CHAPEL AND OPEN
PRODUCTIVE PARALLEL
COMPUTING AT SCALE

Michael Ferguson
February 7, 2024

A

8
Seles

Hewlett Packard
Enterprise

OUTLINE

e Motivation: Sorting
e What is Chapel?

e Comparing to Other Languages
e What do Chapel users say?

e Applications written in Chapel

e Demos and Q&A

e Wrap-Up

SORTING IN STANDARD LIBRARIES

Parallehsm |s EssenTlaI To Performance

SORTING IN STANDARD LIBRARIES

e Most standard libraries include a ‘sort’ routine

e |t's an essential building block
e supports GroupBy in data analysis tools such as Arkouda or Pandas

« supports indexing, searching, many other algorithms
e Let’s investigate the performance of standard library ‘sort’ routines

» Why focus on standard libraries? They

are more likely o be used in practice than other implementations
show what a programming language has to offer

set an example for libraries

form a common language for programmers

—

https://bears-r-us.github.io/arkouda/usage/groupby.html
https://github.com/Bears-R-Us/arkouda
https://pandas.pydata.org/pandas-docs/stable/index.html

THE BENCHMARK

e Sort 1GiB of 64-bit integers
e i.e. 128%1024*1024 integers

e Use random values

THE TEST SYSTEM

My PC!

CPU: AMD Ryzen 9 7950X
e 45GHz, 16 cores, 32 threads

Memory: 64 GiB of DDR5 memory
e« 5200MT/s CL40O

Motherboard:
e Gigabyte X670 Aorus Elite AX

OS: Ubuntu 23.10

Pawallel Programming Consultant & Benchmark PC

INPYTHON

import random
import time

generate an array of random integers
n = 128*1024*1024

array = [random.randint (0, Oxffffffffffffffff) for in range(n)]

start = time.time ()

use the standard library to sort the array
array.sort ()

stop = time.time ()

print out the performance achieved
elapsed = stop-start

print ("Sorted", n, "elements 1in", elapsed, "seconds")

print (n/elapsed/1 000 000,

—

"million elements sorted per second")

IN CHAPEL

use Time, Sort, Random;

// generate an array of random integers

config const n = 128*1024*1024;

var A: [0..<n] uint; // note: int, uint default to 64 bits
fillRandom (A) ; // set the elements to random values

var timer: stopwatch;
timer.start () ;

// use the standard library to sort the array
sort (A) ;

// print out the performance achieved

var elapsed = timer.elapsed();
writeln("Sorted ", n, " elements in ", elapsed, " seconds");
writeln(n/elapsed/1 000 000, " million elements sorted per second");

—

PROGRAMS ARE SIMPLE

How do they perform?

RESULTS ON THE PC

Chapel
Rust

Julia

NodeJS
Python

100 200 300 400 500

Million 64-bit Integers Sorted per Second

10 times faster

than the other languages
measured in this
experiment

15 times faster

than C with ‘gsort’

200 times faster

than Python’s ‘sort’

600

51 .t-tﬂ'ﬁuﬂ"’du";l?
Pslr\f‘?é LI S, ==Y\ MR = N - S

BUT IHAVE A SERVER

How does that impact things?

RESULTS ON 1 SOCKET AMD EPYC 7543: 32 CORES

Chapel

25 times faster

than C with ‘gsort’

400 times faster

than Python
C++

Python

0 100 200 300 400 500 600 700

Million 64-bit Integers Sorted per Second

RESULTS ON 2 SOCKET AMD EPYC7763: 64 CORES

Chapel
50 times faster

than C with ‘gsort’

C
1000 times faster
than Python
C++
Python

0 200 400 600 800 1000 1200

Million 64-bit Integers Sorted per Second

WHY?

The main reason:

e Chapel used all the cores
e others used 1 core

EASY PARALLELISM

e A parallel programming
language can make it easy to
use parallel hardware

e A parallel standard library
brings additional productivity

e Chapel is a language built for
parallelism & includes a
parallel standard library

- "Productive Parallel Programming -

WHAT IS CHAPEL?

