Productive Parallel
Programming with the Chapel
Language

Michael Ferguson
October 31, 2024

:

..wm: R

.'F

N oS
;o\ >
P IK)

@ N
Ve

Hewlett Packard
Enterprise

v
W

o !

--‘n'.'
Pyt

Outline
.
5 ot R
L
X " A T ot ar
SO P
F
o3

i ,{

e Motivating Example: Sorting e
Productivity i

Scalability
GPU Computing
Demos and Q&A

| was working in the lab late one night...

Sorting in Standard Libraries

e Most standard libraries include a ‘sort’ routine

e |t's an essential building block
» supports GroupBy in data analysis tools such as Arkouda or Pandas
« supports indexing, searching, many other algorithms

e Let’s investigate the performance of standard library ‘sort’ routines

e Why focus on standard libraries? They
are more likely o be used in practice than other implementations
show what a programming language has to offer

set an example for libraries

form a common language for programmers

E—

5

https://bears-r-us.github.io/arkouda/usage/groupby.html
https://github.com/Bears-R-Us/arkouda
https://pandas.pydata.org/pandas-docs/stable/index.html

The Benchmark

e Sort 1GiB of 64-bit integers
e i.e. 128%1024*1024 integers

e Use random values

’

e Use the standard library ‘sort
in the simplest way

e Like a beginner
« or Al-generated code

E—

The Test System

My PC!

CPU: AMD Ryzen 9 7950X
e 45GHz, 16 cores, 32 threads

Memory: 64 GiB of DDR5 memory
e« 5200MT/s CL40O

Motherboard:
e Gigabyte X670 Aorus Elite AX

OS: Ubuntu 23.10

E—

Pawallel Programming Consultant & Benchmark PC

In Python

import random
import time

generate an array of random integers
n = 128*1024*1024

array = [random.randint (0, Oxffffffffffffffff) for in range (n)]

start = time.time ()

use the standard library to sort the array
array.sort ()

stop = time.time ()

print out the performance achieved
elapsed = stop-start

print ("Sorted", n, "elements in", elapsed, "seconds")

print (n/elapsed/1 000 000,

E—

"million elements sorted per second")

8

In Chapel

use Time, Sort, Random;

// generate an array of random integers

config const n = 128*1024*1024;

var A: [0..<n] uint; // note: int, uint default to 64 bits
fillRandom (A) ; // set the elements to random values

var timer: stopwatch;
timer.start () ;

// use the standard library to sort the array
sort (A) ;

// print out the performance achieved

var elapsed = timer.elapsed()
writeln("Sorted ", n, " elements in ", elapsed, " seconds");
writeln(n/elapsed/1 000 000, " million elements sorted per second");

E—

Programs are Simple

How do they perform?

Results on the PC

2489 Thousand

Python
Ints/s

0] 500 1000 1500 2000 2500 3000 3500

Thousand 64-bit Integers Sorted per Second

4000

Here is the result for the
Python program

11

Results on the PC

2.489 Million

Python
Ints/s

0] 100 200 300 400 500

Million 64-bit Integers Sorted per Second

600

Let’s zoom out to millions

12

Results on the PC

Chapel

Python

0] 100 200 300 400 500

Million 64-bit Integers Sorted per Second

I, 53

600

The Chapel sort is more
than 200 times faster!

13

Results on the PC

Chape! | . | Le's make some roomin

the chart to consider other
languages

Python |2

0] 100 200 300 400 500 600

Million 64-bit Integers Sorted per Second

Results on the PC

Chapel
Rust

Julia

NodeJS
Python

100 200 300 400 500

Million 64-bit Integers Sorted per Second

10 times faster

than the other languages
measured in this

experiment

15 times faster

than C with ‘gsort’

200 times faster

than Python’s ‘sort’

600

Results on 1 Socket AMD EPYC 7543: 32 Cores

25 times faster

Chapel 600 than C with ‘gsort’
400 times faster
C than Python
C++ 13
Python |1

0] 100 200 300 400 500 600 700

Million 64-bit Integers Sorted per Second

Results on 2 Socket AMD EPYC 7763: 64 Cores

50 times faster

Chapel 1122 than C with ‘gsort’

1000 times faster

C than Python
C++ 13
Python |1

0] 200 400 600 800 1000 1200

Million 64-bit Integers Sorted per Second

Why?

