Chapel: Making HPC Accessible

Michael Ferguson /‘
Cray Inc. -\
el — P
CHARPEL

=/

November 10, 2015

COMPUTE STORE ANALYZE

Safe Harbor Statement

KI_

_

his presentation may contain forward-looking statements that ar

based on our current expectations. Forward looking statements may
include statements about our financial guidance and expected
operating results, our opportunities and future potential, our product
development and new product introduction plans, our ability to
expand and penetrate our addressable markets and other
statements that are not historical facts. These statements are only
predictions and actual results may materially vary from those
projected. Please refer to Cray's documents filed with the SEC from
time to time concerning factors that could affect the Company and
these forward-looking statements.

~

e

/

Copyright 2015 Cray Inc.

Talk Outline

e Services
e How can Chapel fit in?
e What is Chapel?

e Detailed example: Processing Twitter data

Services

COMPUTE

STORE

ANALYZE

Web

Sewe\%
Database

Web

Server
_ Stateful Stateless\%

App WAeb
Server\ / Server

a

Database

Stateful Stateless

Object
Store

memcached

App
Server\

[>

memcached

Stateful

Web
Server

Web
Client

Stateless

Web
Client

Parallel

Application

Stateful

Web
Client

Web
Client

Web
Client

Web
Client

Why | started working with Chapel o

e Needed to speed up an application i

e Thought perhaps new "supercomputer on a chip”
hardware would help me... with more parallelism

e The High Performance Computing (HPC) community
e Aims for maximal possible performance
e Long history with parallel programming

e Maybe the rest of us can learn something from HPC

Why | started working with Chapel o

e Needed to speed up an application i

e Thought perhaps new "supercomputer on a chip”
hardware would help me... with more parallelism

e The High Performance Computing (HPC) community
e Aims for maximal possible performance
e Long history with parallel programming
e Maybe the rest of us can learn something from HPC
e ... But | needed
e something other than Fortran + MPI

e something portable across parallel architectures

(@) (o]

How does Chapel fit in?

=

=Rasy
CcCHAaAPRPEL
—

=

COMPUTE STORE ANALYZE

Parallel

Application

Parallel but tightly coupled

-l\- -4

‘ '
75 AA_\

/:-

Parallel
Application

Cray Urika-XA ™

Java
Programs

Other
Servers

Pipes, sockets,
oMQ, ...

Chapel
Application

C interop

pyChapel

PMVS Home x +

€ @ primondand.com ¢ | Q Sesxch e O+ AOW

MACHINE VISION SYSTEMS

Welcome 10 the PMVS home page! You'll find examples of our programs, apps, and notes here.
Feel free to poke around,

NEW
CHAPEL BY EXAMPLE - IMAGE PROCESSING

/-;) else (

aheffle sortind(ilnort, chase, midpt).

CcCHAPEL Lree{ses) dMa(sort Ing(chase)(addot));

Creedpon) . flags » chase : wint(h) | WAS L | MAS A,

/ pegin {
../ place_neoe(Lsort]..medot-1), ceext, left);

plate _nede(Lsortmidptel.], Coextl, right);
)
)

We've collected the noses we took while leaming the Chapel language and developing several image
processing programs in it and packaged them up into a set of twlonials. You can find them on the
Chapel By Example page. The examples inclade color converters, Gabor filters, k-means clustering,
FAST comer detectors, and RANSAC feature masching.

iw;*w;"ﬂ".'.ol(',v». Joom room, Timal dostle longitude) {
final doubie atap; * tersediate calculations *
o er oF 110 At 200w Ll *
Nowd <k (2008 2008 ¢ 1))
winp « lesgitede * MIh.PL / 1000,
X w [(iat) Math flocr(n * (1 » (xtep 7 "atr . P1)) 7 2);

}

The Development page contains code samples and notes from
the experience.

\
C)RAY |
O 0O /() creacnreromEmdatma. x | +
€ | @ Gvub, Inc. (US) hitps//github.com/briangu/chearch/blob/master/README md @ P search B8 O 3 A O@®
0 This repository Pull requests Issues Gist ‘ +- X
| | briangu / chearch ©Watch- 1 gStr 3 YFork 1
Beanch master - chearch / README.md s B
'3
[l briangu Updse README md 3114F2d on Jun 6
1 contributor
N
149 lines (109 sloc) 4.22 K8 Raw Blame History (J » =
A
chearch

Chearch is a simple search engine written in Cray's Chapel language.

This application demonstrates how to use various important features of Chapel, such as locales, and how to minimize
RPC traffic through features such as local. It also shows how to build a simple, efficient, inverted index using only
integer represesentions.

Project link to this page: http://chearch.pw (church pew)

Features of the search engine

« lock-free, using atomic operations for all appropriate operations

» string-free, the entire engine is integer-based. This minimizes memory footprint while improves processing speed

* boolean queries, using an integer-based (no strings, remember?) query language called CHASM (Chearch
Assembly)

What is Chapel?

