sczz

.O.
"‘ Dallas,
TX

cccelerctes.

Intro to Chapel, UPC++, Charm++

* Chapel programming language
« Many styles of parallelism in a global namespace
 Usage: chpl myProg.chpl; ./myProg -nl 4

+ UPC++
* PGAS provided by a C++ library

Parallel Applications Workshop * Usage:

Alternatives to MPI+X upcxx —g myProg.cpp -0 myProg
upcxx-run -n 4 ./myProg

Monday, November 14th, 2022 e Charm++
» Migratable objects that communicate
« Usage:

charmc myProg.ci

charmc myProg.cpp -0 myProg
./charmrun +p4 ./myProg

CHAPEL PROGRAMMING LANGUAGE

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability.

And is being used in applications in various ways:
refactoring existing codes,
developing new codes,
serving high performance to Python codes (Chapel server with Python client), and
providing distributed and shared memory parallelism for existing codes.

3

EASE OF PROGRAMMING AND HIGH PERFORMANCE

|
1
STREAM TRIAD: C + MPI + OPENMP use BlockDist:
o ! STREAM Performance (GB/s)
_ 01010
. > | config const m = 1000, MPI+OpenMP —»—
static double fﬁi';:((gﬁtéfifi; Fetied o sticeate nenory 25000 - Chape| EP —— - - - - - - - - - = - - ———mm—— == == g
et & alpha = 3.0; Chapel Global - —+ -
| 20000 |- e o
S pneeiin 2o const Dom = {1l..m} dmapped ..; | @
m ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
var A, B, C: [Dom] real; 5] 15000
ot x5 ' 10000 f-------"--- e oo
int HPCC_Stream (HPCC_Params *params, int doI0) { B — 2 . O ; 5000 ,,
params, 3, sizeof(double), 0); iPCCﬁfVee(’c)i o C = 1 . O ,' O)
o i 1632 64 128 256
— ‘ A = B + alpha * C; Locales (x 36 cores / locale)
J

HPCC RA: MPI KERNEL

RA Performance (GUPS)

14
12
10
forall (, r) in zip(Updates, RAStream()) do D g
T[r & indexMask].xor (r); 8 6
4
2
O L 1

16 32 64 128 256
Locales (x 36 cores / locale)

PORTABILITY

e On a laptop, cluster, or supercomputer prompt> chpl helloTaskPar.
(Shared-memory parallelism) prompt> ./helloTaskPar

Hello from task 1 of 4

Hello from task 4 of 4
Hello from task 3 of 4
Hello from task 2 of 4

prompt> chpl helloTaskPar.chpl

prompt> ./helloTaskPar --numLocales=4
e On a cluster or supercomputfer Hello from task 1 of 4 on nl032

(Distributed-memory parallelism) Hello from task 4 of 4 on nl032
Hello from task of on nl1034

Hello from task of on nl1032
Hello from task of on nl033
Hello from task of on nl1034
Hello from task of on nl035

EXAMPLE CODE: ANALYZING MULTIPLE FILES USING PARALLELISM

word-count.chpl

use FileSystem;
config const dir = "DataDir";
var flList = findfiles(dir);
var filenames
= newBlockArr (0. .<flList.size,string)
filenames = fList;

// per file word count
forall f in filenames {

while reader.readline(line) {
for word in line.split (" ") {
wordCount [word] += 1;

prompt> chpl --fast word-count.chpl
prompt> ./word-count
prompt> ./word-count -nl 4

Shared and Distributed-Memory
Parallelism using forall, a distributed
array, and command line options to

indicate number of locales

SCALING FROM LAPTOP TO SUPERCOMPUTER

e Data Analysis Example

 Per file word count on all the files in a directory

« Serial to threaded and distributed by using a forall over a parallel distributed array

» Good scaling even for file I/O (below is for 10K files at 3MB each)

Time (sec)

Word Count Time
Cray CS (HDR IB)

8
Nodes (128 Cores / Node)

7

HOW APPLICATIONS ARE USING CHAPEL

Chapel Server

i I H d
Object Store | - 2
- Y

Refactoring existing codes
into Chapel (~100K lines of Chapel)

CHAMPS: 3D Unstructured CFD

Eric Laurendeau, Simon Bourgault-C6té,
Matthieu Parenteau, et al.