The main reason:

e Chapel used all the cores
e others used 1 core

Easy Parallelism

e A parallel programming
language can make it easy to
use parallel hardware

e A parallel standard library
brings additional productivity

e Chapel is a language built for
parallelism & includes a
parallel standard library

E—

Parallelism in the Benchmark

use Time, Sort, Random;

// generate an array of random integers

config const n = 128*1024*1024;
var A: [0..<n] wuint;
fillRandom (A) ;

Parallel Array Initialization
Parallel Random Number Generation

Parallel Sorting

var timer: stopwatch;
timer.start () ;

// use the standard library to sort the array
sort (A) ;

// print out the performance achieved

var elapsed = timer.elapsed()
writeln("Sorted ", n, " elements in ", elapsed, " seconds");
writeln(n/elapsed/1 000 000, " million elements sorted per second");

E—

21

- Chapel Programming Language

Produc’rive_ﬂ_}"i_.‘ Parallel .Fa‘s’r' Scalﬁable._-f;-.}':'.i -GPU-Enabled Open

Chapel is Productive

e Concise and readable

e Consistent concepts for
parallel computing make it
easier to learn

e Users can quickly attain
parallel performance

E—

Productive for Heat Diffusion Simulation
From a 2023 Benchmark Study

Diehl et al. [1] studied the
productivity of writing a

T~b.cwpa mpxe O parallel heat equation
narm++ : °
o | ~ Swifte solver.
C++ 17] Julia e
\Cha.rmﬂ- | *Go
Chapel
Rust — They found the Chapel
Julia | l implementation:
A] ' * Significantly shorter
* Easier to develop
0 50 100 150 200
Lines of code (LOC) *Python * Among the fastest
(a) (b)
Fig. 1. Software engineering metrics: (a) Lines of codes for all implementations. The
numbers were determined with the Linux tool cloc and (b) Two-dimensional classifica-
tion using the computational time and the COCOMO model.
[1] Diehl, P., Morris, M., Brandt, S.R,, Gupta, N., Kaiser, H. (2023). Benchmarking the Parallel 1D Heat
Equation Solver in Chapel, Charm++, C++, HPX, Go, Julia, Python, Rust, Swift, and Java. In:
Zeinalipour, D,, et al. Euro-Par 2023: Parallel Processing Workshops. Euro-Par 2023. Lecture Notes in
: Computer Science, vol 14352. Springer, Cham. Available at https://arxiv.org/abs/2307.01117 I

24

https://arxiv.org/abs/2307.01117

Productive for Parallel Metaheuristics
From a 2020 Comparative Study

e Gmys et al. [2] compared productivity and
performance of several programming languages
when implementing parallel metaheuristics for
optimization problems

e Evaluated with a dual-socket, 32-core machine

e Result: Chapel more productive in terms of
performance achieved vs. lines of code

e vs Julia and Python+Numba

[2] Jan Gmys, Tiago Carneiro, Nouredine Melab, EI-Ghazali Talbi, Daniel Tuyttens. A
comparative study of high-productivity high-performance programming languages for
parallel metaheuristics. Swarm and Evolutionary Computation, 2020, 57,
10.1016/j.swevo.2020.100720 . Available at https://inria.hal.science/hal-02879767

E—

B Julia B Python [_1Chapel — C/OpenMP

AN gt
| 1]

1 2 4 8 16 32 64
Threads

[
N

—

S
o

Relative productivity
o
[=-]

S
.

e ¢
(=] N
rdededaa ol e o sl oy

Figure 7: Relative productivity achieved by Chapel, Julia, and Python compared to the
C/OpenMP reference. Results are given for the instance nug22 and execution on 1 to 64
threads.

