
LOCALITY-BASED OPTIMIZATIONS
IN THE CHAPEL COMPILER

Engin Kayraklioglu, Elliot Ronaghan, Michael P. Ferguson, Bradford L. Chamberlain
Hewlett Packard Enterprise
engin@hpe.com

The 34th International Workshop on Languages and Compilers for Parallel Computing
October 13, 2021

Chapel: A modern parallel programming language
• portable & scalable
• open-source & collaborative

Goals:
• Support general parallel programming
• Make parallel programming at scale far more productive

2

WHAT IS CHAPEL?

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.
US DOD
~16k lines of Chapel

CHAMPS: 3D Unstructured CFD
Éric Laurendeau, Simon Bourgault-Côté,

Matthieu Parenteau, et al.
École Polytechnique Montréal
~48k lines of Chapel

CrayAI: Distributed Machine Learning
Hewlett Packard Enterprise

NOTABLE CURRENT APPLICATIONS OF CHAPEL

ChplUltra: Simulating Ultralight
Dark Matter

Nikhil Padmanabhan, J. Luna Zagorac,
Richard Easther, et al.

Yale University / University of Auckland

ChOp: Chapel-based Optimization
Tiago Carneiro, Nouredine Melab, et al.
INRIA Lille, France

3

?
Your Project Here?

Distributed Memory Programming in Chapel

4

CHAPEL

var myDomain = {1..n};
var myArray: [myDomain] int;

for element in myArray do
element = 1;

A “domain” is an index set in Chapel
This is from 1 to n, inclusive

Chapel arrays are declared over domains
This is an integer array over ‘myDomain’

A ‘for’ loop executes sequentially on the locale that started it
This iterates over array elements

Distributed Memory Programming in Chapel

5

CHAPEL

use BlockDist;

var myDomain = {1..n} dmapped Block({1..n});
var myArray: [myDomain] int;

for element in myArray do
element = 1;

The ‘dmapped’ clause can be used to make a domain distributed
Now, ‘myDomain’ is block-distributed

No change is necessary for array declaration
Now, ‘myArray’ is block-distributed

‘for’ loops are always sequential and executes on the initiating locale
This loop behaves the same; accesses to ‘element’ can be remote

Distributed Memory Programming in Chapel

6

CHAPEL

use BlockDist;

var myDomain = {1..n} dmapped Block({1..n});
var myArray: [myDomain] int;

forall element in myArray do
element = 1;

A ‘forall’ loop can be distributed and parallel depending on the iterator it executes over
Now, this loop is parallel and distributed identically to ‘myArray’

This implies that accesses to ‘element’ are always local

For More Information

• Michelle Strout’s invited talk: “Separating Parallel Performance Concerns Using Chapel”
• 10:40 EDT, today

• Web page: chapel-lang.org
• Development on GitHub: github.com/chapel-lang/chapel
• Mailing list on Discourse: chapel.discourse.group
• Public chat on Gitter: gitter.im/chapel-lang/chapel
• Questions on StackOverflow: stackoverflow.com/questions/tagged/chapel
• Talks on YouTube: youtube.com/c/ChapelParallelProgrammingLanguage
• News on Twitter: @ChapelLanguage

7

CHAPEL

http://chapel-lang.org/
http://github.com/chapel-lang/chapel
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
http://stackoverflow.com/questions/tagged/chapel
https://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://twitter.com/ChapelLanguage

AUTOMATIC LOCAL ACCESS

Before This Optimization

• Three common idioms for implementing STREAM Triad in Chapel

9

AUTOMATIC LOCAL ACCESS

Idiom 1
A = B + alpha * C;

Idiom 2
forall (a,b,c) in zip(A,B,C) do
a = b + alpha * c;

Idiom 3
forall i in D do
A[i] = B[i] + alpha * C[i];

var D = newBlockDom(1..n);
var A, B, C: [D] int;

Numbers are collected from a Cray XC with Aries
interconnect and ugni communication layer

proc array.access(idx: int) {
if isLocalIndex(idx) then
localAccess(idx);

else
nonLocalAccess(idx);

}

Locality Check Overhead

10

AUTOMATIC LOCAL ACCESS

Idiom 3
forall i in D do
A[i] = B[i] + alpha * C[i];

var D = newBlockDom(1..n);
var A, B, C: [D] int;

A per-access check is the source of overhead

• This check can be avoided for all 3 accesses
• Because;

• The ‘forall’ distribution is aligned with A’s
... because the loop is over A.domain

• The loop index is the same as the access index
• B and C’s distribution is aligned with A’s

... because they all share the same domain

var D = newBlockDom({1..N});
var A: [D] int, B: [D] int;

forall i in D do
A[i] = i;

forall i in D do
A[i] = B[i];

forall i in A.domain do
A[i] = B[i];

11

AUTOMATIC LOCAL ACCESS

the array is indexed using the loop index

Examples

the array has the same domain as the loop

the arrays are indexed using the loop index

the arrays have the same domain as the loop

loop is run over a domain query

the arrays are indexed using the loop index

the arrays have the same domain as the loop

optimized!

optimized!

optimized!

