
Clusters, Clouds, and Data for Scientific Computing (CCDSC)
September 5, 2024

Real Applications, Real Fast in Chapel

Michelle Mills Strout

• Cost of developing, extending, and maintaining parallel and distributed applications
• Clouds provide a possible answer for how quickly they can scale a computation to massive

datasets

• Performance, Scalability, and Performance Portability are just one of many Metrics
• Time to try out a new technology
• Time to first usable application that solves their problem
• Time to tune application for performance, scalability, and performance portability
• Time to evolve the application for scientific discovery
• Ease of use by collaborators
• Time to maintain application

• Let’s look at how the Chapel Parallel Programming Language does with these metrics

2

What Scientific Computing Practitioners Care About

• How difficult is it to install it?
• Are there smallish examples doing operations the scientists know they will need?

3

Time to Try Out a New Technology

Github Code Space

Attempt This Online

Docker Containers

• How long does it take a new Chapel user to be productive?
• Many examples in the 3-6 month range

4

Time to First Usable Application

Distributed Applications in Many Domains are Written in Chapel

5(images provided by their respective teams and used with permission)

CHAMPS: 3D Unstructured CFD
Laurendeau, Bourgault-Côté, Parenteau, Plante, et al.

École Polytechnique Montréal

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

Arkouda: Interactive Data Science at Massive Scale
Mike Merrill, Bill Reus, et al.

U.S. DoD

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.

INRIA, IMEC, et al.

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

?

Your Application Here?CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.

PNNL

CrayAI HyperParameter Optimization (HPO)
Ben Albrecht et al.

Cray Inc. / HPE

Lattice-Symmetries: a Quantum Many-Body Toolbox
Tom Westerhout

Radboud University

ChapQG: Layered Quasigeostrophic CFD
Ian Grooms and Scott Bachman

University of Colorado, Boulder et al.

Desk dot chpl: Utilities for Environmental Eng.
Nelson Luis Dias

The Federal University of Paraná, Brazil

RapidQ: Mapping Coral Biodiversity
Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

6

Institutions and Application Domains Using Chapel

Institutions Application Domains

École Polytechnique Montréal in Canada 3D Unstructured CFD for Airplane simulation, CHAMPS

U.S. Govt Arkouda: Exploratory Data Analysis at Scale

New Jersey Institute of Technology in USA Distributed Graph Analytics in Arachne/Arkouda

INRIA in France and IMEC in Belgium Branch and Bound Optimization (e.g., N-Queens), ChOP

Yale University in USA Distributed FFTs

Radboud University in The Netherlands Quantum Simulations

The Federal University of Paraná in Brazil Environmental Engineering

University of Colorado, Boulder in USA Structured CFD for climate science

University of Guelph in Canada Hydrological model

PNNL in USA Hypergraph Library

Cray/AI at HPE Hyper Parameter Optimization

Coral Reef Alliance Image Analysis

• Analyzing images for coral reef diversity
• Important for prioritizing interventions

• Algorithm implemented productively
• Add up weighted values of all points in a neighborhood,

i.e., convolution over image
• Developed by Scott Bachman, NCAR scientist who is a

visiting scholar on the Chapel team
• Scott started learning Chapel in Sept 2022, started Coral

Reef app in Dec 2022, already had collaborators
presenting results in Feb 2023

• In July with ~5 lines changed, ran on a GPU

• Performance
• Less than 300 lines of Chapel code scales out to 100s of

processors on Cheyenne (NCAR)
• Full maps calculated in seconds, rather than days

7

Use Case: Image Processing for Coral Reef Dissimilarity

Arkouda is a framework for interactive, high performance data analytics
• Massive scales = dozens of terabytes
• Interactive rates = operations that run within the human thought loop (i.e., seconds to minutes)
• User observation

– No other tool provides Exploratory Data Analysis (EDA) at these scales

• Extensible in Python and in Chapel
• Open-source: https://github.com/Bears-R-Us/arkouda

8

ARKOUDA
Arkouda is the word for "bear" in Greek

HPE CONFIDENTIAL

https://github.com/Bears-R-Us/arkouda

Oct 2018: Mike Merrill and Bill Reus took a Chapel tutorial
Dec 2018: Mike reaches out to mention his intent to start building Arkouda over the holidays

May 2019: first-draft counting sorts written and tuned

June 2019: Mike gives first public talk about Arkouda at CHIUW

Sept 2019: looked at NESL LSD radix sort and ~4 hours later had a ~100-line scalable sort
• achieved 80 GiB/s on 512 nodes of Cray XC

Nov 2019: changed ~12 lines of sort code to aggregate small messages
• 40% improvement on Cray XC, ~1000x improvement on InfiniBand

Nov 2019: Mike gives talk about Arkouda at PAW-ATM (SC19)

9

ARKOUDA: A CASE STUDY FOR PRODUCTIVITY

HPE PROPRIETARY

https://www.cs.cmu.edu/~scandal/nesl/algorithms/radix-sort.nesl

• Do applications written using Chapel perform well?

