
October 31, 2024
Michael Ferguson

Productive Parallel
Programming with the Chapel
Language

Outline

• Motivating Example: Sorting
• Productivity
• Scalability
• GPU Computing
• Demos and Q&A

Sorting in Standard Libraries

Motivating Example

3

I was working in the lab late one night…

4

5

• Most standard libraries include a ‘sort’ routine

• It’s an essential building block
• supports GroupBy in data analysis tools such as Arkouda or Pandas
• supports indexing, searching, many other algorithms

• Let’s investigate the performance of standard library ‘sort’ routines

• Why focus on standard libraries? They
• are more likely to be used in practice than other implementations
• show what a programming language has to offer
• set an example for libraries
• form a common language for programmers

Sorting in Standard Libraries

https://bears-r-us.github.io/arkouda/usage/groupby.html
https://github.com/Bears-R-Us/arkouda
https://pandas.pydata.org/pandas-docs/stable/index.html

• Sort 1GiB of 64-bit integers
• i.e. 128*1024*1024 integers

• Use random values

• Use the standard library ‘sort’
in the simplest way
• Like a beginner
• or AI-generated code

The Benchmark

6

My PC!

CPU: AMD Ryzen 9 7950X
• 4.5GHz, 16 cores, 32 threads

Memory: 64 GiB of DDR5 memory
• 5200MT/s CL40

Motherboard:
• Gigabyte X670 Aorus Elite AX

OS: Ubuntu 23.10

The Test System

7Pawallel Programming Consultant & Benchmark PC

Total Cost:
~ $1500

8

import random
import time

generate an array of random integers
n = 128*1024*1024
array = [random.randint(0, 0xffffffffffffffff) for _ in range(n)]

start = time.time()
use the standard library to sort the array
array.sort()
stop = time.time()

print out the performance achieved
elapsed = stop-start
print ("Sorted", n, "elements in", elapsed, "seconds")
print (n/elapsed/1_000_000, "million elements sorted per second")

In Python

9

use Time, Sort, Random;

// generate an array of random integers
config const n = 128*1024*1024;
var A: [0..<n] uint; // note: int, uint default to 64 bits
fillRandom(A); // set the elements to random values

var timer: stopwatch;
timer.start();
// use the standard library to sort the array
sort(A);

// print out the performance achieved
var elapsed = timer.elapsed();
writeln("Sorted ", n, " elements in ", elapsed, " seconds");
writeln(n/elapsed/1_000_000, " million elements sorted per second");

In Chapel

Both Programs are Simple

How do they perform?

Here is the result for the
Python program

2489 Thousand
Ints/s

0 500 1000 1500 2000 2500 3000 3500 4000

Python

Thousand 64-bit Integers Sorted per Second

Results on the PC

11

Let’s zoom out to millions

2.489 Million
Ints/s

0 100 200 300 400 500 600

Python

Million 64-bit Integers Sorted per Second

Results on the PC

12

The Chapel sort is more
than 200 times faster!

2

543

0 100 200 300 400 500 600

Python

Chapel

Million 64-bit Integers Sorted per Second

Results on the PC

13

Let’s make some room in
the chart to consider other
languages

2

543

0 100 200 300 400 500 600

Python

Chapel

Million 64-bit Integers Sorted per Second

Results on the PC

14

10 times faster

than the other languages
measured in this
experiment

15 times faster

than C with ‘qsort’

200 times faster

than Python’s ‘sort’

0 100 200 300 400 500 600

Python

NodeJS

C#

Go

Java

C++

C

Julia

Rust

Chapel

Million 64-bit Integers Sorted per Second

Results on the PC

15

Server hardware is different.

How does that impact things?

How about
Server Hardware?