Chapel: A modern parallel programming language

» portable & scalable
e open-source & collaborative

Goals:

e Support general parallel programming
o Make parallel programming at scale far more productive

17

PRODUCTIVE PARALLEL PROGRAMMING
A Potential Definition

Imagine a programming language for parallel computing that was as...
...programmable as Python

..yet also as...
..Fast as Fortran/C/C++
...scalable as MPI/SHMEM
...GPU-ready as CUDA/OpenMP/OpenCL/OpenACC/...
...portable as C

18

CHAPEL IS COMPACT, CLEAR, AND COMPETITIVE

|
1
STREAM TRIAD: C + MPI + OPENMP use BlockDist;
. config const n = 1 000 000,
et alpha = 0.01;
= = const Dom = Block.createDomain ({1l..n}):;
- “] var A, B, C: [Dom] real;
, return errCount; Jscc.l r = 3.| %
in:egigieinemrj(fpcc Params *params, int doI0) { eidf _jp | B = 2 . O ; (D
calVe izeof (double), 0); w;c;g E C = 1 . O ;
— ’ A =B + alpha * C;
|
HPCC RA: MPI KERNEL

T[r & indexMask].xor (r)

forall (, r) in zip(Updates, RAStream()) do

r

|72

30000
25000
20000
15000
10000

5000

14
12
10

GUPS

STREAM Performance (GB/s)

MPI1+OpenMP —¢—
= Chapel EP —+—
Chapel Global - -+ -

64
Locales (x 36 cores / locale)

RA Performance (GUPS)

L
16 32 64 128 256
Locales (x 36 cores / locale) | 19

PERFORMANCE AND PRODUCTIVITY

HOW dees Chapel compare To oTher Ianguages7

CHAPEL IS COMPACT AND FAST

For Desktop Benchmarks

100
chapel

csharpcore
dartexe
erlang
fpascal
fsharpcore
gcc

ghc
gnat

go

gpp

ifc

java
julia

lua

node
ocaml
perl

php
python3
racket
ruby

:
N
.
~.Erlang
.
i rust

[N sbl
Ruby . O it
Dal"l' -»;_\\\ \. nyhon E gmean-smallest

O

PHP . J]@v\ \‘\\\\\ gmean-fastest
R S

\
N,
s,
s,

80 - b
W
R

Pyifhen -

N
\
N,
N
\
\
N,
s,
s,
N
\, .
\ \
E . .
\ N,
\
.
s,
N,
\
\
\
N,
\
\

\
\
\
N
\
\
\\
SN
S
~

40 -

Execution Time
(normalized to fastest entry)

Racket .

20 -

Juiag.. M

1.0 15

: Compressed Code Size (normalized to smallest entry)

[plot generated by summarizing data from https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html as of Feb 8, 2023]

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

CHAPEL IS COMPACT AND FAST (ZOOMED)

For Desktop Benchmarks

Execution Time
(normalized to fastest entry)

10

1.0

#-Pascal
) 5 G-
“\\\ ‘\\‘ \\.
o r mFt
chapel Julia Rust
1;5 2:0 215

smaller

\

J a‘“,‘g:! Haskell

Compressed Code Size (normalized to smallest entry)

[plot generated by summarizing data from https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html as of Feb 8, 2023]

/

chapel
csharpcore
dartexe
erlang

fpascal
fsharpcore
gcc

ghc

gnat

go

app

ifc

java

julia

lua

node

ocaml 5
perl LISp
php

python3
racket

ruby

rust

sbcl

swift

W

D gmean-smallest
O gmean-fastest

3.5

22

https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

ONE PUBLICATION MEASURING PRODUCTIVITY

o] B Julia B Python [_1Chapel — C/OpenMP
e Gmys et al. [1] compared productivity and 14; %
performance of several programming languages 1 “
when implementing parallel metaheuristics for

optimization problems

Relative productivity
o
[=-]