• Do they scale?

• How portable is Chapel and its performance?

10

Time to Tune Applications for Performance, Scalability, and Perf Portability

CLBG Summary, Aug 19, 2024 (selected languages, no heroic versions)

11

On Node Chapel Performance and Source Code Size are Fantastic!

Ex
ec

ut
io

n
T

im
e

(n
or

m
al

iz
ed

 to
 fa

st
es

t n
on

-h
er

oi
c

en
tr

y)

Compressed Code Size (normalized to smallest entry)

Julia C#
Java

Swift

Fortran

RustC

fa
st

er

smaller

C++

HPE Apollo (May 2021)
• HDR-100 Infiniband network (100 Gb/s)
• 576 compute nodes
• 72 TiB of 8-byte values
• ~480 GiB/s (~150 seconds)

HPE Cray EX (April 2023)
• Slingshot-11 network (200 Gb/s)
• 896 compute nodes
• 28 TiB of 8-byte values
• ~1200 GiB/s (~24 seconds)

HPE Cray EX (May 2023)
• Slingshot-11 network (200 Gb/s)
• 8192 compute nodes
• 256 TiB of 8-byte values
• ~8500 GiB/s (~31 seconds)

A notable performance achievement in ~100 lines of Chapel

Arkouda Argsort Performance

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1024 2048 4096 8192
G
iB
/s

Nodes

Slingshot-11 May 2023, 32 GiB/node
Slingshot-11 April 2023, 32 GiB/node
HDR-100 IB May 2021, 128 GiB/node

Arkouda Argsort Performance

be
tt

er

12

• Analyzing images for coral reef diversity
• Important for prioritizing interventions

• Algorithm implemented productively
• Add up weighted values of all points in a neighborhood,

i.e., convolution over image
• Developed by Scott Bachman, NCAR scientist who is a

visiting scholar on the Chapel team
• Scott started learning Chapel in Sept 2022, started Coral

Reef app in Dec 2022, already had collaborators
presenting results in Feb 2023

• In July with ~5 lines changed, ran on a GPU

• Performance
• Less than 300 lines of Chapel code scales out to 100s of

processors on Cheyenne (NCAR)
• Full maps calculated in seconds, rather than days

13

Performance Portability: Image Processing for Coral Reef Dissimilarity

proc convolve(InputArr, OutputArr) { // 3D Input, 2D Output

 foreach ... {
 tonOfMath();
 }
}
proc main() {
 var InputArr: ...;
 var OutputArr: ...;

 coforall loc in Locales do on loc { // use all nodes in parallel...

 coforall gpu in here.gpus do on gpu { // using GPUs on this node in parallel...

 var GpuInputArr = InputArr[...];
 var GpuOutputArr: ...;
 convolve(GpuInputArr, GpuOutputArr);
 OutputArr[...] = GpuOutputArr;
}}}

14

GPU Processing for Coral Reef Spectral Biodiversity

Runs on multiple nodes on Frontier!
• 5x improvement going from 2 to 64 nodes

• (from 16 to 512 GPUs)

• Straightforward code changes:
• from sequential Chapel code
• to GPU-enabled one
• to multi-node, multi-GPU, multi-thread

• We discussed Coral Reef application and showed its performance on Frontier
• In the follow slides we give performance results for a few additional miniapps/applications

• Results were copied directly from the relevant papers (with the authors' permission)
• All these run on both NVIDIA and AMD GPUs and contain no vendor-specific code

• MiniBude, BabelStream, and TeaLeaf
• Protein docking, STREAM benchmark, and heat conduction benchmark
• Chapel implementations by Josh Milthorpe (Oak Ridge National Lab and Australian National University) et al.
• Paper at 2024 Heterogeneity in Computing Workshop HCW (part of IPDPS)

• ChOp (Chapel Optimization)
• Branch and bound optimization that does load balancing across nodes
• Solves N-Queens but approach is generally applicable to optimization and search (e.g., operational scheduling)
• Presented at EuroPar 2024 by Tiago Carneiro (Interuniversity Microelectronics Centre (IMEC), Belgium) et al.