Ecole Polytechnique Montréal

Chapel server for a Python
client (~25K lines of Chapel)

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.
US DoD

Writing code in Chapel
(~10k lines of including parallel FFT)

ChplUItra: Simulating Ultralight

Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac, ef al.
Yale University / University of Auckland

CHAPEL ROADMAP

// Stream
e Generate code for GPUs // Variables stored on GPU

 Nascent support for NVIDIA // vector operations executed on GPU
» Exploring AMD and Intel support config var n = 1 000 000, alpha = 0.01;

» Rearchitect the compiler coforall loc in Locales on loc {
e Reduce compile times coforall gpu in loc.gpus do on gpu ({
— potentially via separate compilation / incremental recompilation var A, B, C: [l..n] real;
o Support interpreted / interactive Chapel programming

e Continue to optimize performance

* Release Chapel 2.0

« guarantee backwards-compatibility for core language and library

» Foster a growing Chapel community

— .

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
e (points to all other resources)

Social Media:

o Twitter: @ChapelLanguage
e Facebook: @ChapellLanguage

e YouTube: http://www.youtube.com/c/ChapelParallelProgramminglLangquage

Community Discussion / Support:

e Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel

o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

Tonight: CHUG after PAW-ATM
Thursday: Chapel BoF at 12:15pm

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

HAPEL

=

Home

What is Chapel?
What's New?

Upcoming Events
Job Opportunities

How Can | Learn Chapel?
Contributing to Chapel

Download Chapel
Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

User Resources
Developer Resources

Social Media / Blog Posts
Press

Presentations
Papers / Publications

CHIuw
CHUG

Contributors / Credits

chapel_info@cray.com

O - A
vyEHD

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores

« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

« productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

« watch an overview talk or browse its slides

« read a blog-length or chapter-length introduction to Chapel
¢ learn about projects powered by Chapel

« check out performance highlights like these:

PRK Stencil Performance (Glop's) NPB-FT Performance (Gop's)

Gliop's
T
(i1
Gop's
A
st
f
\
\
\

Locales (x 36 cores / locale) Locales (x 36 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist;
config const n = 100;

// use the Cyclic distribution Llibrary
// use --n=<val> when executing to override this default

forall i in {1..n} dmapped Cyclic(startIdx=1) do
writeln("Hello from iteration ", i, " of ", n,

" running on node ", here.id);

>___. The Chapel Parallel Programming Language
=

10

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

Slides courtesy of Dan Bonachea
https://go.Ibl.gov/pagoda

Support for lightweight communication for exascale applications,
frameworks and runtimes
GASNet-EX low-level layer that provides a network-independent

interface suitable for Partitioned Global Address Space (PGAS) runtime
developers

UPC++ C++ PGAS library for application, framework and library
developers, a productivity layer over GASNet-EX

UPC++ and the Pagoda project

DOE Scientific Applications
STRUMPACK ExaGraph ExaBiome NWChemEx AMReX Closely
Co-developed
in other projects
Coarray Legion Berkeley
in this project

i
Active Messages Jll Atomics | OABNGLEX Non-contiguous RMA £33
One-sided Get/Put [] interacting sw
components

¢

Memory System Networking Runtime S
Technologies (Cray uGNI, Mellanox UCX, InfiniBand verbs, OF], etc.) le +

rrrrrrr ‘"'|
11
BERKELEY LAB

https://crd.lbl.gov/pagoda

Shared | Shared | Shared | Shared

Th e PGAS m odel Global address space Segment 1 Segment 1 Segment 1 Segment

Private | Private | Private 1 Private

Private memory Segment | Segment | Segment | Segment
1 1 1

Partitioned Global Address Space

» Provide an abstraction of a shared memory, partitioned by locality

PO P1 P2 P3

* One-sided RMA communication: separate synchronization from data movement
 RMA semantics leverage the network’s RDMA hardware capabilities

