—

LOCALITY-BASED OPTIMIZA
IN THE CHAPEL COMPILER

i p——

Engin Kayraklioglu, onaghan, M adford L. Chamberlain

Hewlett Packard Enterpri s
engin@hpe.com

The 34™ International Workshop on Languages and Compilers for Parallel Computing
October 13, 2021

WHAT IS CHAPEL?

Chapel: A modern parallel programming language

e portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

C

2

NOTABLE CURRENT APPLICATIONS OF CHAPEL

FEEE

CHAMPS: 3D Unstructured CFD . ChplUItra: Simulating Ultralight
Eric Laurendeau, Simon Bourgault-Cété, E Dark Matter -
Matthieu Parenteau, et al. . Nikhil Padmanabhan, J. Luna Zagorac, E
Ecole Polytechnique Montréal E Richard Easther, ef al. .
~48k lines of Chapel . Yale University / University of Auckland E

'll=
" & mmms=mmm Arkouda: NumPy at Massive Scale X ChOp: Chapel-based Optimization
: Mike Merrill, Bill Reus, et al. . ‘/XA)(, Tiago Carneiro, Nouredine Melab, et al.
] $ - /1+2\ /1.5)
¢ US DOD = orubaneoxs INRIA Lille, France
. ~16k lines of Chapel .

EATUREs cnstnies CrayAl: Distributed Machine Learning P : Your Project Here?

f (=] : (%) 4 e : O i O ' Hewlett Packard Enterprise ?

CHAPEL
Distributed Memory Programming in Chapel

A “domain” is an index set in Chapel
This is from 1 to n, inclusive

var myDomaln — { l..n } ’ Chapel arrays are declared over domains
var myArray: [myDomain] int; This is an integer array over ‘myDomain’

A ‘for’ loop executes sequentially on the locale that started it
This iterates over array elements

for element in myArray do
element = 1;

— »

CHAPEL
Distributed Memory Programming in Chapel

The ‘dmapped’ clause can be used to make a domain distributed

use RlockDist ; Now, ‘myDomain’ is block-distributed

var myDomain = {1..n} dmapped Block ({1l..n});
var myAr ray. [myD Oma 11] int Z No change is necessary for array declaration
Now, ‘myArray’ is block-distributed

for element in myArray do

element = 1;
‘for’ loops are always sequential and executes on the initiating locale

This loop behaves the same; accesses to ‘element’ can be remote

—

5

CHAPEL
Distributed Memory Programming in Chapel

use BlockDist;

var myDomaln = {1..n} dmapped Block ({1l..n});
var myArray: [myDomain] int;

A ‘forall’ loop can be distributed and parallel depending on the iterator it executes over
Now, this loop is parallel and distributed identically to ‘myArray’

forall element in myArray do

element = 1 Z This implies that accesses to ‘element’ are always local

— »

CHAPEL

For More Information

e Michelle Strout’s invited talk: “Separating Parallel Performance Concerns Using Chapel”
e 10:40 EDT, today

 Web page: chapel-lang.org

e Development on GitHub: github.com/chapel-lang/chapel

 Mailing list on Discourse: chapel.discourse.group

e Public chat on Gitter: gitter.im/chapel-lang/chapel

e Questions on StackOverflow: stackoverflow.com/questions/tagged/chapel
e Talks on YouTube: youtube.com/c/ChapelParallelProgramminglLanguage
e News on Twitter: @ChapellLanguage

7

http://chapel-lang.org/
http://github.com/chapel-lang/chapel
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
http://stackoverflow.com/questions/tagged/chapel
https://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://twitter.com/ChapelLanguage

AUTOMATICLOCAL ACCESS

Before This Optimization

e Three common idioms for implementing STREAM Triad in Chapel

var D = newBlockDom(1l..n);
var A, B, C: [D] int;

Idiom 1
A =B + alpha * C;

Idiom 2

forall (a,b,c) in zip(A,B,C)
a = b + alpha * c;

do

Idiom 3

forall 1 in D do
A[i] = B[i] + alpha * C[i];