15

Other GPU-enabled Chapel Applications and Performance

16

MiniBude: Chapel implementation by Josh Milthorpe from ORNL

• MiniBude is miniapp of Bude (a protein docking simulation)
• Main kernel is a triple nested loop over proteins, ligands, and poses, and computes energy for each ligand-protein pair
• The computation is very arithmetically intensive and makes significant use of trigonometric functions

• For this miniapp, Chapel's performance is close to CUDA's and HIP's

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

CPUs

GPUs

17

BabelStream: Chapel implementation by Josh Milthorpe from ORNL

• Performs stream triad computation computing A = B + α ∗C for arrays A, B, C and scalar α
• Chapel performs competitively for this benchmark

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

CPUs

GPUs

18

ChOp: N-Queens Solver by Tiago Carneiro
• Results are shown for two different problem sizes for N-Queens, "21" and "22"
• The "CUDA"/"HIP" versions use Chapel's interoperability features to launch kernels written in CUDA/HIP
• For size=21 Chapel and CUDA/HIP perform similarly well, for size=22 the HIP version would crash so we

don't have comparative results for that (the Chapel version would, however, scale)

Figure from: "Investigating Portability in Chapel for Tree-Based Optimizations on GPU-powered Clusters". Tiago Carneiro, Engin Kayraklioglu, Guillaume Helbecque, Nouredine Melab

<<
<<

<<

• Eric Laurendeau (PI) gave our CHIUW 2021 keynote
• title: HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis
• quote:

"So CHAMPS, that's the new solver that has been made, and all made by the students... So,
[Chapel] promotes the programming efficiency. It was easy for them to learn. ...I see the end
result. We ask students at the master's degree to do stuff that would take 2 years and they
do it in 3 months. And I'm not joking, this is from 2 years to 3 months. So if you want to take
a summer internship and you say 'program a new turbulance model', well they manage. And
before, it was impossible to do."

• Recent refactor of Arkouda commands API that reduces boilerplate code by about ~80x

19

Time to Evolve Applications for Scientific Discovery

• Time to try out a new technology
• cloud images, map of how to install from source
• Updating HPC carpentries entry for Chapel with author Alex Razoumov at Simon Frasier

• Time to first usable application that solves their problem
• Cloud images like AMIs for applications

• Ease of use by collaborators
• Calling Chapel programs from Python and creating a PyPI package for installation from pip
• Providing distributed arrays for Xarray Python package

20

Efforts Underway

• Installing from source enables
configuration to best leverage network
fabric and other architectural features

• Thus, mapping out places can install and
best practices for configuration

21

Time to Tune Applications

Of interest to the PANGEO climate science community

• The Python Array API defines an interface for creating and manipulating multidimensional arrays
• intended to be used and implemented by a variety of data-science / scientific / ML libraries
• can be thought of as a simplified subset of NumPy's API

• XArray is an array library commonly used in the climate science community (affiliated with PANGEO)
• similar functionality to NumPy and Pandas with support for named array dimensions
• designed to operate as a wrapper around any array type that implements the Array API

• Implementing the Array API in Arkouda will:
• allow Arkouda to interoperate with other data-science libraries that have Array API support, like XArray
• provide some functionality needed to bring Arkouda's API into closer parity with NumPy's API

22

Python Array API in Arkouda

23

Tackling the GPU performance gap with Tealeaf

• On this application Chapel performed well on CPUs but not GPUs
• We're now studying this application to improve Chapel's GPU support

• And suspect better in-kernel reduction support will help close the gap

Figure from: "Performance Portability of the Chapel Language on Heterogeneous Architectures". Josh Milthorpe (Oak Ridge National Laboratory, Australian National University), Xianghao
Wang (Australian National University), Ahmad Azizi (Australian National University) Heterogeneity in Computing Workshop (HCW)

CPUs

GPUs

• Real Applications, Real Fast with Chapel
• Time to try out a new technology:

–many rpms available, and GitHub spaces
• Time to first usable application that solves their problem:

–Examples requiring only ~3-6 months including learning to program in Chapel
• Time to tune application for performance, scalability, and performance portability:

–Computer Language Benchmarks Game shows multicore performance and code simplicity
–Scaling over 8K nodes and 8TB/s for the radix sort in Arkouda
–Performance portability over GPUs and CPUs shown with BabelSTREAM and MiniBude

• Time to evolve the application for scientific discovery:
–~3 months to add new physics to CHAMPS

• Time to maintain application:
–‘--warn-unstable’ compilation flag

24

Summary of Chapel Effectiveness for Scientific Application Development

Thank you
https://chapel-lang.org
@ChapelLanguage