Languages that provide PGAS.:
UPC, Titanium, Chapel, X10, Fortran 2008+
Libraries that provide PGAS.:
UPC++, OpenSHMEM, Co-Array C++, Global Arrays, DASH, GASPI, MPI-RMA

These slides are about UPC++
e C++ library implementation of the PGAS model

» Leverages productivity of C++
« Adds Remote Procedure Call (RPC) to complement RMA
« Extends global address space to encompass device memories (GPUs)

12 Bonachea / UPC++ Overview / Oct 2021 / upcxx.lbl.gov up (

How does UPC++ deliver the PGAS model?

UPC++ uses a “Compiler-Free,” library approach

UPC++ leverages C++ standards,
needs only a standard C++ compiler

Relies on GASNet-EX for low-overhead communication
Efficiently utilizes network hardware, including RDMA
Provides Active Messages on which UPC++ RPCs are built
Enables portability (laptops to supercomputers)

Designed for interoperability
Same SPMD process model as MPI, enabling hybrid applications
Node-level models can optionally be mixed with UPC++ as in MPI+X
OpenMP, C++ threads, Kokkos, CUDA, ...

= up(C
B 13 Bonachea / UPC++ Overview / Oct 2021 / upcxx.lbl.gov

What does UPC++ offer?

Communication operations include:
Remote Memory Access (RMA):
Get/put/atomics on a remote location in another address space

One-sided communication leverages low-overhead, zero-copy RDMA
Remote Procedure Call (RPC):

Moves computation to the data

Design principles for performance and scalability
All communication is syntactically explicit

All communication is asynchronous: futures and promises
Scalable data structures that avoid unnecessary replication

B 14 Bonachea / UPC++ Overview / Oct 2021 / upcxx.lbl.gov up L

Easy Distributed Hash Tables using UPC++ RPC

 RPC simplifies distributed data structures
« Simple, working example:
* Asynchronous DHT insertion
 Leverages C++ STL hash table and provides a distributed analog

// C++ global variables correspond to rank-local state:
std: :unordered map<string, string> local map;
// insert a key-value pair and return a future:
future<> dht insert(const stringé& key, const stringé& val) ({
return rpc(hash(key) % rank n(), // asynchronous RPC to owner
[] (const string& key, const string& val) { // lambda invoked by RPC
local maplkey] = val; // insert in local map

}) s

~
A
rrrrrrr ""|

up(C’

15 Bonachea / UPC++ Overview / Oct 2021 / upcxx.lbl.gov
BERKELEY LAB

High-Performance Distributed Hash Tables w/ RPC + RMA

10° 4
Asynchronous DHT Insert operation shown below 102 ;
 RPC inserts the key metadata at the target O
* Once the RPC completes, an attached callback issues ¢ 10';
one-sided RMA Put (rput) to store the value data ;; j
» Entire operation is fully asynchronous 3 10°;
= Element size
// C++ global variables correspond to rank-local state 10711 _*'gﬁ
std: :unordered map<uinté64 t, global ptr<char>> local map; _ o 2208
// insert a key-value pair and return a future 102 | | I | | | |
i i) 20 22 24 26 28 210 212 214
future<> dht insert(uinté64_t key, char *val, size t sz) { Processes
future<global ptr<char>> fut = Weak scaling on 32k procs @ Cori KNL
rpc(key % rank n(), // RPC obtains location for the data see IPDPS’19 doi:10.25344/S4\/88H
[key,sz] () -> global ptr<char> { // lambda invoked by RPC

global ptr<char> gptr = new_array<char>(sz);
local map[key] = gptr; // insert in local map

return gptr;

})

return fut.then(// callback executes when RPC completes
[val,sz] (global ptr<char> loc) -> future<> {

RPC simplifies distributed data-structures

« Argument passing, remote queue
management and progress engine are
factored out of the application code

return rput(val, loc, sz); }); // RMA Put the value payload . Asynchronous execution enables over|ap