A figure from [2]

https://inria.hal.science/hal-02879767

Good Performance with Small Source Source Code size
CLBG Summary, Oct 6, 2024 (selected languages, no Heroic versions, zoomed-in)

Execution Time

10 -
~
>
[
f—
C
()]
O
O
o
()]
-
(e
(o]
C
f—
(7))
Q
f—
(%]
©
Y
o
f—
©O
()
N
©
=
—
(o]
C
\ 4

'
1.0

pm chapel
I csharpcore
N gCcC
go
= gpp
ifc
Bl java
 julia
node
mm perl
python3
. ruby
B rust
swift
|:| gmean-smallest
Q gmean-fastest

- ’
/

I

/

/

o Y Javeserph

: AN \ Tl AN

' S \ Sean N

] ™ N T

® Julia O@@ \ ® java

O ®cy

-«.\I}_\
® chapel R ® C++

1 1 1 ’ c “".Rust 1 1 1
1.5 2.0 2.5) 3.0 3.5 4.0 4.5

Compressed Code Size (normalized to smallest entry)

Chapel is Compact, Clear, and Competitive

STREAM TRIAD: C + MPI + OPENMP use BlockDist;

config const n = 1 000_000, STREAM Performance (GB/s)
alpha = 0.01;

w1 const Dom = blockDist.createDomain({1l..n});
“lvar A, B, C: [Dom] real;

MPI+OpenMP —¢—
Chapel EP —e— — -~~~ -~~~ -~ - - - - - — -
Chapel Global - - -

e “|B = 2.0; Why is it simpler?
e C =107 Global view of computation [
1a =8 + alpha * c; Data distribution that — S .
! directs the computation 1632 64 128 256
HPCC RA: MPI KERNEL Whole array operations Locales (x 36 cores / locale)

RA Performance (GUPS)

forall (, r) in zip(Updates, RAStream()) do
T[r & indexMask].xor(r);

The Chapel RA benchmark is
faster due to compile-time

communication optimization 630 64 108 056
: More performance for less work! Locales (x 36 cores / locale) | 27

Doing the Impossible

Q

€€
| } [Chapel] promotes programming efficiency ... We ask

H

students at the master’s degree to do stuff that would
take 2 years and they do it in 3 months.

Eric Laurendeau
Professor, Department of Mechanical Engineering, Polytechnique Montréal

quote from his 2021 CHIUW Keynote [video]

E—

28

https://chapel-lang.org/CHIUW2021.html
https://youtu.be/wD-a_KyB8aI?t=1904

CHAMPS Summary

What is it?
e 3D unstructured CFD framework for airplane simulation
o ~85k lines of Chapel written from scratch in ~3 years

Who wrote it? ,
« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal I
S /%% POLYTECHNIQUE I
m -« MONTREAL

Why Chapel?
o Performance and scalability competitive with MPI + C++

« Students found it far more productive to use

e Enabled them to compete with more established CFD centers

43
11

e
i

5 a2
4

I

: (images provided by the CHAMPS team and used with permission) I 29

Other Elements of Productivity

» New code written in Chapel can integrate with existing programs
e C, Fortran, and Python interoperability
 Fit info workflows through ZeroMQ connections; or NetCDF, HDF5, Zarr files

e Chapel is flight-proven in production usage
» Recent Chapel releases offer language and library stability

e Another aspect of productivity is meeting performance or scaling goals...

: | 30

Chapel is Scalable

e Adding more cores and/or
more nodes can improve
performance!

e Chapel enables application
performance at any scale
 laptops

workstations

cloud systems

clusters

the largest supercomputers

E—

Can we use Chapel to sort on a supercomputer?

Chapel

1122 Million
Ints/s
0 200 400 600 800 1000 1200 1400 1600

Million 64-bit Integers Sorted per Second

This line is the best result

from earlier, on a 2 Socket
AMD EPYC 7763: 64 Cores

| 32

Can we use Chapel to sort on a supercomputer?

Zooming out to billions
1.122 Billion

Chapel
Ints/s

0 200 400 600 800 1000 1200 1400

Billion 64-bit Integers Sorted per Second

: | 33

Can we use Chapel to sort on a supercomputer?

1 node 1 Billion
Ints/s
8192 1140 Billion
nodes Ints/s
0 200 400 600 800 1000 1200 1400

Billion 64-bit Integers Sorted per Second

This result is from
Arkouda’s scalable radix
sort, written in Chapel

sorted 256 TiB

in about 30 seconds
on 8192 nodes

of an HPE Cray EX

1000x faster than the
single node result!