. . 0.4
 Evaluated with a dual-socket, 32-core machine .l j I
0:
. . 1 2 4 8 16 32 64
 Result: Chapel more productive in terms of Threads
performance aChIeved vS. Ilnes Of COde Figure 7: Relative productivity achieved by Chapel, Julia, and Python compared to the
e VS Julia and PyThon+Numba :i‘l/ri)‘iiesnl\-ll’ reference. Results are given for the instance nug22 and execution on 1 to 64

[1] Jan Gmys, Tiago Carneiro, Nouredine Melab, El-Ghazali Talbi, Daniel Tuyttens. A A flgure from [1]

comparative study of high-productivity high-performance programming languages for
parallel metaheuristics. Swarm and Evolutionary Computation, 2020, 57,
10.1016/j.swevo.2020.100720 . Available at https://inria.hal.science/hal-02879767

: | 23

https://inria.hal.science/hal-02879767

 CHAPEL USERS

FROM OUR COMMUNITY

A Programming Language For Everybody

14

It’s fast. Parallelization is really easy! | didn’t know I could
get so much from my desktop until | used it [Chapell.

Nelson Luis Dias
Professor, Environmental Engineering Department, Federal University of Parana (Brazil)

quote from his CHIUW 2022 talk [video]

—

25

https://chapel-lang.org/CHIUW2022.html
https://www.youtube.com/watch?v=400jmMzdzHQ&t=348s

FROM OUR COMMUNITY

Doing the Impossible

[Chapel] promotes programming efficiency ... We ask
students at the master’s degree to do stuff that would

take 2 years and they do it in 3 months.

9

Eric Laurendeau
Professor, Department of Mechanical Engineering, Polytechnique Montréal

quote from his 2021 CHIUW Keynote [video]

—

26

https://chapel-lang.org/CHIUW2021.html
https://youtu.be/wD-a_KyB8aI?t=1904

APPLICATIONS OF CHAPEL

Scalmg To Solve Real Problems e

APPLICATIONS OF CHAPEL

Python3 Client m™ma Chapel Server

Socket

t Distributed
Object Store
ﬁ Patform u
CHAMPS: 3D Unstructured CFD Arkouda: Interactive Data Science at Massive Scale ChOp: Chapel-based Optimization ChplUltra: Simulating Ultralight Dark Matter
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al. Mike Merrill, Bill Reus, et al. T. Carneiro, G. Helbecque, N. Melab, et al. Nikhil Padmanabhan, J. Luna Zagorac, et al.
Ecole Polytechnique Montréal U.S. DoD INRIA, IMEC, et al. Yale University et al.

Low-pass filler with LOWESS (intrinsically parallel)
100

{4

80

0

40

RH (%) at Lake Mcad

20

0
2010 201 2012 2013 2014 2015

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng. RapidQ: Mapping Coral Biodiversity ChapQG: Layered Quasigeostrophic CFD
Tom Westerhout Nelson Luis Dias Rebecca Green, Helen Fox, Scott Bachman, et al. lan Grooms and Scott Bachman
Radboud University The Federal University of Parand, Brazil The Coral Reef Alliance University of Colorado, Boulder et al.
FEATUI;ES ENSEMBLES .. :................:
o\ofe\0fo" s K P,
EXPLO}!IATION PARAME.TERS RATIONALE : : :
Chapel-based Hydrological Model Calibration CrayAl HyperParameter Optimization (HPO) CHGL: Chapel Hypergraph Library Your Application Here?
Marjan Asgari et al. Ben Albrecht et al. Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
University of Guelph Cray Inc. / HPE PNNL

: (images provided by their respective teams and used with permission) I 28

CHAMPS SUMMARY

What is it?
e 3D unstructured CFD framework for airplane simulation
o ~85k lines of Chapel written from scratch in ~3 years

Who wrote it? I
« Professor Eric Laurendeau’s students + postdocs at Polytechnique Montreal R
! 3 POLYTECHNIQUE SpNSiissals -

g MONTREAL

Why Chapel?
« performance and scalability competitive with MPI + C++
« students found it far more productive to use i