—

Stream
1.0 O O >
0.8
%)
c 06
0 e —
O 04 | R oottt ettt x
= —l— |diom 1
LIJ 0.2 F —&@— Idiom?2
= === |diom 3
[| [| [] [| []
32 64 128 256 512

Number of Locales (x 36 cores / locale)

Numbers are collected from a Cray XC with Aries
interconnect and ugni communication layer

Better

AUTOMATIC LOCAL ACCESS
Locality Check Overhead

var D = newBlockDom(1l..n);
var A, B, C: [D] int;
Idiom 3

[1]

forall 1 in D do

+ alpha * C[1i];

A[i1] = B

proc array.access (idx: int)

i1f islLocallIndex (1dx)

localAccess (1dx) ;

else

nonlLocalAccess (1idx) ;

}
—

then

{

/

A per-access check is the source of overhead

e This check can be avoided for all 3 accesses
e Because;
e The “forall distribution is aligned with A’s
... because the loop is over A.domain

* The loop index is the same as the access index
e B and C’s distribution is aligned with A’s
... because they all share the same domain

IlO

AUTOMATICLOCAL ACCESS

Examples

var D = newBlockDom({1l..N});
var A: [D] int, B: [D] int;

forall i in D do the array is indexed using the loop index

| L optimized!
A[1] = 1;

the array has the same domain as the loop

forall 1 in D do

. . the arrays are indexed using the loop index
ALil = BT optimized!

e arrays have the same domain as the loop

forall 1 in A.domain do a 'he arrays are indexed using the loop index
optimized! L 9 P

AlL]l = Bl1l; loop is run over a domain query
the arrays have the same domain as the loop

— .

AUTOMATICLOCAL ACCESS
Dynamic Checks and Loop Versioning

e |f the compiler cannot determine the domain of an array:

o Equality of domains will be checked at execution time
« Depending on that, an optimized or unoptimized version of the loop will be run

var A = newBlockArr ({1..N}, int);
var B = newBlockArr ({1..N}, int); //currently we can't infer 'B' has the same domain as ‘A’
forall i in A.domain do
A[i1] = calculate(B[1]); //Blilislocal if A domain == B.domain
// that can only be confirmed at execution time

e Terminology
o ‘Ali] is a static candidate
e ‘B[i]’ is a dynamic candidate

—

AUTOMATICLOCAL ACCESS

Dynamic Checks and Loop Versioning

var A = newBlockArr ({1..N}, int); var A = newBlockArr ({l..N}, int);
var B = newBlockArr ({1..N}, int); | V&F B = newBlockArr({l..N}, 1int);
forall i in A.domain do param staticCheckA = canUselLocalAccess (A, A.domain);
A[i1] = calculate(B[1]); ///F—___mbparam staticCheckB = canUseLocalAccess (B, A.domain);
if staticCheckA || staticCheckB {
const dynamicCheckB = canUselocalAccessDyn (B, A.domain);
Static checks are created for both arrays if dynamicCheckB then
forall 1 in A.domain do
A.localAccess[1] = calculate(B.localAccess[1]);

else
Dynamic check is created only for B forall i in A.domain do
A.localAccess[i] = calculate(B[1i]):;
} else {
forall i in A.domain do

A[i] = calculate(B[1]);

|13

AUTOMATICLOCAL ACCESS

Dynamic Checks and Loop Versioning

var A = newBlockArr ({1..N}, int); var A = newBlockArr ({l..N}, int);
var B = newBlockArr ({1..N}, int); | Var B = newBlockArr({l..N}, int);
forall i in A.domain do param staticCheckA = canUselLocalAccess (A, A.domain);
A[i] = calculate(B[i]); param staticCheckB = canUselocalAccess (B, A.domain) ;
if staticCheckA || staticCheckB {
Will be executed if const dynamicCheckB = canUselLocalAccessDyn (B, A.domain);
* A passes static checks if dynamicCheckB then
* B passes static and dynamic checks forall 1 in A.domain do
A.localAccess[1] = calculate(B.localAccess[1]);

Will be executed if else
forall i in A.domain do

A.localAccess[1] = calculate(B[1]);
} else {
forall i in A.domain do
A[i] = calculate(BI[1]);