=

=Rasy
CcCHAaAPRPEL
—

=/

COMPUTE STORE ANALYZE

Chapel’s Origins: HPCS .o

DARPA HPCS: High Productivity Computing Systems \

e Goal: improve productivity by a factor of 10x
e Timeframe: summer 2002 — fall 2012

e Cray developed a new system architecture, network, software, ...
e this became the very successful Cray XC30™ Supercomputer Series

Chapel Motivation .

Q: Why doesn’t parallel programming have an equivalent to

Python I Matlab / Java l C++ / (your favorite programming language here) ?
e one that makes it easy to quickly get codes up and running
e one that is portable across system architectures and scales
e one that bridges the HPC, data analysis, and mainstream communities

A: We believe this is due not to any particular technical

challenge, but rather a lack of sufficient...
...long-term efforts

...resources

...community will

...co-design between developers and users

...patience

Chapel is our attempt to change this

COMPUTE I STORE ANALYZE

5 \ ——
H(c;an-.\
e Copyright 2015 Cray Inc.

Chapel's Implementation

e Being developed as open source at GitHub
e Licensed as Apache v2.0 software

e Portable design and implementation, targeting:
e multicore desktops and laptops
e commodity clusters and the cloud
e HPC systems from Cray and other vendors
e jn-progress: manycore processors, CPU+accelerator hybrids, ...

COMPUTE I STORE ANALYZE

o=
f\l it)
'\:-s"_/ Copyright 2015 Cray Inc.

Chapel is a Collaborative, Community Effort . :

@ RICE Q LTS =~ ETH.:iicr

e

| Lawrence Livermore

s National Laboratory Sandia National Laboratories
ﬂ : 6 %OAK 7
Pacific Northwest

BERKELEY LAB Argon ne RIDGE NATIONAL LABORATOR)

NATIONAL LABORATORY National Laboratery Proudly Operated by BASESE Since 1965

&

UNIVERSITY OF

MARYLAND

Lawrence Berkeley
National Laboratory

sk 10N

’ THE UNIVERSITYOFTOK\O DE MALAGQG \

AM Da (and many others as well...)

http://chapel.cray.com/collaborations.html

= 1]

http://chapel.cray.com/collaborations.html
http://chapel.cray.com/collaborations.html

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures:

A A
BLOITTTTTTTTITTTTTTITTTTITT]
+
CLLITTTTTITTITITTTIITITT]
o

-
NI
a0

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel:
|

-
NI
a0

STREAM Triad: a trivial parallel computation

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory):

| | |

I I I

| | |
« Wi B | B | @

STREAM Triad: a trivial parallel computation .o

Given: m-element vectors A, B, C
Compute: Vie 1.m, A, =B, + o-C,

In pictures, in parallel (distributed memory multicore):

| | |

| 1 |

| | |
« @ ¢ 8B B @

STREAM Triad: MPI
#include <hpcc.h> m

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {

}

int myRank, commSize;
int rv, errCount;
MPT Comm comm = MPI_ COMM WORLD;

MPI Comm size(comm, &commSize);
MPI_Comm_rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank) ;
MPI Reduce(&rv, &errCount, 1, MPI_ INT, MPI_SUM, O,

comm) ;

return errCount;

int HPCC_Stream(HPCC_Params *params, int doIO) {

register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

SR —

if ('a || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b); \
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n",
VectorSize) ;
fclose(outFile);

}

return 1;

for (j=0; j<VectorSize; j++) {

b[j] = 2.0;
c[j] = 1.0;
}
scalar = 3.0;

for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[j];

HPCC_free(c);
HPCC_free(b) ;
HPCC_free(a);

STREAM Triad: MPI+OpenMP e — . o

#include <hpcc.h>
#ifdef _OPENMP
#include <omp.h>
#endif

static int VectorSize;
static double *a, *b, *c;

int HPCC_StarStream (HPCC_Params *params) {
int myRank, commSize;
int rv, errCount;
MPI_Comm comm = MPI_COMM WORLD;

MPI Comm size(comm, &commSize);
MPI_Comm_rank(comm, &myRank) ;

rv = HPCC_Stream(params, 0 == myRank) ;
MPI Reduce(&rv, &errCount, 1, MPI_ INT, MPI_SUM, O,
comm) ;

return errCount;

}

int HPCC_Stream(HPCC_Params *params, int doIO) {
register int j;
double scalar;

VectorSize = HPCC_LocalVectorSize(params, 3,
sizeof (double), 0);

a = HPCC_XMALLOC(double, VectorSize);
b = HPCC_XMALLOC(double, VectorSize);
c = HPCC_XMALLOC(double, VectorSize);

SR —

MPI + OpenMP

@8I B8 B '

if ('a || 'b || 'e) {
if (c) HPCC_free(c);
if (b) HPCC_free(b); \
if (a) HPCC_free(a);
if (doIO) {
fprintf(outFile, "Failed to allocate memory (%d).\n",
VectorSize) ;
fclose(outFile);
}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

