1,i−1,j

∆x2
+
φn,i ,j+1 − 2φn,i ,j +φn,i ,j−1

∆y 2

)
,

φn+2,i ,j −φn+1,i ,j
∆t

= D

(
φn+1,i+1,j − 2φn+1,i ,j +φn+1,i−1,j

∆x2
+
φn+2,i ,j+1 − 2φn+2,i ,j +φn+2,i ,j−1

∆y 2

)
.

8

9

0 #G

#~

G

~

8

9

0 #G

#~

G

~

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

The Chapel programming language ⟳⟳⟳ 24/33

Parallelization gain & speedup

59 for j in 1..Ny -1 do {
60 D[1..Nx -1] = Fon*phi[iold ,1..Nx -1,j-1]
61 + (1.0 - 2*Fon)*phi[iold ,1..Nx -1,j]
62 + Fon*phi[iold ,1..Nx -1,j+1];
63 D[1] += Fon*phi[inew ,0,j]; // left BC
64 D[Nx -1] += Fon*phi[inew ,Nx ,j]; // right BC
65 tridiag(A,B,C,D,phi[inew ,1..Nx -1,j]);
66 }

59 forall j in 1..Ny -1 do {
60 var D: [1..Nx -1] real;
61 D[1..Nx -1] = Fon*phi[iold ,1..Nx -1,j-1]
62 + (1.0 - 2*Fon)*phi[iold ,1..Nx -1,j]
63 + Fon*phi[iold ,1..Nx -1,j+1];
64 D[1] += Fon*phi[inew ,0,j];
65 D[Nx -1] += Fon*phi[inew ,Nx ,j];
66 tridiag(A,B,C,D,phi[inew ,1..Nx -1,j]);
67 }

Nn serial parallel speedup

128 1.0299 0.0415 24.79
256 2.2347 0.0980 22.80
512 5.3224 0.2537 20.98
1024 13.9097 0.8833 15.75
2048 41.6813 3.6751 11.34
4096 171.7800 18.1090 9.48

On 8 physical cores, 16 logical cores
with hyperthreading.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Real Applicatons ⟳⟳⟳ 25/33

Real Applicatons

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Real Applicatons ⟳⟳⟳ 26/33

From Kayraklioglu, Laurendeau & Zayni, Adv Model and Simul Seminar Series, NASA Ames Research Center Feb 20th
2025: https://www.nas.nasa.gov/assets/nas/pdf/ams/2025/AMS_20250220_Kayraklioglu.pdf

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

https://www.nas.nasa.gov/assets/nas/pdf/ams/2025/AMS_20250220_Kayraklioglu.pdf
nelsonluisdias@gmail.com

Real Applicatons ⟳⟳⟳ 27/33

Progress towards our own Chapel use

From de Jesus et al. (2023)

From Laba et al. (2025)

From Lesinhovski et al. (2025)

From Duarte et al. (2025)

From Lesinhovski and Dias (2025)

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Real Applicatons ⟳⟳⟳ 28/33

Also, visit my page: https://nldias.github.io/software.html

ada "attached domain arrays" can be used as arguments in first-class
functions

angles from radians to decimals and the other way around:
atmgas atmospheric gas properties and manipulation
dgrow grow an array to fit an index
evap procedures to calculate evaporation in hydrology
nspectrum the spectrum from a single FFT
nstat statistical stuff (including Lowess and Levenberg-Marquardt!)
nstrings additional string manipulation
planfit the planar fit method for micrometeorology
pmatrix parallel matrix operations
smatrix serial matrix operations
ssr sort, search, etc. in an array
sunearth simple astronomical calculations useful in hydrology and

meteorology
water properties of liquid water

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

https://nldias.github.io/software.html
nelsonluisdias@gmail.com

Conclusions ⟳⟳⟳ 29/33

Conclusions

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

Conclusions ⟳⟳⟳ 30/33

Conclusions

• Desktops and notebooks are now up to the task of performing useful and detailed Fluid Mechanics simulations.
• They will get even more powerful in the coming years.
• Leveraging their power however, requires parallel programming

Pros:

• Chapel is modern, powerful, elegant, generates fast code, and is easy to learn.
• A single language can be used to most tasks, like statiscal processing of data, fluid mechanics simulations, various
file manipulations, etc..

• Chapel makes parallel programming easy.
• Chapel runs from notebooks to supercomputers, and is very portable.

Cons:

• Not interactive.
• Compilation can take up to 3-5 s.
• Not a large application base yet (but remember you can use Python, C and Fortran libraries inside Chapel).

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

⟳⟳⟳ 31/33

Thanks for the attention!

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

References ⟳⟳⟳ 32/33

References

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

References ⟳⟳⟳ 33/33

Anderson, J. D. (2005, Dec). Ludwig prandtl’s boundary layer. Phys. Today 58(12), 42–48.

de Jesus, A. C. F. S., W. C. Lesinhovski, L. S. Freire, and N. L. Dias (2023). Parallel implementation in chapel for the
numerical solution of the 3d poisson problem. In CHIUW 2023: 10th annual Chapel Implementers and Users Workshop,
a free, online event for the Chapel programming language community held on June 1-2, 2023, Online conference.

Duarte, H. F., N. L. Dias, and H. Iwata (2025). Validation of the staeble lake evaporation model in mountainous terrain.
Journal of Agricultural Meteorology 81(2), 73–89.

Kreider, D. L., R. G. Kuller, D. R. Ostberg, and F. W. Perkins (1966). An Introduction to Linear Analysis. Reading, Mas-
sachusetts: Addison-Wesley Publishing Company.

Laba, P., N. Dias, M. Chamecki, C. Dias-Júnior, and G. Torkelson (2025). Topography-induced tke budget behavior over
an amazon forest. Boundary-Layer Meteorol 191, 36.

Lesinhovski, W. C. and N. L. Dias (2025). A parallel implementation of the immersed boundary method in the chapel
programming language. In The 8th Annual Parallel Applications Workshop, Alternatives To MPI+X.

Lesinhovski, W. C., N. L. Dias, L. S. Freire, and A. C. F. S. d. Jesus (2025). On the relative merits of interpolation schemes
for the immersed boundary method: a case study with the heat equation. Trends in Computational and Applied
Mathematics 26, e01833.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

References ⟳⟳⟳ 34/34

Prandtl, L. (1905). Presentation in congress; title not known. In A. Krazer (Ed.), Verhandlungen des dritten internationalen
Mathematiker-Kongresses in Heidelberg 1904 (Proceedings of the Third International Congress of Mathematicians in Hei-
delberg 1904), pp. 484–491.

Prandtl, L. (1928). Motion of fluids with very little viscosity. Technical Memorandum 452, NACA. translated from
Ueber Flussigkeitsbeegung bei sehr kleiner Reibung, Vier Abhandlungen zur Hydrodynamik und Aerodynamik, pp.
1–8, Gottingen, 1927.

Tani, I. (1977). History of boundary layer theory. Annual review of fluid mechanics 9(1), 87–111.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com

	Introduction
	The Chapel programming language
	Real Applicatons
	Conclusions