16

25 times faster

than C with ‘qsort’

400 times faster

than Python

1

13

23

600

0 100 200 300 400 500 600 700

Python

C++

C

Chapel

Million 64-bit Integers Sorted per Second

Results on 1 Socket AMD EPYC 7543: 32 Cores

17

50 times faster

than C with ‘qsort’

1000 times faster

than Python

1

13

20

1122

0 200 400 600 800 1000 1200

Python

C++

C

Chapel

Million 64-bit Integers Sorted per Second

Results on 2 Socket AMD EPYC 7763: 64 Cores

18

The main reason:

• Chapel used all the cores
• others used 1 core

Why?

19

• A parallel programming
language can make it easy to
use parallel hardware

• A parallel standard library
brings additional productivity

• Chapel is a language built for
parallelism & includes a
parallel standard library

Easy Parallelism

20

21

use Time, Sort, Random;

// generate an array of random integers
config const n = 128*1024*1024;
var A: [0..<n] uint;
fillRandom(A);

var timer: stopwatch;
timer.start();
// use the standard library to sort the array
sort(A);

// print out the performance achieved
var elapsed = timer.elapsed();
writeln("Sorted ", n, " elements in ", elapsed, " seconds");
writeln(n/elapsed/1_000_000, " million elements sorted per second");

Parallelism in the Benchmark

Parallel Array Initialization

Parallel Random Number Generation

Parallel Sorting

Key Aspects of the
Chapel Programming Language

22

Productive Parallel Fast Scalable GPU-Enabled Open

• Concise and readable

• Consistent concepts for
parallel computing make it
easier to learn

• Users can quickly attain
parallel performance

Chapel is Productive

23

From a 2023 Benchmark Study
Productive for Heat Diffusion Simulation

24

Diehl et al. [1] studied the
productivity of writing a
parallel heat equation
solver.

They found the Chapel
implementation:
• Significantly shorter
• Easier to develop
• Among the fastest

[1] Diehl, P., Morris, M., Brandt, S.R., Gupta, N., Kaiser, H. (2023). Benchmarking the Parallel 1D Heat
Equation Solver in Chapel, Charm++, C++, HPX, Go, Julia, Python, Rust, Swift, and Java. In:
Zeinalipour, D., et al. Euro-Par 2023: Parallel Processing Workshops. Euro-Par 2023. Lecture Notes in
Computer Science, vol 14352. Springer, Cham. Available at https://arxiv.org/abs/2307.01117

https://arxiv.org/abs/2307.01117

• Gmys et al. [2] compared productivity and
performance of several programming languages
when implementing parallel metaheuristics for
optimization problems

• Evaluated with a dual-socket, 32-core machine

• Result: Chapel more productive in terms of
performance achieved vs. lines of code
• vs Julia and Python+Numba

[2] Jan Gmys, Tiago Carneiro, Nouredine Melab, El-Ghazali Talbi, Daniel Tuyttens. A
comparative study of high-productivity high-performance programming languages for
parallel metaheuristics. Swarm and Evolutionary Computation, 2020, 57,
10.1016/j.swevo.2020.100720 . Available at https://inria.hal.science/hal-02879767

From a 2020 Comparative Study
Productive for Parallel Metaheuristics

25

A figure from [2]

https://inria.hal.science/hal-02879767

CLBG Summary, Oct 6, 2024 (selected languages, no Heroic versions, zoomed-in)
Good Performance with Small Source Source Code size

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t n
on

-h
er

oi
c

en
tr

y)

Compressed Code Size (normalized to smallest entry)

Julia
C#

Java

Swift

Fortran

RustC

fa
st

er

smaller

C++

27

Chapel is Compact, Clear, and Competitive

72

HPCC RA: MPI KERNEL

/* Perform updates to main table. The scalar equivalent is:
*
* for (i=0; i<NUPDATE; i++) {
* Ran = (Ran << 1) ^ (((s64Int) Ran < 0) ? POLY : 0);
* Table[Ran & (TABSIZE-1)] ^= Ran;
* }
*/

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

while (i < SendCnt) {
/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {
NumberReceiving--;

} else
MPI_Abort(MPI_COMM_WORLD, -1);

MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);