34

Radix Sort in Arkouda/Chapel Scaling to ~9TB/s on >8K Nodes

Arkouda Argsort Performance

9000 """

B000 [Singant 1 Asfo05. 92 Gismode —— __— —

5000 | on00 B May 2021, 18 GBede T —" HPE Cray EX (May 2023)
L ann koo e ___ Slingshot-11 network (200 Gb/s)
n 2000
@ 4000 - T 8192 compute nodes

3000 P--------"" =T e - 256 TiB of 8-byte values

2000 P~ e ~8500 GiB/s (~31 seconds)

1000 - """ - e e

O j
1024 2048 4096 8192
Nodes

A notable performance achievement in ~100 lines of Chapel

: | 35

Arkouda Summary

What is it?
« A framework for interactive, high performance data analytics
Computes massive-scale results (TB-scale arrays) within the human thought loop (seconds to a few minutes)
User observation: No other tool provides Exploratory Data Analysis (EDA) at these scales
~30k lines of Chapel + ~25k lines of Python, written since 2019
Open-source: https://github.com/Bears-R-Us/arkouda

Who wrote it? Arkouda Client Arkouda Server
.)) (written in Python)
« Mike Merrill, Bill Reus, et al., US DoD — ;

%
6
Why Chapel?
e Enabled writing Arkouda rapidly
e Close to Pythonic — so Python users can look inside /N/
o Achieved necessary performance and scalability o . .
« Ability to develop on laptop, deploy on supercomputer M) :‘s:k'ix :is:g;;‘::n?;t'a?':"pwe"

: | 36

https://github.com/Bears-R-Us/arkouda

Productivity for Novice and Experienced HPC Programmers

We heard from Eric Laurendeau that Chapel helped new HPC programmers on the CHAMPS team

What was the experience of Mike Merrill, an HPC veteran working on Arkouda?

o Rapidly Write an HPC Code

- Got Arkouda working with several months of work
— First draft of scalable radix sort implemented in ~4 hours
— Able to use existing libraries through interoperability features

« Develop on a Laptop, run on a Supercomputer
—Same code runs on a laptop & many different HPC systems
— Achieved performance and scalability without too much effort
— Able to manually optimize where needed (especially with the aggregators library)

o Appreciated the Abstractions for Parallel Computing

—Language constructs for data and task parallelism
—Distributed arrays and whole-array operations
— Built-in parallel reductions and scans (prefix sums)

—

37

Chapel is
GPU-Enabled

e GPUs have a lot of capability
e Can be challenging to program

e Chapel helps programmability!
e Use it to program 1 GPU
e Or many GPUs in a big system

e Let’s look at an example

E—

1D Heat Equation Example

This is the 1-D heat diffusion simulation from the ChapelCon’24 tutorial

This version is serial and roughly matches what one might write in Python

1 const omega = {0..<nx},

2 omegaHat = omega.expand(-1);
3 var u: [omega] real = 1.0;

4 ulnx/4..3*nx/4] = 2.0;

5 var un = u;

6 for 1..N {

7 un <=> u;

8 for 1 in omegaHat do

9 uli] = unf[i] + alpha *
10 (un[i-1] - 2*unf[i] + unf[i+l1]);
11 }

I]

39

1D Heat Equation Example: Parallel on Multiple Cores

Changing the ‘for’ to a ‘forall’ makes this program parallel on multiple cores

o O b w N =

*8

10
11

const omega = {0..<nx},

omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
ulnx/4..3*nx/4]1 = 2.0;
var un = u;
for 1..N {

un <=> u;
forall 1 in omegaHat do
uli] = unf[i] + alpha *
(un[i-1] - 2*un[i] + un[i+1]);

Switched the inner “for’ loop to a ‘forall’, which
automatically runs the loop in parallel when possible.

The rest of the code is unchanged!

40

1D Heat Equation Example: Parallel 0 a GPU

We can use the ‘on’ statement to request the same program run on a GPU!

1 on here.gpus[0] {

2 const omega = {0..<nx}, This ‘on’ statement requests GPU execution
3 omegaHat = omega.expand(-1);

4 var u: [omega] real = 1.0; The rest of the code is unchanged!
5 ulnx/4..3*nx/4] = 2.0;

6 var un = u;

7 for 1..N {

8 un <=> u;

S forall 1 in omegaHat do
10 uli] = unl[i] + alpha *
11 (un[i-1] - 2*unf[i] + unfi+l]);
12 }
13 }

I]

| 41

Chapel GPU Code is Compact and Competitive

Simple STREAM Triad in CUDA

#include <string>

#include <vector>

#include <stdio.h>
#include <float.h>
#include <limits.h>
#include <unistd.h>

#include <sys/time.h>
typedef double real;

template <typename T>
__global__ void set_array(T * _ restrict__ const a, T value, int len)
{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len)
al[idx] = value;
}

template <typename T>

" restrict__ const ¢, T scalar, int len)