* A passes static checks
* B fails static or dynamic checks

Will be executed if

* Neither array passes static checks

— -

AUTOMATIC LOCAL ACCESS
After This Optimization: STREAM Triad

var D = newBlockDom(1l..n);
var A, B, C: [D] int;

Idiom 1
A =B + alpha * C;

Idiom 2

forall (a,b,c) in zip(A,B,C) do
a = b + alpha * c;

Idiom 3

forall i in A.domain do
A[i] = B[i] + alpha * C[i];

—

Reaches 967 efficiency at-scale

All idioms perform similarly

[

[

[

I

I

I

[

[

[

I

I

[

I

[
Better

=l |diom 1 = =3¢ = |diom 3

—&@— Idiom2 —— Idiom 3 With Optimization
[l 1 |

32 64 128 256 512
Number of Locales (x 36 cores / locale)

0.0 kel

Numbers are collected from a Cray XC with Aries
interconnect and ugni communication layer

15

AUTOMATICLOCAL ACCESS
After This Optimization: NAS Parallel Benchmarks - FT

e Explicit 'localAccess' calls are no longer needed in NPB-FT

Kernel with 'localAccess’ calls

forall ijk in DomT { (gllz;z_slz[-)r)

const elt = V.localAccess[1Jk] *

T.localAccess[17k]; @ —@— Automatic or Manual localAccess
% 600 F — -@- — Without localAccess
V.1 1A 1jk] = elt; ~
oca CC@SS[le.] elt = 400
Wt.localAccess[1Jk] = elt; 5
} 'E 200
Kernel without 'localAccess' calls S
O [
forall ijk in DomT { 12 4 8 16 32
const elt = V[ijk] * Number of Locales(x 28 cores/locale)
T[1jk];
V[ijk] = elt; Numbers are collected from a Cray XC with Aries

Wt[ijk] = elt; interconnect and ugni communication layer

}

—

Better

AUTOMATICLOCAL ACCESS
After This Optimization: chplUltra

o chplUltra™ is an Ultralight Dark Matter simulator written in Chapel

» We removed all explicit calls to localAccess
« 80 places in total

- 59 are optimized automatically

—21 were not optimized

= optimized

o The patterns where the optimization does not fire
—10 locality hard to detect due to complex alignments not optimized

—7 array access indices are not loop indices

— 4 is not inside forall loops

[1] Nikhil Padmanabhan et al. “Simulating Ultralight Dark Matter in Chapel”. In: 2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). May 2020,

— .

https://chapel-lang.org/CHIUW/2020/Padmanabhan.pdf

AUTOMATIC AGGREGATION

Before This Optimization

e The indexgather benchmark from the bale! study tests random access performance

var D = newBlockDom(1l. .n);

var Src, Dst, Inds: [D] int; Numbers are collected from a Cray XC with Aries

interconnect and ugni communication layer

l Straightforward indexgather

bale index gather

l -
I 3 800 o
| . . . N - = Aggregation (user) ’,‘
 forall (d, i) in zip(Dst, Inds) do ! S 40 |~~~ Unordered (auto) P
[a I O~ — -ll- = No optimization _-="
I c o -
L o 400 | = —®
-Iq—'J (D ”’ ——————
° ° ° (U ~ /’ ——————
Communication can be done in any order D 200 | ‘,/* s
. — - -
The Chapel compiler already had > - .- ¥
< 3264 128 256 512

“unordered forall” optimization

Number of Locales (x 36 cores / locale)

A Manual Approach for Data Aggregation :
forall (d, 1) in zip(Dst, Inds) with (var agg = new SrcAggregator (int)) dol
|

agg.copy(d, Srcli]);
[2] https://github.com/jdevinney/bale

—

Better

https://github.com/jdevinney/bale

AUTOMATIC AGGREGATION

Connecting the Dots for Automatic Aggregation

r [] []
! Straightforward indexgather Q: Is it safe to complete communication in any order?

|
|
' forall (d, 1) in zip (Dst, Inds) do ! A: unordered forall optimization does that analysis
I P |
I d = Src[i]; |