}
} while (have_done && NumberReceiving > 0);
if (pendingUpdates < maxPendingUpdates) {
Ran = (Ran << 1) ^ ((s64Int) Ran < ZERO64B ? POLY : ZERO64B);
GlobalOffset = Ran & (tparams.TableSize-1);
if (GlobalOffset < tparams.Top)
WhichPe = (GlobalOffset / (tparams.MinLocalTableSize + 1));

else
WhichPe = ((GlobalOffset - tparams.Remainder) /

tparams.MinLocalTableSize);
if (WhichPe == tparams.MyProc) {
LocalOffset = (Ran & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= Ran;

} else {
HPCC_InsertUpdate(Ran, WhichPe, Buckets);
pendingUpdates++;

}
i++;

}
else {
MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}

}
/* send remaining updates in buckets */
while (pendingUpdates > 0) {

/* receive messages */
do {
MPI_Test(&inreq, &have_done, &status);
if (have_done) {
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

} while (have_done && NumberReceiving > 0);

MPI_Test(&outreq, &have_done, MPI_STATUS_IGNORE);
if (have_done) {
outreq = MPI_REQUEST_NULL;
pe = HPCC_GetUpdates(Buckets, LocalSendBuffer, localBufferSize,

&peUpdates);
MPI_Isend(&LocalSendBuffer, peUpdates, tparams.dtype64, (int)pe,

UPDATE_TAG, MPI_COMM_WORLD, &outreq);
pendingUpdates -= peUpdates;

}
}
/* send our done messages */
for (proc_count = 0 ; proc_count < tparams.NumProcs ; ++proc_count) {
if (proc_count == tparams.MyProc) { tparams.finish_req[tparams.MyProc] =

MPI_REQUEST_NULL; continue; }
/* send garbage - who cares, no one will look at it */
MPI_Isend(&Ran, 0, tparams.dtype64, proc_count, FINISHED_TAG,

MPI_COMM_WORLD, tparams.finish_req + proc_count);
}
/* Finish everyone else up... */
while (NumberReceiving > 0) {
MPI_Wait(&inreq, &status);
if (status.MPI_TAG == UPDATE_TAG) {
MPI_Get_count(&status, tparams.dtype64, &recvUpdates);
bufferBase = 0;
for (j=0; j < recvUpdates; j ++) {
inmsg = LocalRecvBuffer[bufferBase+j];
LocalOffset = (inmsg & (tparams.TableSize - 1)) –

tparams.GlobalStartMyProc;
HPCC_Table[LocalOffset] ^= inmsg;

}
} else if (status.MPI_TAG == FINISHED_TAG) {

/* we got a done message. Thanks for playing... */
NumberReceiving--;

} else {
MPI_Abort(MPI_COMM_WORLD, -1);

}
MPI_Irecv(&LocalRecvBuffer, localBufferSize, tparams.dtype64,

MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &inreq);
}

MPI_Waitall(tparams.NumProcs, tparams.finish_req, tparams.finish_statuses);

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_size(comm, &commSize);
MPI_Comm_rank(comm, &myRank);

rv = HPCC_Stream(params, 0 == myRank);
MPI_Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0, comm);

return errCount;
}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3, sizeof(double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

if (!a || !b || !c) {
if (c) HPCC_free(c);
if (b) HPCC_free(b);
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n", VectorSize);
fclose(outFile);

}
return 1;

}

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]+scalar*c[j];

HPCC_free(c);
HPCC_free(b);
HPCC_free(a);

return 0;
}

63

STREAM TRIAD: C + MPI + OPENMP

0
5000
10000
15000
20000
25000
30000

16 32 64 128 256

G
B/
s

Locales (x 36 cores / locale)

MPI+OpenMP
Chapel EP

Chapel Global

STREAM Performance (GB/s)

…
forall (_, r) in zip(Updates, RAStream()) do
 T[r & indexMask].xor(r);
…

use BlockDist;

config const n = 1_000_000,
 alpha = 0.01;
const Dom = blockDist.createDomain({1..n});
var A, B, C: [Dom] real;

B = 2.0;
C = 1.0;

A = B + alpha * C;

Why is it simpler?
• Global view of computation
• Data distribution that

directs the computation
• Whole array operations

The Chapel RA benchmark is
faster due to compile-time
communication optimization
More performance for less work!

