THE BUPERCOMPUTER COMPANY

Five Things About HPC Programming Models | Can
Live Without

Sung-Eun Choi, Cray Inc.
DOE Workshop on Exascale Programming Challenges
July 27th, 2011



1. Exposing platform details in algorithms

OMG!!1!

e
=
-

EEEEEEEEEEEEEEEEEEEEEEE



1. Exposing platform details in algorithms

Just because we don’t (for the most part) use inline
assembly anymore, doesn’t mean we’re not exposing
platform-specific details into our codes

For example:
e Specifying communication styles
* Using hybrid schemes for parallelism



1. Exposing: Specifying communication styles

Communication is required when there are data
dependences in computation

e The style used (1-sided, 2-sided, asynchronous,
synchronous, shared memory, etc.) is often
dictated by machine-specific details such as

hardware primitives, bandwidth, latency, memory
hierarchy, etc.

e Embedding the communication style will all but
guarantee a non-portable program



CCRANY

THE BUPERCOMPUTER COMPANY

1. Exposing: A good start

Chapel’s data-centric programming model:

e Rich data types (e.g., arrays: multidimensional,
sparse, associative, etc.)

e Support iteration and other “collective” operations

e Global-view programming
e Index-free
e Rank-independent



1. Exposing: Hybrid schemes

Hybrid schemes are no fun to use

e Does it seem reasonable to anyone to have as
many parallel programming notations as there are
levels of parallelism in your hardware (machine,
node, core, thread, vector, instruction, ...) and
software (executable, function, loop, iteration,
thread, ...)?



CCRANY

THE BUPERCOMPUTER COMPANY

1. Exposing: A good start

Chapel’s multi-resolution design:

* Enables programming at multiple levels of
abstraction

e For the domain expert: high level concepts for specification of an algorithm
and parallelism

e For the HPC experts: lower levels for details like data distribution and task
scheduling

e With the correct abstractions, the compiler works
in concert with the HPC experts (programming in
Chapel) to generate optimized code

e Several key optimizations have been implemented using this model
including some that are traditionally performed by a compiler



1. Exposing: Challenges

e Correctly defining the levels of abstraction
e Defining roles for a hierarchy of programmers

e |t’s very difficult for hard-core (HPC) programmers to
let go of details

e |t’s macho
e We want to understand the details

e |t will probably be necessary to be able to perform
cross-level optimizations

» Can we generalize auto-tuning?



CRANY

THE BUPERCOMPUTER COMPANY

2. Unportable, unperformant programs

| have altered gsub.
@ Pray | do not alter it again.

L ki



2. Unportable, unperformant programs

My dream:
9 cc —fast my working_program.c
Qo ./a.out
e .. to do this on any machine and on the first try get

within 90% of the performance | could acheive under
the best of circumstances

e No gsub/bsub/*sub or mpirun/aprun/*run
commands



2. Unportable: My reality

My reality:
9 cc —fast my working_program.c
(Let’s assume this always works)

1. Copy a gsub/bsub/*sub script

* Plugin my account name, appropriate queue
name, site specific parameters, etc.

2. Figure out the correct flags for mpirun/aprun/*run
* Everyone has their own

3. Run my program



2. Unportable: My reality continued

4.

D,

6.

Curse the results
* It’s not unheard of to get a 10x performance
degradation using similar but new/faster
hardware on the first try
Try to get help
a) Read mailing list archives or search the web

b) Email friends/colleagues who might have had
similar experiences

c) Email HPC consultants
Fix the proposed issues and go to step 3



CCRANY

THE BUPERCOMPUTER COMPANY

2. Unportable: A good start

e Compiling
e Multi-platform compilers
* Cray’s PrgEnv modules

e Running
e Chapel’s launching model

e User specifies the launching mechanism, and the generated code uses the
most sensible arguments for that mechanism

e Performance
e Chapel’s multi-resolution design
* Profile-guided compilation/optimization
e Auto-tuning



2. Unportable: Challenges

e Compiling
» Using mainstream libraries/packages
e Running
» Sites often wrap gsub/bsub/*sub with their own

scripts that customize flags according to their
scheduling policies and restrictions

e Launcher flags can affect performance

e Performance
e |s auto-tuning generalizable?