Dynamic Checks and Loop Versioning

• If the compiler cannot determine the domain of an array:
• Equality of domains will be checked at execution time
• Depending on that, an optimized or unoptimized version of the loop will be run

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int); // currently we can't infer 'B' has the same domain as 'A'

forall i in A.domain do
A[i] = calculate(B[i]); // B[i] is local if A.domain == B.domain

// that can only be confirmed at execution time

• Terminology
• ‘A[i]’ is a static candidate
• ‘B[i]’ is a dynamic candidate

12

AUTOMATIC LOCAL ACCESS

Dynamic Checks and Loop Versioning

13

AUTOMATIC LOCAL ACCESS

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
param staticCheckA = canUseLocalAccess(A, A.domain);
param staticCheckB = canUseLocalAccess(B, A.domain);
if staticCheckA || staticCheckB {

const dynamicCheckB = canUseLocalAccessDyn(B, A.domain);
if dynamicCheckB then

forall i in A.domain do
A.localAccess[i] = calculate(B.localAccess[i]);

else
forall i in A.domain do

A.localAccess[i] = calculate(B[i]);
} else {

forall i in A.domain do
A[i] = calculate(B[i]);

}

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
forall i in A.domain do

A[i] = calculate(B[i]);

Static checks are created for both arrays

Dynamic check is created only for B

Dynamic Checks and Loop Versioning

14

AUTOMATIC LOCAL ACCESS

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
param staticCheckA = canUseLocalAccess(A, A.domain);
param staticCheckB = canUseLocalAccess(B, A.domain);
if staticCheckA || staticCheckB {

const dynamicCheckB = canUseLocalAccessDyn(B, A.domain);
if dynamicCheckB then

forall i in A.domain do
A.localAccess[i] = calculate(B.localAccess[i]);

else
forall i in A.domain do

A.localAccess[i] = calculate(B[i]);
} else {

forall i in A.domain do
A[i] = calculate(B[i]);

}

var A = newBlockArr({1..N}, int);
var B = newBlockArr({1..N}, int);
forall i in A.domain do

A[i] = calculate(B[i]);

Will be executed if
• A passes static checks
• B passes static and dynamic checks

Will be executed if
• A passes static checks
• B fails static or dynamic checks

Will be executed if
• Neither array passes static checks

After This Optimization: STREAM Triad

15

AUTOMATIC LOCAL ACCESS

Idiom 1
A = B + alpha * C;

Idiom 2
forall (a,b,c) in zip(A,B,C) do
a = b + alpha * c;

Idiom 3
forall i in A.domain do
A[i] = B[i] + alpha * C[i];

var D = newBlockDom(1..n);
var A, B, C: [D] int;

Reaches 96% efficiency at-scale

All idioms perform similarly

Numbers are collected from a Cray XC with Aries
interconnect and ugni communication layer

After This Optimization: NAS Parallel Benchmarks - FT

• Explicit 'localAccess' calls are no longer needed in NPB-FT
Kernel with 'localAccess' calls

Kernel without 'localAccess' calls

16

AUTOMATIC LOCAL ACCESS

forall ijk in DomT {
const elt = V.localAccess[ijk] *

T.localAccess[ijk];

V.localAccess[ijk] = elt;
Wt.localAccess[ijk] = elt;

}

forall ijk in DomT {
const elt = V[ijk] *

T[ijk];

V[ijk] = elt;
Wt[ijk] = elt;

}

Numbers are collected from a Cray XC with Aries
interconnect and ugni communication layer

After This Optimization: chplUltra

• chplUltra[1] is an Ultralight Dark Matter simulator written in Chapel
• We removed all explicit calls to localAccess

• 80 places in total
– 59 are optimized automatically
– 21 were not optimized

• The patterns where the optimization does not fire
– 10 locality hard to detect due to complex alignments
– 7 array access indices are not loop indices
– 4 is not inside forall loops

17

AUTOMATIC LOCAL ACCESS

59

21
optimized

not optimized

[1] Nikhil Padmanabhan et al. “Simulating Ultralight Dark Matter in Chapel”. In: 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). May 2020,

https://chapel-lang.org/CHIUW/2020/Padmanabhan.pdf

AUTOMATIC AGGREGATION

Before This Optimization

• The indexgather benchmark from the bale[2] study tests random access performance