28

Doing the Impossible

Éric Laurendeau
Professor, Department of Mechanical Engineering, Polytechnique Montréal
quote from his 2021 CHIUW Keynote [video]

[Chapel] promotes programming efficiency … We ask
students at the master’s degree to do stuff that would
take 2 years and they do it in 3 months.

“

https://chapel-lang.org/CHIUW2021.html
https://youtu.be/wD-a_KyB8aI?t=1904

29

What is it?
• 3D unstructured CFD framework for airplane simulation
• ~85k lines of Chapel written from scratch in ~3 years

Who wrote it?
• Professor Éric Laurendeau’s students + postdocs at Polytechnique Montreal
•

Why Chapel?
• Performance and scalability competitive with MPI + C++
• Students found it far more productive to use
• Enabled them to compete with more established CFD centers

CHAMPS Summary

(images provided by the CHAMPS team and used with permission)

30

• New code written in Chapel can integrate with existing programs
• C, Fortran, and Python interoperability
• Fit into workflows through ZeroMQ connections; or NetCDF, HDF5, Zarr files

• Chapel is flight-proven in production usage

• Recent Chapel releases offer language and library stability

• Another aspect of productivity is meeting performance or scaling goals…

Other Elements of Productivity

• Adding more cores and/or
more nodes can improve
performance!

• Chapel enables application
performance at any scale
• laptops
• workstations
• cloud systems
• clusters
• the largest supercomputers

Chapel is Scalable

31

This line is the best result
from earlier, on a 2 Socket
AMD EPYC 7763: 64 Cores

1122 Million
Ints/s

0 200 400 600 800 1000 1200 1400 1600

Chapel

Million 64-bit Integers Sorted per Second

Can we use Chapel to sort on a supercomputer?

32

Zooming out to billions
1.122 Billion

Ints/s

0 200 400 600 800 1000 1200 1400

Chapel

Billion 64-bit Integers Sorted per Second

Can we use Chapel to sort on a supercomputer?

33

This result is from
Arkouda’s scalable radix
sort, written in Chapel

• sorted 256 TiB

• in about 30 seconds

• on 8192 nodes

• of an HPE Cray EX

1000x faster than the
single node result!

1140 Billion
Ints/s

1 Billion
Ints/s

0 200 400 600 800 1000 1200 1400

8192
nodes

1 node

Billion 64-bit Integers Sorted per Second

Can we use Chapel to sort on a supercomputer?

34

35

A notable performance achievement in ~100 lines of Chapel

Radix Sort in Arkouda/Chapel Scaling to ~9TB/s on >8K Nodes

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192

G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

HPE Cray EX (May 2023)
Slingshot-11 network (200 Gb/s)
8192 compute nodes
256 TiB of 8-byte values
~8500 GiB/s (~31 seconds)

36

What is it?
• A framework for interactive, high performance data analytics
• Computes massive-scale results (TB-scale arrays) within the human thought loop (seconds to a few minutes)
• User observation: No other tool provides Exploratory Data Analysis (EDA) at these scales
• ~30k lines of Chapel + ~25k lines of Python, written since 2019
• Open-source: https://github.com/Bears-R-Us/arkouda

Who wrote it?
• Mike Merrill, Bill Reus, et al., US DoD

Why Chapel?
• Enabled writing Arkouda rapidly
• Close to Pythonic — so Python users can look inside
• Achieved necessary performance and scalability
• Ability to develop on laptop, deploy on supercomputer

Arkouda Summary

https://github.com/Bears-R-Us/arkouda

We heard from Éric Laurendeau that Chapel helped new HPC programmers on the CHAMPS team

What was the experience of Mike Merrill, an HPC veteran working on Arkouda?