« enabled them to compete with more established CFD centers

e
= =
4+
e
ok 2 B

EEETETEY

: (images provided by the CHAMPS team and used with permission) I 29

APPLICATIONS OF CHAPEL

Python3 Client m™ma Chapel Server

Socket

e E I E I

Arithmetic
Generation

t Distributed m mmv
Object Store
ﬁ Platform P, SMP, Cluster, Laptop, etc.
CHAMPS: 3D Unstructured CFD Arkouda: Interactive Data Science at Massive Scale
Laurendeau, Bourgault-Coté, Parenteau, Plante, et al. Mike Merrill, Bill Reus, et al.
Ecole Polytechnique Montréal U.S. DoD

Low-pass filter with LOWESS (intrinsically parallel)

100

80

0

40

RH (%) at Lake Mcad

20

0
2010 201 2012 2013 2014 2015
date

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.
Tom Westerhout Nelson Luis Dias
Radboud University The Federal University of Parand, Brazil

FEATURES ENSEMBLES
EX?'.ORATIONuPARAMETEMATIONALE

Chapel-based Hydrological Model Calibration CrayAl HyperParameter Optimization (HPO)

Marjan Asgari et al. Ben Albrecht et al.
University of Guelph Cray Inc. / HPE

ChOp: Chapel-based Optimization
T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

e

RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

: (images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

{4

e Y

ChapQG: Layered Quasigeostrophic CFD

lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

30

CHOP SUMMARY

What is it?
e Tree-based, branch and bound optimization
algorithms

e irregular tree, lots of pruning

Who did it?
» Tiago Carneiro and Nouredine Melab at the Imec -
Belgium and INRIA Lille

e Open-source: https://github.com/tcarneirop/ChOp

Why Chapel?
e Found Chapel to be more productive than
alternatives

—in the 2020 publication mentioned earlier
—and in subsequent work

—

Distributed
level

Task 0, Locale 0
PGAS-based Pool

Locale 0

62/
G

Task 2

L al Active Set

9@@9

.

Task 1, locale 0
Local pool

Tasknl
Local Activ sz

XXX

L{_r

Intra-node level

Locale L-1

R o‘ '@//". :::::,:: \\@‘ - RS 'Q//:.::::‘.’::“"“' »\\\@‘

Task 1
Local Activ St

9@@9

-

Task O, locale L-1
Local pool

Centralized pool of nodes

from slides for "Towards Ultra-scale Optimization Using
Chapel" by Tiago Carneiro (University of Luxembourg) and
Nouredine Melab (INRIA Lille), CHIUW 2021

| 31

https://github.com/tcarneirop/ChOp

APPLICATIONS OF CHAPEL

CHAMPS: 3D Unstructured CFD

Laurendeau, Bourgault-Coté, Parenteau, Plante, et al.

Ecole Polytechnique Montréal

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

Tom Westerhout
Radboud University

Chapel-based Hydrological Model Calibration
Marjan Asgari et al.

University of Guelph

—

apel Server

hon3 Client o
fyt 3 Socket

Distributed
Object Store

Platform

Arkouda: Interactive Data Science at Massive Scale

Mike Merrill, Bill Reus, et al.
U.S. DoD

Low-pass filler with LOWESS (intrinsically parallel)

100

80

0

40

RH (%) at Lake Mcad

20

0
2010 201 2012 2013 2014 2015
date

Nelson Luis Dias
The Federal University of Parand, Brazil

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
Ben Albrecht et al.
Cray Inc. / HPE

ChOp: Chapel-based Optimization

T. Carneiro, G. Helbecque, N. Melab, et al.
INRIA, IMEC, et al.

e

RapidQ: Mapping Coral Biodiversity

Rebecca Green, Helen Fox, Scott Bachman, et al.

The Coral Reef Alliance

CHGL: Chapel Hypergraph Library
Louis Jenkins, Cliff Joslyn, Jesun Firoz, et al.
PNNL

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.

Yale University et al.

{4

ChapQG: Layered Quasigeostrophic CFD

lan Grooms and Scott Bachman
University of Colorado, Boulder et al.

?

Your Application Here?