{
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len)

clidx] = a[idx] + scalar * b[idx];

int main(int argc, char** argv)
{
real *d_a, *d_b, *d_c;

__global__ void STREAM Triad(T const * _ restrict__ a, T const * _ restrict__ b,

config const m = 1<<26,
alpha = 3.0;

on here.gpus[0] {
var A, B, C: [1l..m] real;

B:

C:

~e

0.5
0.5

~e

A = B + alpha*C;

cudaFree (d_b) ;
cudaFree (d_c);

48

Performance
e On par with HIP, very close to CUDA

Stream (using NVIDIA RTX A2000)
e = = = =Y = m = = = = LT

200

=% C+CUDA

Throughput
(GBI/s)

100 -8 1.30 (1.29+Eager Load+LICM)
-M- 1.30 Prerelease (1.29+Eager Load)
- 129
O 1 1 1
32 64 128
Number of Elements (M)
Stream (using AMD Instinct MI100)
o 800
=}
25600
Sy
o (0400 - C+HIP
|_E 200 -@- Chapel 1.31
-~ Chapel 1.30
0 L 1]
32 64 128

Number of Elements (M)

Better

Better

42

Use Case: Image Processing for Coral Reef Biodiversity

e Analyzing images for coral reef biodiversity
« Important for prioritizing interventions

e Algorithm implemented productively

« Add up weighted values of all points in a neighborhood,
i.e., convolution over image

» Developed by Scott Bachman, NCAR scientist who was
a visiting scholar on the Chapel team at HPE

o Scott started learning Chapel in Sept 2022, started
Coral Reef app in Dec 2022, already had collaborators

presenting results in Feb 2023
e In July, changed ~5 lines in a variant to run on GPU
e Performance

o Less than 300 lines of Chapel code scales out to 100s
of processors on Cheyenne (NCAR)

o Full maps calculated in seconds, rather than days
—-10,000 times faster

: | 43

Use Case: Image Processing for Coral Reef Biodiversity

Runs on Frontier!

e At 64 nodes, takes 20 minutes
« As opposed to ~27 days on a laptop

 Straightforward code changes:
« from sequential Chapel code
» to GPU-enabled

e to multi-node, multi-GPU, multi-thread

Multilocale Coral Image Analysis

-
— ”’
-
-

Speedup
N w SN
|
\
N

= Speedup over 2 nodes

24 8 16 32
Number of Nodes
(x8 GPUs)

E—

64

Better

Read a recent interview with Scott Bachman
on Chapel Blog

. i

7 Questions for Scott Bachman: Analyzing
Coral Reefs with Chapel

Posted on October 1, 2024.

Tags: Earth Sciences | Image Analysis | GPU Programming

User Experiences || Interviews

By: Brad Chamberlain, Engin Kayraklioglu

In this second installment of our Seven Questions for Chapel Users series, we're looking at a
recent success story in which Scott Bachman used Chapel to unlock new scales of biodiversity
analysis in coral reefs to study ocean health using satellite image processing. This is work that
Scott started as a visiting scholar with the Chapel team at HPE, and it is just one of several
projects he took on during his time with us. Since wrapping up his visit at HPE, Scott has
continued to apply Chapel in his work, which he describes below.

One noteworthy thing about the computation Scott describes here is that it is just a few hundred
lines of Chapel code, yet can be used to drive the CPUs and GPUs of the world's largest
supercomputers. This serves as a sharp contrast with the 100+k lines that make up the CHAMPS
framework covered in our previous interview. Together, the two demonstrate the vast spectrum of
code sizes that researchers are productively writing in Chapel.

https://chapel-lang.org/blog/posts/7qs-bachman/

Helping Scientists Do Science

| told them “Don’t hire software engineers. I'll do it, and I'll
write it in Chapel because | can do it by myself, and | can
stand this thing up really fast.” And that is exactly what
happened.