}

A
freeeee

BERKELEY LAB

16 Bonachea / UPC++ Overview / Oct 2021 / upcxx.lbl.gov

up(C’

https://doi.org/10.25344/S4V88H

UPC++ Application Examples

Several applications have been written using UPC++, resulting in
improved programmer productivity and runtime performance.
Examples include:

« MetaHipMer, a genome assembler

« symPack, a sparse symmetric matrix solver

« Pond, an actor-based tsunami simulation

« SIMCoV, agent-based simulation of lungs with COVID
« Mel-UPX, half-approximate graph matching solver

 TAMM, computational chemistry module in NWChemEX

TACATATATGGCCAT

TACATATATGGCCATTTAAT
ATACCAT ATAGAT
ACGTACAGCGCCGAA

Bonachea / UPC++ Overview / Oct 2021 / upcxx.lbl.gov

BERKELEY LAB

UPC++ additional resources

Today: GASNET talk at PAW-ATM at
2:18pm

Website: upcxx.lbl.gov includes the following content:

18

Open-source/free library implementation
* Portable from laptops to supercomputers

Tutorial resources at upcxx.lbl.gov/training

 UPC++ Programmer’s Guide
* Videos and exercises from past tutorials

Formal UPC++ specification
 All the semantic details about all the features

Links to various UPC++ publications
Links to optional extensions and partner projects

Contact information and support forum

Bonachea / UPC++ Overview / Oct 2021 / upcxx.lbl.gov

“UPC++ has an excellent blend of ease-
of-use combined with high performance.
Features such as RPCs make it really
easy to rapidly prototype applications,
and still have decent performance.
Other features (such as one-sided
RMAs and asynchrony) enable fine-
tuning to get really great performance.”
-- Steven Hofmeyr, LBNL

“If your code is already written in a one-
sided fashion, moving from MPI RMA or
SHMEM to UPC++ RMA is quite
straightforward and intuitive; it took me
about 30 minutes to convert MPI RMA
functions in my application to UPC++
RMA, and | am getting similar
performance to MPI RMA at scale.”

-- Sayan Ghosh, PNNL

up(C’

https://upcxx.lbl.gov/
https://upcxx.lbl.gov/training

Slides courtesy of Laxmikant (Sanjay) Kale

Key Ideas in Charm++

What to automate:

— Let the programmer do what they are good at and

— let the system do (i.e.) automate what it can do well

More specifically:

— Let the programmer decide what to do in parallel

— Express decomposition, interactions

— Let the system decide where and when

How: virtualize the notion of a processor

— So as to automate resource management and associated functionalities

The migratable objects programming model

— Charm++ is one of the (first/foundational) programming system within
this model

H AN
!

- -\ﬁ L l l I
/’ I =
4

charm workshop introduction 19 UI0C

« A Charm++ computation consists of multiple
collections of globally visible objects
« Each collection is individually indexed

O m O

« Objects are assigned to processors by

the runtime system] Processor 0
() Programmer does not need to know
where an object is located

Processor 1

Processor 2 Processor 3

0 P Y ®

PPL

charm workshop o ’ UIUC

Scheduling on each processors is under
the control of a user-space message-
driven scheduler

Example: an object on 0 wants to invoke

a method on object A[23]

« The Runtime System packages the
method invocation into a message

« Locates where the target object is

« Sends the message to the queue on
destination processor

* Scheduler invokes the method on the
target object

charm workshop

Processor O

Scheduler

Message Queue

Processor 2

Scheduler

Message Queue

Processor 1

Scheduler

Message Queue

Processor 3
0

Scheduler

Message Queue

PPL

UI0C

EE BN

irm

L

N/
=
Bl

-

e

The runtime system knows which
processors are overloaded, which
objects are computationally heavy,
which objects talk to which

MR

Processor O

Scheduler

Message Queue

Processor 2

Scheduler

Message Queue
charm workshop

Processor 1

Scheduler

Message Queue

Processor 3

Scheduler

ENENEREEENENEEE PP',

Message Queue

UI0C

4
K

s

EE BDE
L
BlE-—3
EE NB

Processor O Processor 1

Using this information, it migrates Scheduler Scheduler

objects to rebalance load and optimize SEESEEESERSIEEs T T
communication Message Queue Message Queue