3. Not providing a path for migration




3. Not providing a path for migration

It seems unrealistic to invest in any effort in a new
programming model without a solid path for
migrating existing large scale applications

Some may view this as a lateral port (migrating
functionality), but it’s not

* |t requires a holistic approach

e But in reality, it probably needs to be done in
phases



3. Migration: A start

e Chapel’s extern facility
e Call your routines from a Chapel program

* Interoperability at the language level

e Call new kernels written in Chapel from your
program

e Data format standards
* Implement phases of your entire system in Chapel



CCRANY

THE BUPERCOMPUTER COMPANY

3. Migration: Challenges

It’s difficult to convince people to make what they
perceive to be a lateral move

e Maintaining performance during the transition

e Separate compilation issues
* |Insuring the a path will eventually lead to good
performance

e Holistic approach
e Could we be hampered by the initial design?

e Ease of use

e Could we have language support for interoperability?



CCRANY

THE BUPERCOMPUTER COMPANY

4. Forgetting about the general case

BUT DOES ITHAVEATRUNKZ

T



4. Forgetting about the general case

Just because we are targeting Exascale doesn’t mean
we should forget about the lesser scales

e We should optimize the cases we care about, but
implement a general language

Two examples of how this hurts us:
* Limited applicability
e Reduced supply of “new blood”



4. Forgetting: Limited applicability

Without the inclusion of general and modern concepts,
any Exascale programming model will have a difficult
time being successful

e Why? Because early adopters are often those
don’t need much performance, and in the early
stages, you don’t have performance, so you'd
better have all the right features



4. Forgetting: New blood

Without general applicability, the HPC workforce is
going to find it even more difficult to attract fresh
talent from universities

e Why? HPC is less approachable if it uses esoteric
and seemingly outdated tools



4. Forgetting: A good start

Chapel includes a rich base language with modern
features such as high-level data types (tuples, ranges,
etc.), object-oriented support, iterators, function
overloading, and generic programming capabilities

e Consequently, it’s also natural to use it for rapid
prototyping

e Chapel users include programming language geeks,
scientists, engineers, students, educators, and HPC
experts



4. Forgetting: Challenges

e Engaging the broader academic community in our
efforts

* No disrespect to those from the academic
community here, but we need to get more of you
involved

e Salesforce.com, Zillow, Facebook, Google, etc.

* The field needs renewed sex appeal (hopefully
some of it will come from the above)



CRANY

THE BUPERCOMPUTER COMPANY

5. lIgnoring the elephants in the room




5. Ignoring the elephants in the room

Any new programming model cannot ignore:
e Debuggers
e Performance tools
e |/O
e What else? | can’t see the other elephants because
these take up too much room

and we can’t easily re-use these from another model
(trust me, | tried)



5. lgnoring: A good start

The Baby Steps Model (BSM)

What | tell new Chapel programmers:

e Write and debug your Chapel program on your
desktop as a single locale (node), multi-task
(threaded) program

e When it’s working, rebuild it for multi-locale
execution on your desktop

* When that’s working, take it to the Big Iron

This seems obvious. Apparently it is not.



5. Ignoring: A good start

If you have a truly portable program, then you should
be able to implement the BSM

* Then we can focus on the smaller scale elephants



5. Ignoring: Challenges

e Engaging the folks working on the entire tool chain

e The BSM buys us some time, but we still have to be
able to address the hardest problems at the Exascale
* Need to design for the Exascale, even if

implementing at the small scale

e Can we even apply the small scale model to
e Performance debugging?
e |/O?
» Resiliency?



Summary of Challenges

e Getting the programming model right
e Correctly defining abstractions so as to clearly
define the roles of the hierarchy of programmers

e Correctly defining a path for migration that can
take full advantage of the programming model

e Engaging a broader community
* For acceptance
* For tool development
* For the future of the field






	Five Things About HPC Programming Models I Can Live Without
	1. Exposing platform details in algorithms
	1. Exposing platform details in algorithms
	1. Exposing: Specifying communication styles
	1. Exposing: A good start
	1. Exposing: Hybrid schemes
	1. Exposing: A good start
	1. Exposing: Challenges
	2. Unportable, unperformant programs
	2. Unportable, unperformant programs
	2. Unportable: My reality
	2. Unportable: My reality continued
	2. Unportable: A good start
	2. Unportable: Challenges
	3. Not providing a path for migration
	3. Not providing a path for migration
	3. Migration: A start
	3. Migration: Challenges
	4. Forgetting about the general case
	4. Forgetting about the general case
	4. Forgetting: Limited applicability
	4. Forgetting: New blood
	4. Forgetting: A good start
	4. Forgetting: Challenges
	5. Ignoring the elephants in the room
	5. Ignoring the elephants in the room
	5. Ignoring: A good start
	5. Ignoring: A good start
	5. Ignoring: Challenges
	Summary of Challenges
	Slide Number 31

