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The boundary-layer approximation
Atmospheric turbulence studies started by borrowing concepts from Mechanical Engineering and the flow in channels
and in pipes. In many cases these flows are almost homogeneous along the x direction, and viscosity effects are felt in a
thin layer close to the wall (Prandtl, 1905, 1928; Tani, 1977; Anderson, 2005). Generalization to turbulent boundary layers
generally implies

∂u

∂z
≫ ∂u

∂x
,

∂T

∂z
≫ ∂T

∂x
,

and this leads to the well-known Prandtl boundary-layer equations in different forms.

Figure from Prandtl (1928)
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BL “eliminates” scales and boundary conditions

• Downstream boundary conditions no longer needed: elliptic → hyperbolic.
• Dimensionless quantities can now be defined.
• A dimensionless ODE can now be solved (Blasius’ solution).

A simpler example: instant injection of a tracer in an infinite domain

∂c

∂t
= D

∂2c

∂x2
, c (x ,0) = M

A
δ (x ), c (±∞, t ) = 0,∫ +∞

−∞
c (x , t )dx =

M

A
, [t .

In principle we need to find a function of two variables, c (x , t ). However, because there is no explicit x scale (because
the domain is infinite in x ), we find two dimensionless variables only,

ξ =
x

√
4Dt
, χ =

c (x , t )A
√
4Dt

M
,

χ = f (ξ), . . .
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. . . reducing the problem to . . .

d
dξ

[
df
dξ

+ 2ξf
]
= 0, f (±∞) = 0, ⇒ f (ξ) = 1

√
π
e−ξ

2
,

c (x , t ) = M

A
√
4Dt

exp
[
− x2

4Dt

]
.

If you add scales, the solution depends on more variables:

∂c

∂t
= D

∂2c

∂x2
, c (x ,0) = c0f (x ), c (0, t ) = c (L, t ) = 0,

c (x , t ) = c0

∞∑
n=1

Ane
−n2π2D

L2
t sin

nπx

L
, An =

2

L

∫ L

0
f (x ) sin nπx

L
dx ,

and now there are 3 dimensionless variables:
c

c0
,

x

L
,

Dt

L2
.
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Few scales leads to (semi)analytical success
The combination of dimensionless variables obtained from relatively few length scales in prototypical problems has
led to many sucesses in Fluid Mechanics:

• In laminar boundary-layer theory, to the Blasius’s solution.

• In flow in ducts under pressure, to the log velocity profile and the Moody diagram for head loss calculations.

• ...

• In Monin-Obukhov Similarity Theory, we no longer have fully closed equations, but we still assume a few “infini-
ties” (homogeneity in x , no influence of the height of the atmospheric boundary-layer), and hope that a flat terrain
and the existence of an inertial sublayer will help.

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com


Introduction ⟳⟳⟳ 11/33

But will them?

From: https://www.attoproject.org/adjustments-to-the-law-of-the-wall-above-an-amazon-forest/
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What is going on? TKE budget estimated from LES

T h +Π +Ah + P h
u + P h

v + P h
w

εe
≡ N

εe
,

− S

εe
+
P z
u + P z

w

εe
+ B

εe
+T

z +Az

εe
+ N

εe
= 1.

Normalized TKE budget terms derived from the LES The last column is the sum of all terms: if the subgrid-scale stresses
and pressure terms are sufficiently small, the columns should sum to 1

Laba et al. (2025): LES TKE
for the ATTO site

Height (m) P z
u /εe P z

w/εe P h
u&w/εe T z/εe T h/εe Az/εe Ah/εe S/εe

∑
LES averaged over 3 stencil points (6 m) in the vertical

35 0.9069 −0.0235 0.0489 0.1906 0.1117 −0.1366 0.0592 −0.0274 1.1298

42 1.7069 −0.0206 0.0708 −0.2342 0.0928 −0.1755 0.0814 −0.0487 1.4730

50 1.8621 0.0082 0.0644 −0.6071 0.0469 −0.0361 −0.0220 −0.0491 1.2673

81 0.5208 −0.0569 0.1168 0.0809 0.0596 −0.0004 0.3518 −0.0796 0.9929
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Upshot

• We are now facing complicated geometries due to topography, surface features, urban environments, . . .

• This may introducemany new length scales, velocity scales, scalar scales, etc..

• The elegant approach of dimensionless solutions and dimensionless empirical functions may not work anymore.
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Upshot

• We are now facing complicated geometries due to topography, surface features, urban environments, . . .

• This may introducemany new length scales, velocity scales, scalar scales, etc..

• The elegant approach of dimensionless solutions and dimensionless empirical functions may not work anymore.

We need (many more) numerical simulations:

• They should be easy to develop and deploy.

• They should be possible to run in our desk computers.

• Note that high-end personal computers with 8, 16, 32, . . .cores are becoming increasingly common and more
affordable.

• Several nodes and/or several cores means parallel programming.
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The Chapel programming language
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From Kayraklioglu, Laurendeau & Zayni, Adv Model and Simul Seminar Series, NASA Ames Research Center Feb 20th
2025: https://www.nas.nasa.gov/assets/nas/pdf/ams/2025/AMS_20250220_Kayraklioglu.pdf
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A short list of nice features (personal view)

• Easy to start using.