Processor 3

Scheduler

ENENEREEENENEEE PP',

Message Queue

Processor 2

Scheduler

Message Queue

charm workshop

UI0C

Code Example: Stencil/Jacobi Relaxation

entry void run() { MPI analogue
while (!converged) {
serial {

copyToBoundaries();
int x = thisIndex.x, y = thisIndex.y;
int bdX = blockDimX, bdY = blockDimY;
thisProxy(wrapX(x-1),y).updateGhosts(iter, RIGHT, bdY, rightGhost); 4 Send Ca”S
thisProxy(wrapX(x+1),y).updateGhosts(iter, LEFT, bdY, leftGhost);

Sequentia| thisProxy(x,wrapY(y-1)).updateGhosts(iter, TOP, bdX, topGhost);
thisProxy(x,wrapY(y+1)).updateGhosts(iter, BOTTOM, bdX, bottomGhost);

C++ COde freeBoundaries();

-

for (remoteCount = @; remoteCount < 4; remoteCount++) 4 recv caIIs
when updateGhosts[iter](int ref, int dir, int w, double buf[w])
serial { updateBoundary(dir, w, buf);
}
serial { double error = computeKernel();
int conv = error < DELTA;
if (iter % 5 == 2)
contribute(sizeof(int), &conv, CkReduction::logical_and, < Asynchronous
CkCallback(CkReductionTarget(Jacobi, checkConverged), thisProxy)). m— Reduction

}
if (++iter % 5 == 0)

<
when checkConverged(bool result) if (result) serial { mainProxy.done(iter); converged = true; }
if (iter % 20 == @) { serial { AtSync(); } when resumeFromSync() {} }

}s

EE BN
) I/ll
IIF%<I

n

Charm++ and CSE Applications

Well-known Biophysics
Molecular Simulation App

NanO-Mate”a!S Gordon Bell Award, 2002

’—Q

Enabllng CS technology of parallel objects and intelligent runtlme
systems has led to several CSE collaborative applications

_ Simu atlon
Computational

Astronomy

PPL

charm workshop introduction 25 UIU(

Charm++ Additional Resources AMtakat Bad

Papers and research projects:
https://charm.cs.lllinois.edu

Recent workshop:
https://charmworkshop2?2.github.io/

— Includes talk videos and slides for the last 20 years
workshops

More learning material :
https://charmplusplus.org

Commercial support: https://hpccharm.com

A nice demo of load balancing and fault tolerance:

— https://www.hpccharm.com/demo (on a raspberry
pi cluster)

Tutorial book: ask me for a draft
Book with languages and applications: i

Higher level abstractions:

AMPI (Adaptive MPI), Charm4Py
Multiphase shared arrays, Charisma
ParaTreeT

CharmTyles (new)

Applications:

NAMD (BioPhysics)
CHaNGa (Astro)

SPeCTRE (Astro)

Enzo-P (Astro)

OpenAtom (elec structure)

4 out of 21 applications project
selected by TACC for leadership apps
are Charm++ based

PPL

26 UI0C

https://charm.cs.illinois.edu/
https://charmworkshop22.github.io/
https://charmplusplus.org/
https://hpccharm.com/
https://www.hpccharm.com/demo

Summary for Chapel, UPC++, and Charm++

* Major applications (see previous slides for more)
* Chapel: CHAMPS (aerodynamics code), Arkouda server (data analytics)
 UPC++: MetaHipMer (genome assembler), SIMCoV (biology)
 Charm++: NAMD (molecular dynamics), ChaNGa (astronomy)

* All work from laptop to supercomputers
 All provide interoperability with MPI

» Key differentiator is the overarching programming model
* Chapel, one thread and then indicates which locales tasks should compute on
* UPC++, SPMD with each process executing the same program
* Charm++, main object that starts other objects and seeds communication