Scott Bachman
Oceanographer, National Center for Atmospheric Research (NCAR) and Technical Modeling Lead at [C]Worthy
quote from his interview on the Chapel Blog

E—

45

https://chapel-lang.org/blog/posts/7qs-bachman/

E— | s

Institutions and Application Domains Using Chapel

Institutions

Ecole Polytechnique Montréal in Canada

Application Domains

3D Unstructured CFD for Airplane simulation

U.S. Govt

Arkouda: Exploratory Data Analysis at Scale

[CIWorthy

Oceanographic Modeling

Coral Reef Alliance

Image Analysis

New Jersey Institute of Technology in USA

Distributed Graph Analytics in Arachne/Arkouda

Radboud University in The Netherlands Quantum Simulations

INRIA in France and IMEC in Belgium Branch and Bound Optimization (e.g., N-Queens)
The Federal University of Parand in Brazil Environmental Engineering

University of Guelph in Canada Hydrological model

University of Colorado, Boulder in USA Structured CFD for climate science

PNNL in USA Hypergraph Library

Yale University in USA

Distributed FFTs

Cray/Al at HPE

Hyper Parameter Optimization

—

HPE provides paid Chapel support for some organizations

47

Chapel is Fast, Productive, Scalable, GPU-Enabled, and Open Source

Results on 2 Socket AMD EPYC 7763: 64 Cores

Fast and Scalable
 Easier parallelism allows your program to use more of your hardware .

Chapel 1122

20

C++ 13

Productive python |2
e On the CHAMPS team, students could complete projects in 8x less time " Milon i-bititepersSarvd

Arkouda Argsort Performance

Scalable Across Nodes oo
« Arkouda sort has scaled to 8192 nodes to achieve 1000x speedup

Slingshot-11 May 2023, 32 GiB/node —¢— - - - - - - - - - -
Slingshol-ﬂ /Mpn’l 2023, 32 GiB/node —*—
HDR-100 IB May 2021, 128 GiB/node —*—
6000
5000

4000

GiB/s

3000
2000
1000

0

1 1 1
1024 2048 4096 8192

GPU-Enabled
» Coral Reef Biodiversity application ran on GPUs changing only ~5 lines

We welcome you to participate in our open-source community!

—

E— |

Check Out these Recent Blog Posts

__ Navier-Stokes in Chapel X +

&~ C O B https://chapel-lang.org/blog/series/navier-stokes-in-chapel/ ¢¥

(., Chapel Language Blog

About Chapel Website Featured Series Tags Authors

Navier-Stokes in Chapel

A series focused on scientific computing in Chapel using stef
12 steps to Navier-Stokes tutorial.

* Navier-Stokes in Chapel —
Posted on April 10, 2024

A starting point for applying Chapel to scientific computing problems using the CFD Python
tutorial.

Navier-Stokes in Chapel — 2D Simulations and Performance
Posted on July 9, 2024

An exploration of Chapels scientific computing capabilities using the CFD Python Tutorial
and a C++/OpenMP performance comparison

Navier-Stokes in Chapel — Distributed Poisson Solver
Posted on October 28, 2024

Introduction to Chapel's distributed programming concepts used in Navier-Stokes Simulation

7 Questions for Chapel Users X + v

C O B nhttps://chapel-lang.org/blog/series/7-questions-for-chapel-1 ¥ ® 9

(., Chapel Language Blog

About Chapel Website Featured Series Tags Autl

7 Questions for Chapel Users

This series interviews users of Chapel about their experie

7 Questions for Eric Laurendeat

Aerodynamics in Cuaps

Posted on September 17, 2024

An interview with CHAMPS Pl and Professor of Mechanical Engineering, Eric Laurendeau

* 7 Questions for Scott Bachman: Analyzing Coral Reefs with
Chapel

Posted on October 1, 2024

An interview with oceanographer Scott Bachman, focusing on his work to measure coral reef
biodiversity using satellite image analysis

7 Questions for Nelson Luis Dias: Atmospheric Turbulence in
Chapel | s0

Posted on October 15, 2024

| 51

Demos

» Available Demos
 Installing and Compiling Hello World
» Calling Chapel code from Python
* ‘on’ and multi-node execution on a supercomputer
» Heat Diffusion Example
» Game of Life