• Easy to translate an existing [Fortran or C or Python or . . . ] code to Chapel.

• Interoperability: Can link a Fortran, or C, or Python library with Chapel. This allows reuse of existing software
libraries without the need to re-program everything from scratch.

• Modular, Python-style: every Chapel file (extension chpl) is a module: it can be a program or it can be a library.
There is no separate compilation of Chapel modules: this is simpler than the separate compilation schemes of C
and Fortran.

• Powerful arrays, Fortran-style. Arbitrary lower and upper bounds; slicing possible (but not as efficient as Fortran).

• Memory-safe, except for some uses of classes (https://chapel-lang.org/blog/posts/memory-safety/).

• Runs anywhere, from notebooks to supercomputers. Runs in CPUs and GPUs.

• Powerful but simple commands for parallelization. Much easier than OpenMP and MPI.

• Simple and straightforward distribution of arrays and tasks among cores in a single node, and among many nodes
(of a cluster).
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Good resources to program in Chapel

• Excellent community suport
• Good on-line documentation https://chapel-lang.org/
• Syntax highlighting for emacs, vi, vs-code
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Chapel’s hello world

1 // -----------------------------------------------
2 // hello -pu: a hello world per processing unit
3 // (== core)
4 // -----------------------------------------------
5 writeln("-"*20);
6 writeln("here␣=␣",here);
7 writeln("computer␣name␣=␣",here.name);
8 const npus = here.numPUs(true);
9 writeln("number␣of␣logical␣processing␣units␣=␣",npus);

10 writeln("-"*20);
11 coforall p in 0..npus -1 do {
12 writeln("hello␣from␣processing␣unit␣",p);
13 }
14 writeln("-"*20);

In Chapel, locales are the nodes of a cluster; processing
units are the cores in each locale.
This program runs on a single locale, and parallelizes over
16 cores.

$chpl hello -pu.chpl
$./hello -pu
--------------------
here = LOCALE0
computer name = athome
number of logical processing units = 16
--------------------
hello from processing unit 1
hello from processing unit 3
hello from processing unit 10
hello from processing unit 4
hello from processing unit 11
hello from processing unit 2
hello from processing unit 13
hello from processing unit 12
hello from processing unit 5
hello from processing unit 15
hello from processing unit 9
hello from processing unit 8
hello from processing unit 6
hello from processing unit 7
hello from processing unit 14
hello from processing unit 0
--------------------

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com


The Chapel programming language ⟳⟳⟳ 19/33

Example: find a root in the complex plane
Obtain the root of z 3 − 1 = 0 with initial guess from each pixel of a 4× 4 square in the complex plane and color-code it
according to the root found: 1+ 0i = red,−1/2+ i

√
3/2 = green,−1/2− i

√
3/2 = blue.
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Chapel code: zxynewton-p.chpl
1 use IO only openWriter;
2 config const N = 2048;
3 const colors = {0,1,2};
4 var Ncol: [colors] int = 0;
5 var xycolor: [-N..N,-N..N] int(8);
6 var zinit: [-N..N,-N..N] complex;
7 const eps = 1.0e-6;
8 const fou = openWriter("zxynewton -p.out");
9 var dxy = 2.0/N;

10 for i in -N..N {
11 forall j in -N..N {
12 zinit[i,j] = i*dxy + (j*dxy)*1i;
13 var z0 = zinit[i,j];
14 iterate(z0);
15 choosecolor(z0 ,i,j);
16 Ncol[xycolor[i,j]] += 1;
17 }
18 }
19 writeln(Ncol);
20 fouwrite;
21 fou.close ();
22 proc f(const in zin: complex): complex {
23 return (zin**3 - 1.0);
24 }
25 proc fl(const in zin:complex): complex {
26 return (3* zin **2);
27 }

28 proc iterate(ref z0: complex) {
29 var z, fz0: complex;
30 var delta = eps;
31 while (delta >= eps) {
32 fz0 = f(z0);
33 z = z0 - fz0/fl(z0);
34 delta = abs(z - z0);
35 z0 = z;
36 }
37 }
38 proc choosecolor(
39 const in z0: complex ,
40 const in i: int ,
41 const in j: int) {
42 if isClose(z0.im ,0.0, absTol =1.0e-5) {
43 xycolor[i,j] = 0; // red
44 }
45 else if isClose(z0.im,sqrt (3.0)/2.0 , absTol =1.0e-5) {
46 xycolor[i,j] = 1; // green
47 }
48 else {
49 xycolor[i,j] = 2; // blue
50 }
51 }

fouwrite code not shown.
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What do I get form parallelizing?

program time (s)
zxynewton-p 0m8.738s
zxynewton 0m29.076s
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Finally, a case where Chapel parallelizes very efficiently
Consider the two-dimensional diffusion equation

∂φ

∂t
= D

[
∂2φ

∂x2
+ ∂2φ

∂y 2

]
with simple initial and boundary conditions

φ (0,x , y ) = 1, 0 < x < Lx , 0 < y < Ly ,

φ (t ,0, y ) = φ (t ,Lx , y ) = 0, t > 0, 0 ≤ y ≤ M ,

φ (t ,x ,0) = φ (t ,x ,Ly ) = 0, t > 0, 0 ≤ x ≤ L.