Q: Is exactly one side of the operation local?
A: automatic local access optimization does that analysis

What does it take to make this Q: Do you have means to aggregate the data?
transition automatically? A

: aggregator objects can do that

A Manual Approach for Data Aggregation |
forall (d, i) in zip(Dst, Inds) with (var agg = new SrcAggregator (int)) do
, 2@g9g.copy(d, Src[i]); |

AUTOMATIC AGGREGATION

Examples

var D = newBlockDom({1l..N});
var A: [D] int, B: [D] int;

forall i in D do aggregafed! destination of copy is local

A[i] = BlcomputeIndex(1i)]; source of copy is likely not local

forall (a, i) in zip(A, 0..) do source is yielded by the first iterand, must be local

B[computeIndex(i)] = a; aggregafed! destination is likely not local

source is yielded by the second iterand
forall (i,a) in zip (A.domain, A) do

AlcomputelIndex(i)] = a;

but it is aligned with the first one

aggregated! destination is likely not local
— |

AUTOMATIC AGGREGATION
After This Optimization: indexgather

e The indexgather benchmark from the bale study tests random access performance

var D = newBlockDom(1l. .n); Numb locred f Cra XC with Ar
var Src, Dst, Inds: [D] int; umbers are collected from a Cray XC wi ries
inferconnect and ugni communication layer
r—-r—-—-—-"--="m"====-=-"=""===-="==-=-=-==-=== .
° ° | —
| Straightforward indexgather , 5 a0 bale index gather
l ' c 5 I N —3¢— Aggregation (auto)
 forall (d, i) in zip(Dst, Inds) do 2D 500 | === Aggregation (user
| d = Src [l] M : _g m ---- Unordgre.d (a.muto)
________________________ = E 400 k = -Jl- = No optimization »
L0 = -7
R O
D 200 - o
Straightforward version performs identical) S -
to the manually-aggregated version < 32 64 128 256 512

Number of Locales (x 36 cores / locale)

A Manual Approach for Data Aggregation

I

I

forall (d, 1) in zip(Dst, Inds) with (var agg = new SrcAggregator (int)) dol
agg.copy(d, Srcl[il]): I

AUTOMATIC AGGREGATION
After This Optimization: Arkouda

o Arkoudal®is a data analytics tool that has a Python client and a server implemented in Chapel

 We removed all the manual aggregation from the source

e 61 places in total

-39 are optimized automatically
—22 are not optimized

« 3 cases that were not using aggregators are now optimized

= newly discovered
« The patterns where the aggregation does not fire: / not optimized

- 9Q: aggregation is not based on ‘forall’ loops

= optimized

— 6: compiler cannot prove that unordered operation is safe
—3: locality is hard to detect

—2: aggregated copy is not in the last statement of the body
—1: one side of the assignment is defined within the loop body
—1: needs further investigation

[3] https://github.com/Bears-R-Us/arkouda

— |

23

https://github.com/Bears-R-Us/arkouda

LIMITATIONS & NEXT STEPS

Automatic Local Access

e Can we do the same optimizations when the index is a complex expression?
e Today: Access must be at same index as the loop index

Automatic Aggregation
e Support arbitrary operations
e Today: Limited to copy operations (i.e., ‘=" operator)
e Improve worst-case performance
» Today: If everything is local, aggregation adds overhead and can reduce performance by half
e Investigate multi-hop aggregation
» Today: Per-locale buffers can have a large memory footprint significantly at-scale
e Expose aggregation as a user-facing language feature
« Today: The aggregator objects are not in the documented part of the standard library

— .

SUMMARY

e We have discussed two locality-based optimizations in the Chapel compiler

Automatic Local Access

e Avoids locality checks while accessing distributed arrays using indices
e Added to Chapel in version 1.23 (1.25 was released few weeks ago)

e On-by-default

Automatic Aggregation

e Aggregates some remote copy operations

e Added to Chapel in version 1.24 (1.25 was released few weeks ago)
e Off-by-default, enable with --auto-aggregation

— .

engin@hpe.com