32

DATA SCIENCE INPYTHON AT SCALE?

Motivation: Imagine you've got...

...HPC-scale data science problems to solve
...a bunch of Python programmers

..access fo HPC systems

———— 4

&%

How will you leverage your Python programmers to get your work done?

— |

ARKOUDA: APYTHON FRAMEWORK FOR INTERACTIVE HPC

Arkouda Client Arkouda Server
_(written in Python) (written in Chapel)
. =\
-
e
—

(02 4 ... 199999994 199999996 199999998)

999999999999999999
9999999999999999

N

O User writes Python code in Jupyter,
ﬂ making familiar NumPy/Pandas calls

34

ARKOUDA SUMMARY

What is it?
« A Python client-server framework supporting interactive supercomputing

— Computes massive-scale results (TB-scale arrays) within the human thought loop (seconds to a few minutes)
—Initial focus has been on a key subset of NumPy and Pandas for Data Science

o ~30k lines of Chapel + ~25k lines of Python, written since 2019
« Open-source: hitps://github.com/Bears-R-Us/arkouda

Arkouda Client Arkouda Server
Who wrote it? Sl D i)
« Mike Merrill, Bill Reus, et al., US DoD ; s
6
Why Chapel?
e close to Pythonic
—enabled writing Arkouda rapidly /N/
—doesn’t repel Python users who look under the hood O user writes Python code in Jupyter,
« achieved necessary performance and scalability (1 1) making NumPy/Pandas calls

« ability fo develop on laptop, deploy on supercomputer

: | 35

https://github.com/Bears-R-Us/arkouda

APPLICATIONS OF CHAPEL: LINKS TO USERS’ TALKS (SLIDES + VIDEO)

CHAMPS: 3D Unstructured CFD
CHIUW 2021 CHIUW 2022

Chapel Server

Code Modules E E 3
£ g
t Meta Distributed Array
Distributed
ﬁ Object Store
Platform PP, SMP, Cluster, Laptop, etc.

hon3 Client MQ
fyt S Socket

Arithmetic

Arkouda: Interactive Data Science at Massive Scale

CHIUW 2020 CHIUW 2023

Low-pass filler with LOWESS (intrinsically parallel)

100

80

0

40

RH (%) at Lake Mcad

2010 201 2012 2013 2014 2015
date

Lattice-Symmetries: a Quantum Many-Body Toolbox Desk dot chpl: Utilities for Environmental Eng.

CHIUW 2022

Chapel-based' .I-Vlydrologic.;lr &Iod;ihéaiib;ation
CHIUW 2023

—

CHIUW 2022

FEATURES ENSEMBLES
EXPI.ORATIONUPARAMETEMATIONALE

CrayAl HyperParameter Optimization (HPO)
CHIUW 2021

ChOp: Chapel-based Optimization

CHIUW 2021 CHIUW 2023

~ o

RapidQ: Mapping Coral Biodiversity

CHIUW 2023

CHGL: Chapel Hypergraph Library
CHIUW 2020

(images provided by their respective teams and used with permission)

ChplUltra: Simulating Ultralight Dark Matter
CHIUW 2020 CHIUW 2022

{5
I’

ChapQG: Layered Quasigeostrophic CFD

?

Your Application Here?

| 36

https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2020.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2022.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2023.html
https://chapel-lang.org/CHIUW2021.html
https://chapel-lang.org/CHIUW2020.html

| 37

THE CHAPEL TEAM AT HPE

39

SUMMARY

Chapel is unique among programming languages |
e built-in features for scalable parallel computing make it HPC-ready |concig const « - 1000 000,

1pha = 0.01; 25000

» supports clean, concise code relative to conventional approaches o s e
» ports and scales from laptops to supercomputers HE

STREAM Performance (GB/s)

GB/s

10000 === === e
5000 - - oo e

0 1)) ;
1632 64 128 256
alpha * C; Locales (x 36 cores / locale)

Chapel is being used for productive parallel computing at scale

e users are reaping its benefits in practical, cutting-edge applications
« in diverse application domains: from physical simulation to data science