• Rapidly Write an HPC Code
– Got Arkouda working with several months of work
– First draft of scalable radix sort implemented in ~4 hours
– Able to use existing libraries through interoperability features

• Develop on a Laptop, run on a Supercomputer
– Same code runs on a laptop & many different HPC systems
– Achieved performance and scalability without too much effort
– Able to manually optimize where needed (especially with the aggregators library)

• Appreciated the Abstractions for Parallel Computing
– Language constructs for data and task parallelism
– Distributed arrays and whole-array operations
– Built-in parallel reductions and scans (prefix sums)

37

Productivity for Novice and Experienced HPC Programmers

• GPUs have a lot of capability
• Can be challenging to program

• Chapel helps programmability!
• Use it to program 1 GPU
• Or many GPUs in a big system

• Let’s look at an example

Chapel is
GPU-Enabled

38

39

This is the 1-D heat diffusion simulation from the ChapelCon’24 tutorial

This version is serial and roughly matches what one might write in Python

1D Heat Equation Example

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 for i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

40

Changing the ‘for’ to a ‘forall’ makes this program parallel on multiple cores

1D Heat Equation Example: Parallel on Multiple Cores

1
 2
 3
 4
 5
 6
 7
★8
 9
10
11

const omega = {0..<nx},
 omegaHat = omega.expand(-1);
var u: [omega] real = 1.0;
u[nx/4..3*nx/4] = 2.0;
var un = u;
for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
}

𝑖 𝑖 +
1

𝑖 −
1

𝑛 = 0

𝑛 = 1
𝑖

𝑢

𝑢𝑛

Switched the inner ‘for’ loop to a ‘forall’, which
automatically runs the loop in parallel when possible.

The rest of the code is unchanged!

41

We can use the ‘on’ statement to request the same program run on a GPU!

1D Heat Equation Example: Parallel o a GPU

1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

on here.gpus[0] {
 const omega = {0..<nx},
 omegaHat = omega.expand(-1);
 var u: [omega] real = 1.0;
 u[nx/4..3*nx/4] = 2.0;
 var un = u;
 for 1..N {
 un <=> u;
 forall i in omegaHat do
 u[i] = un[i] + alpha *
 (un[i-1] – 2*un[i] + un[i+1]);
 }
}

This ‘on’ statement requests GPU execution

The rest of the code is unchanged!

42

Chapel GPU Code is Compact and Competitive

config const m = 1<<26,
 alpha = 3.0;

on here.gpus[0] {
 var A, B, C: [1..m] real;

 B = 0.5;
 C = 0.5;

 A = B + alpha*C;
}

Performance
• On par with HIP, very close to CUDA

43

• Analyzing images for coral reef biodiversity
• Important for prioritizing interventions

• Algorithm implemented productively
• Add up weighted values of all points in a neighborhood,

i.e., convolution over image
• Developed by Scott Bachman, NCAR scientist who was

a visiting scholar on the Chapel team at HPE
• Scott started learning Chapel in Sept 2022, started

Coral Reef app in Dec 2022, already had collaborators
presenting results in Feb 2023

• In July, changed ~5 lines in a variant to run on GPU

• Performance
• Less than 300 lines of Chapel code scales out to 100s

of processors on Cheyenne (NCAR)
• Full maps calculated in seconds, rather than days

– 10,000 times faster

Use Case: Image Processing for Coral Reef Biodiversity

44

Use Case: Image Processing for Coral Reef Biodiversity

Runs on Frontier!
• At 64 nodes, takes 20 minutes

• As opposed to ~27 days on a laptop

• Straightforward code changes:
• from sequential Chapel code
• to GPU-enabled
• to multi-node, multi-GPU, multi-thread

Read a recent interview with Scott Bachman
on Chapel Blog

https://chapel-lang.org/blog/posts/7qs-bachman/

45

Helping Scientists Do Science

Scott Bachman
Oceanographer, National Center for Atmospheric Research (NCAR) and Technical Modeling Lead at [C]Worthy
quote from his interview on the Chapel Blog

I told them “Don’t hire software engineers. I’ll do it, and I’ll
write it in Chapel because I can do it by myself, and I can
stand this thing up really fast.” And that is exactly what
happened.