19

AUTOMATIC AGGREGATION

Straightforward indexgather
forall (d, i) in zip(Dst, Inds) do
d = Src[i];

var D = newBlockDom(1..n);
var Src, Dst, Inds: [D] int;

Communication can be done in any order
The Chapel compiler already had
“unordered forall” optimization

A Manual Approach for Data Aggregation
forall (d, i) in zip(Dst, Inds) with (var agg = new SrcAggregator(int)) do
agg.copy(d, Src[i]);

Numbers are collected from a Cray XC with Aries
interconnect and ugni communication layer

[2] https://github.com/jdevinney/bale

https://github.com/jdevinney/bale

Connecting the Dots for Automatic Aggregation

20

AUTOMATIC AGGREGATION

Straightforward indexgather
forall (d, i) in zip(Dst, Inds) do
d = Src[i];

A Manual Approach for Data Aggregation
forall (d, i) in zip(Dst, Inds) with (var agg = new SrcAggregator(int)) do
agg.copy(d, Src[i]);

What does it take to make this
transition automatically?

Q: Is it safe to complete communication in any order?
A: unordered forall optimization does that analysis

Q: Is exactly one side of the operation local?
A: automatic local access optimization does that analysis

Q: Do you have means to aggregate the data?
A: aggregator objects can do that

var D = newBlockDom({1..N});
var A: [D] int, B: [D] int;

forall i in D do
A[i] = B[computeIndex(i)];

forall (a, i) in zip(A, 0..) do
B[computeIndex(i)] = a;

forall (i,a) in zip(A.domain, A) do
A[computeIndex(i)] = a;

21

AUTOMATIC AGGREGATION

destination of copy is local

Examples

source of copy is likely not local
aggregated!

source is yielded by the first iterand, must be local

destination is likely not localaggregated!

source is yielded by the second iterand

but it is aligned with the first one

destination is likely not localaggregated!

After This Optimization: indexgather

• The indexgather benchmark from the bale study tests random access performance

22

AUTOMATIC AGGREGATION

Straightforward indexgather
forall (d, i) in zip(Dst, Inds) do
d = Src[i];

var D = newBlockDom(1..n);
var Src, Dst, Inds: [D] int;

A Manual Approach for Data Aggregation
forall (d, i) in zip(Dst, Inds) with (var agg = new SrcAggregator(int)) do
agg.copy(d, Src[i]);

Straightforward version performs identical
to the manually-aggregated version

Numbers are collected from a Cray XC with Aries
interconnect and ugni communication layer

After This Optimization: Arkouda

• Arkouda[3]is a data analytics tool that has a Python client and a server implemented in Chapel
• We removed all the manual aggregation from the source

• 61 places in total
– 39 are optimized automatically
– 22 are not optimized

• 3 cases that were not using aggregators are now optimized

• The patterns where the aggregation does not fire:
– 9: aggregation is not based on ‘forall’ loops
– 6: compiler cannot prove that unordered operation is safe
– 3: locality is hard to detect
– 2: aggregated copy is not in the last statement of the body
– 1: one side of the assignment is defined within the loop body
– 1: needs further investigation

23

AUTOMATIC AGGREGATION

39
3

22 optimized

newly discovered

not optimized

[3] https://github.com/Bears-R-Us/arkouda

https://github.com/Bears-R-Us/arkouda

Automatic Local Access
• Can we do the same optimizations when the index is a complex expression?

• Today: Access must be at same index as the loop index

Automatic Aggregation
• Support arbitrary operations

• Today: Limited to copy operations (i.e., ‘=’ operator)
• Improve worst-case performance

• Today: If everything is local, aggregation adds overhead and can reduce performance by half
• Investigate multi-hop aggregation

• Today: Per-locale buffers can have a large memory footprint significantly at-scale
• Expose aggregation as a user-facing language feature

• Today: The aggregator objects are not in the documented part of the standard library

24

LIMITATIONS & NEXT STEPS

• We have discussed two locality-based optimizations in the Chapel compiler

Automatic Local Access
• Avoids locality checks while accessing distributed arrays using indices
• Added to Chapel in version 1.23 (1.25 was released few weeks ago)
• On-by-default

Automatic Aggregation
• Aggregates some remote copy operations
• Added to Chapel in version 1.24 (1.25 was released few weeks ago)
• Off-by-default, enable with --auto-aggregation

25

SUMMARY

THANK YOU!

engin@hpe.com