This has an analytical solution (modified from Kreider et al. (1966, section 13–7)) of the form

φ (t ,x , y ) =
∞∑

m=0

∞∑
n=0

Amn sin
(
(2m + 1)πx

Lx

)
sin

(
(2n + 1)πy

Ly

)
× exp

{
−π2D

[
((2m + 1)/Lx )2 + ((2n + 1)/Ly )2

]
t
}
,

where
Amn =

16

π2(2m + 1) (2n + 1)
.
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Solution with the clever ADI method

φn+1,i ,j −φn,i ,j

∆t
= D

(
φn+1,i+1,j − 2φn+1,i ,j +φn+1,i−1,j

∆x2
+
φn,i ,j+1 − 2φn,i ,j +φn,i ,j−1

∆y 2

)
,

φn+2,i ,j −φn+1,i ,j
∆t

= D

(
φn+1,i+1,j − 2φn+1,i ,j +φn+1,i−1,j

∆x2
+
φn+2,i ,j+1 − 2φn+2,i ,j +φn+2,i ,j−1

∆y 2

)
.

8

9

0 #G

#~

G

~

8

9

0 #G

#~

G

~
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Parallelization gain & speedup

59 for j in 1..Ny -1 do {
60 D[1..Nx -1] = Fon*phi[iold ,1..Nx -1,j-1]
61 + (1.0 - 2*Fon)*phi[iold ,1..Nx -1,j]
62 + Fon*phi[iold ,1..Nx -1,j+1];
63 D[1] += Fon*phi[inew ,0,j]; // left BC
64 D[Nx -1] += Fon*phi[inew ,Nx ,j]; // right BC
65 tridiag(A,B,C,D,phi[inew ,1..Nx -1,j]);
66 }

59 forall j in 1..Ny -1 do {
60 var D: [1..Nx -1] real;
61 D[1..Nx -1] = Fon*phi[iold ,1..Nx -1,j-1]
62 + (1.0 - 2*Fon)*phi[iold ,1..Nx -1,j]
63 + Fon*phi[iold ,1..Nx -1,j+1];
64 D[1] += Fon*phi[inew ,0,j];
65 D[Nx -1] += Fon*phi[inew ,Nx ,j];
66 tridiag(A,B,C,D,phi[inew ,1..Nx -1,j]);
67 }

Nn serial parallel speedup

128 1.0299 0.0415 24.79
256 2.2347 0.0980 22.80
512 5.3224 0.2537 20.98
1024 13.9097 0.8833 15.75
2048 41.6813 3.6751 11.34
4096 171.7800 18.1090 9.48

On 8 physical cores, 16 logical cores
with hyperthreading.
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Real Applicatons
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From Kayraklioglu, Laurendeau & Zayni, Adv Model and Simul Seminar Series, NASA Ames Research Center Feb 20th
2025: https://www.nas.nasa.gov/assets/nas/pdf/ams/2025/AMS_20250220_Kayraklioglu.pdf
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Progress towards our own Chapel use

From de Jesus et al. (2023)

From Laba et al. (2025)

From Lesinhovski et al. (2025)

From Duarte et al. (2025)

From Lesinhovski and Dias (2025)
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Also, visit my page: https://nldias.github.io/software.html

ada "attached domain arrays" can be used as arguments in first-class
functions

angles from radians to decimals and the other way around:
atmgas atmospheric gas properties and manipulation
dgrow grow an array to fit an index
evap procedures to calculate evaporation in hydrology
nspectrum the spectrum from a single FFT
nstat statistical stuff (including Lowess and Levenberg-Marquardt!)
nstrings additional string manipulation
planfit the planar fit method for micrometeorology
pmatrix parallel matrix operations
smatrix serial matrix operations
ssr sort, search, etc. in an array
sunearth simple astronomical calculations useful in hydrology and

meteorology
water properties of liquid water
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Conclusions

nelsonluisdias@gmail.com XIV Workshop Brasileiro de Micrometeorologia

nelsonluisdias@gmail.com


Conclusions ⟳⟳⟳ 30/33

Conclusions

• Desktops and notebooks are now up to the task of performing useful and detailed Fluid Mechanics simulations.
• They will get even more powerful in the coming years.
• Leveraging their power however, requires parallel programming

Pros:

• Chapel is modern, powerful, elegant, generates fast code, and is easy to learn.
• A single language can be used to most tasks, like statiscal processing of data, fluid mechanics simulations, various
file manipulations, etc..

• Chapel makes parallel programming easy.
• Chapel runs from notebooks to supercomputers, and is very portable.

Cons:

• Not interactive.
• Compilation can take up to 3-5 s.
• Not a large application base yet (but remember you can use Python, C and Fortran libraries inside Chapel).
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Thanks for the attention!
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