: | 52

Installing on Mac OS X with
Homebrew

| 53

Chapel Documentation — Chape X

O B & https://chapel-lang.org/docs/ 7 9

A Chapel Documentation

version2.2 Vv

Quickstart Instructions
Using Chapel
Platform-Specific Notes
Technical Notes

Tools

Docs for Contributors

Quick Reference

Hello World Variants

| TN PO

@& / Chapel Documentation View page source

Chapel Documentation

Compiling and Running Chapel

¢ Quickstart Instructions
e Using Chapel

e Platform-Specific Notes
¢ Technical Notes

e Tools

e Docs for Contributors

Writing Chapel Programs

e Quick Reference
e Hello World Variants
¢ Primers

54

Installing on Ubuntu with .deb

| 55

r/

| &

. @ mferguson — root@iris: [/home/mppf — ssh mppf@iris.local — 80x24
Welcome to Ubuntu 24.04.1 LTS (GNU/Linux 6.8.0-45-generic x86_64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro

System information as of Thu Oct 10 09:26:06 AM EDT 2024

System load: 0.05 Temperature: 48.0 C

Usage of /home: 21.7% of 1.57TB Processes:

Memory usage: 1% Users logged in:

Swap usage: 0% IPv4 address for enpl3s0: 192.168.1.164

* Strictly confined Kubernetes makes edge and IoT secure. Learn how MicroK8s
just raised the bar for easy, resilient and secure K8s cluster deployment.

https://ubuntu.com/engage/secure-kubernetes—at-the-edge

Expanded Security Maintenance for Applications i1s not enabled.

@ updates can be applied immediately.

13 additional security updates can be applied with ESM Apps.

Learn more about enabling ESM Apps service at https://ubuntu.com/esm

56

Calling Chapel Code from Python
Coral Reef Beta Diversity

| 57

Calling Chapel Code from
Python

For Coral Reef Beta Diversity Analysis

‘on’ and multi-node execution on a
supercomputer

| 59

r.) @ Terminal — ssh horizon.hpc.amslabs.hpecorp.net — 80x24
mferguson®@horizon:~/chapel> I

60

STREAM Triad: a trivial Case of Parallelism + Locality

Given: n-element vectors A, B, C

In pictures:

N I A 6 A A
g LT TTTTTTTTTTTTTTTTITTIITT]
+
cITTTTTTTTTTTTTTTIITTTTT]]
o

61

STREAM Triad: a trivial Case of Parallelism + Locality

Given: n-element vectors A, B, C

In pictures, in parallel (shared memory / multicore):

AL TT T TTTTT " TTTTT TTTTT]

62

STREAM Triad: a trivial Case of Parallelism + Locality

Given: n-element vectors A, B, C

In pictures, in parallel (distributed memory):

63

STREAM Triad: a trivial Case of Parallelism + Locality

Given: n-element vectors A, B, C

In pictures, in parallel (distributed memory multicore):

64

Stream Triad: Distributed Memory (Global version)

stream-glbl.chpl

config const n = 1 000 000,
alpha = 0.01; 'use’ the standard block-distribution module

use BlockDist; create a distributed domain (index set)...

const Dom = blockDist.createDomain({1l..n}); and distributed arravs
var A, B, C: [Dom] real; - 4

A =B + alpha * C; these whole-array operations

will use all cores on all locales
A -———-

Heat Diffusion Example

66

r. ubuntu®@ip-10-40-1-130: ~/michael-demos/chapelcon-2024-tutorial — ssh ubuntu@ec2-54-183-173-189.us-west-1.compute.a... h
lubuntu@ip-10-40-1-130:~/michael-demos/chapelcon-2024-tutorial$ 1s =
01-heat-1D-serial 05—-gpus.chpl 10-heat-2D-stencil.chpl
@1-heat-1D-serial.chpl ©6-heat-1D-gpu ImageUtils.chpl
02-heat-1D-buggy.chpl 06—heat-1D—-gpu.chpl README .md

03-heat-1D @7-heat-1D-block.chpl chapel-tutorial.pdf

03—-heat-1D.chpl 08—-heat-2D.chpl

@4—basic-on.chpl 09-heat-2D-block.chpl

ubuntu@ip-10-40-1-130:~/michael-demos/chapelcon-2024-tutorial$ ||

Y

Game of Life

68

r@ © © ubuntu@ip-10-40-1-130: ~/michael-demos/hpe-dev-meetup-chapel-july-2024 — ssh ubuntu@ec2-54-183-173-189.us-west-1.c... h
ubuntu@ip-10-40-1-130:~/michael-demos/hpe-dev-meetup-chapel-july-2024% |:| =

| 69