“

https://chapel-lang.org/blog/posts/7qs-bachman/

Summary

46

47

Institutions and Application Domains Using Chapel

Institutions Application Domains

École Polytechnique Montréal in Canada 3D Unstructured CFD for Airplane simulation

U.S. Govt Arkouda: Exploratory Data Analysis at Scale

[C]Worthy Oceanographic Modeling

Coral Reef Alliance Image Analysis

New Jersey Institute of Technology in USA Distributed Graph Analytics in Arachne/Arkouda

Radboud University in The Netherlands Quantum Simulations

INRIA in France and IMEC in Belgium Branch and Bound Optimization (e.g., N-Queens)

The Federal University of Paraná in Brazil Environmental Engineering

University of Guelph in Canada Hydrological model

University of Colorado, Boulder in USA Structured CFD for climate science

PNNL in USA Hypergraph Library

Yale University in USA Distributed FFTs

Cray/AI at HPE Hyper Parameter Optimization

HPE provides paid Chapel support for some organizations

Fast and Scalable
• Easier parallelism allows your program to use more of your hardware

Productive
• On the CHAMPS team, students could complete projects in 8x less time

Scalable Across Nodes
• Arkouda sort has scaled to 8192 nodes to achieve 1000x speedup

GPU-Enabled
• Coral Reef Biodiversity application ran on GPUs changing only ~5 lines

We welcome you to participate in our open-source community!

48

Chapel is Fast, Productive, Scalable, GPU-Enabled, and Open Source

Coda

49

50

Check Out these Recent Blog Posts

Demos and Q&A

51

52

• Available Demos
• Installing and Compiling Hello World
• Calling Chapel code from Python
• ‘on’ and multi-node execution on a supercomputer
• Heat Diffusion Example
• Game of Life

Demos

Installing on Mac OS X with
Homebrew

53

54

Installing on Ubuntu with .deb

55

56

Calling Chapel Code from Python
Coral Reef Beta Diversity

57

58

‘on’ and multi-node execution on a
supercomputer

59

60

Given: n-element vectors A, B, C

Compute: ∀i ∈ 1..n, Ai = Bi + α⋅Ci
In pictures:

STREAM Triad: a trivial Case of Parallelism + Locality

=

α

+

A

B

C
·

61

Given: n-element vectors A, B, C

Compute: ∀i ∈ 1..n, Ai = Bi + α⋅Ci
In pictures, in parallel (shared memory / multicore):

STREAM Triad: a trivial Case of Parallelism + Locality

A

B

C
·

=

+

·

=

+

·

=

+

·

=

+

·
α

62

Given: n-element vectors A, B, C

Compute: ∀i ∈ 1..n, Ai = Bi + α⋅Ci
In pictures, in parallel (distributed memory):

STREAM Triad: a trivial Case of Parallelism + Locality

A

B

C
·

=

+

·

=

+

·

=

+

·

=

+

·
α

63

Given: n-element vectors A, B, C

Compute: ∀i ∈ 1..n, Ai = Bi + α⋅Ci
In pictures, in parallel (distributed memory multicore):

STREAM Triad: a trivial Case of Parallelism + Locality

A

B

C
·

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

64

Stream Triad: Distributed Memory (Global version)

config const n = 1_000_000,
 alpha = 0.01;

use BlockDist;

const Dom = blockDist.createDomain({1..n});
var A, B, C: [Dom] real;

A = B + alpha * C;

stream-glbl.chpl

these whole-array operations
will use all cores on all locales

65

create a distributed domain (index set)…

'use’ the standard block-distribution module

…and distributed arrays

A

B

C

α

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

=

+

·

Heat Diffusion Example

66

67

Game of Life

68

69