Python3 Client ma Chapel Server
ot

« scaling to thousands of nodes / millions of processor cores

. . . coforall gpu in here.gpus do on gpu {
Vendor-neutral GPU support is maturing rapidly var A, B, C: [l..n] real;

2” = * .
 fleshes out an overdue aspect of “any parallel hardware A =B + alpha * C;

We’re interested in helping new users and fostering new collaborations m
11

: | 40

CHAPEL RESOURCES

Chapel homepage: hitps://chapel-lang.org
e (points to all other resources)

Social Media:
 Blog: https://chapel-lang.org/blog/
o Twitter: @ChapelLanguage
e Facebook: @ChapelLanguage

e YouTube: @ChapelLanguage

Community Discussion / Support:
 Discourse: https://chapel.discourse.group/
o Gitter: https://gitter.im/chapel-lang/chapel
o Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

o GitHub Issues: https://github.com/chapel-lang/chapel/issues

—

What is Chapel?
What's New?

Blog

Upcoming Events
Job Opportunities

How Can | Learn Chapel?

Contributing to Chapel
Community

Download Chapel

Try Chapel Online

Documentation
Release Notes

Performance
Powered by Chapel

Presentations
Papers / Publications

CHIUW
CHUG

Contributors / Credits

chapel+info@discoursemail.com

O-mmo
vyEHO

The Chapel Parallel Programming Language

What is Chapel?

Chapel is a programming language designed for productive parallel computing at scale.
Why Chapel? Because it simplifies parallel programming through elegant support for:

« distributed arrays that can leverage thousands of nodes' memories and cores
« a global namespace supporting direct access to local or remote variables

« data parallelism to trivially use the cores of a laptop, cluster, or supercomputer
« task parallelism to create concurrency within a node or across the system

Chapel Characteristics

* productive: code tends to be similarly readable/writable as Python
« scalable: runs on laptops, clusters, the cloud, and HPC systems

« fast: performance competes with or beats C/C++ & MPI & OpenMP
« portable: compiles and runs in virtually any *nix environment

* open-source: hosted on GitHub, permissively licensed

New to Chapel?

As an introduction to Chapel, you may want to...

* watch an overview talk or browse its slides
* read a chapter-length introduction to Chapel
* |learn about projects powered by Chapel

« check out performance highlights like these:

PRK Stencil Performance (Gflop's)

[wnopews — e —= o

Locales (x 36 cores / locale)

NPB.FT Porformance (Gop's)

Locales (x 38 cores / locale)

* browse sample programs or learn how to write distributed programs like this one:

use CyclicDist;
config const n = 100;

// use the Cyclic distribution Library
// use --n=<val> when executing to override this default

forall i in Cyclic.createDomain(1..n) do
writeln("Hello from iteration ", i, " of ", n, "

running on node ", here.id);

41

https://chapel-lang.org/
https://chapel-lang.org/blog/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
https://www.youtube.com/@ChapelLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

SUMMARY

Chapel is unique among programming languages |
e built-in features for scalable parallel computing make it HPC-ready |concig const « - 1000 000,

1pha = 0.01; 25000

» supports clean, concise code relative to conventional approaches o s e
» ports and scales from laptops to supercomputers HE

STREAM Performance (GB/s)

GB/s

10000 === === e
5000 - - oo e

0 1)) ;
1632 64 128 256
alpha * C; Locales (x 36 cores / locale)

Chapel is being used for productive parallel computing at scale

e users are reaping its benefits in practical, cutting-edge applications
« in diverse application domains: from physical simulation to data science

Python3 Client ma Chapel Server
ot

« scaling to thousands of nodes / millions of processor cores

. . . coforall gpu in here.gpus do on gpu {
Vendor-neutral GPU support is maturing rapidly var A, B, C: [l..n] real;

2” = * .
 fleshes out an overdue aspect of “any parallel hardware A =B + alpha * C;

We’re interested in helping new users and fostering new collaborations m
11

: | 42

THANK YOU

https://chapel-lang.org
@ChapelLanguage