#endif
for (j=0; j<VectorSize; j++) {
b[j] = 2.0;
c[j] = 1.0;
}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[j]l+scalar*c[]];

HPCC_free(c);
HPCC_free(b) ;
HPCC_free(a);

STREAM Triad: MPI+OpenMP vs. CUDA

MPI + OpenMP

#ifdef _OPENMP
#include <omp.h>

#endif
static int VectorSize; - -
static double *a, *b, *c; . I . I
]
int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;

int rv, errCount;
MPI Comm comm = MPI COMM_WORLD;

MPI_Comm size(comm,
MPI Comm _rank (comm,

&commSize) ;
&myRank) ;

rv = HPCC_Stream(params, 0 == myRank);

MPI Reduce(&rv, &errCount, 1, MPI_INT, MPI_SUM, 0,

return errCount;

™

HPCC_XMALLOC(double, VectorSize);
b HPCC_XMALLOC(double, VectorSize);
c HPCC_XMALLOC(double, VectorSize);

if (a || 'b || 'e) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_ free(a);

if (doIO) {
fprintf(outFile,
fclose(outFile);

}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

a

#endif
for (j=0; j<VectorSize; j++) {
b[3j] = 2.0;
c[j] = 1.0;

}
scalar = 3.0;

#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)
a[j] = b[jl+scalar*c[j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return 0;

comm) ;

"Failed to allocate memory (%d).\n",

VectorSize) ;

e

#define N 2000000
int main() { 1 ! :
float *d_a, *d b, *d _c; 1 061 @

}

}

float scalar;

cudaMalloc((void**)&d a,
cudaMalloc((void**)&d b,
cudaMalloc((void**) &d c,

sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

d1m3 d1mBlock(128)

P

e dd g avy g

.5f£, N);

PE L Qi@ NI VUGl d Uy Ul L VN £ s\ Wy

set_array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;

if (idx < len) cl[idx] =

a[idx]+scalar*b[idx];

STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar,
cudaThreadSynchronlze(),
cudaFree (d_a);
cudaFree (d_b) ;
cudaFree (d_c);
__global _ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = value;
__global _ void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

HPC suffers from too many distinct notations for expressmg parallelism and locality

N) ;

Why so many programming models? o

HPC has traditionally given users...
...low-level, control-centric programming models
...ones that are closely tied to the underlying hardware
...ones that support only a single type of parallelism

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node MPI executable
Intra-node/multicore OpenMP / pthreads iteration/task
Instruction-level vectors/threads pragmas iteration
GPU/accelerator Open[MP|CL|ACC]/ CUDA SIMD function/task

benefits: lots of control; decent generality; easy to implement
downsides: lots of user-managed detail; brittle to changes

Rewinding a few slides...
CeEfrTE T
*

#ifdef _OPENMP
#include <omp.h>

#endif
static int VectorSize; - -
static double *a, *b, *c; . I . I
]
int HPCC_StarStream(HPCC_Params *params) {
int myRank, commSize;

int rv, errCount;
MPI_Comm comm = MPI_COMM_WORLD;

&commSize) ;
&myRank) ;

rv = HPCC_Stream(params, 0 == myRank);
MPI Reduce(&rv, &errCount, 1, MPI_INT,

MPI_Comm size(comm,
MPI Comm rank(comm,

MPI_SUM, O,

return errCount;

™

a
b
c

HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);
HPCC_XMALLOC(double, VectorSize);

if (a || 'b || 'e) {

if (c) HPCC_free(c);

if (b) HPCC_free(b);

if (a) HPCC_ free(a);

if (doIO) {
fprintf(outFile,
fclose(outFile);

}

return 1;

}

#ifdef _OPENMP
#pragma omp parallel for

"Failed to allocate memory (%d).\n",

#endif
for (j=0; j<VectorSize; j++) {
b[3j] = 2.0;
c[j] = 1.0;
}
scalar = 3.0;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (j=0; j<VectorSize; j++)

a[j]l] = b[jl+scalar*c[]j];

HPCC_free(c);
HPCC_free (b) ;
HPCC_free(a);

return 0;

comm) ;

VectorSize) ;

#define N 2000000
int main() {
float *d_a, *d b, *d c;

float scalar;

cudaMalloc((void**)&d a,
cudaMalloc((void**)&d b,
cudaMalloc((void**) &d c,

d1m3 d1mBlock(128)

P

PE L Qi@ NI VUGl d Uy Ul L VN £ s\ Wy

set_array<<<dimGrid,dimBlock>>>(d c,

scalar=3.0f;

if (idx < len) cl[idx] =

sizeof (float) *N) ;
sizeof (float) *N) ;
sizeof (float) *N) ;

e dd g avy g

.5f£, N);

STREAM Triad<<<dimGrid,dimBlock>>>(d b, d ¢, d_a, scalar,
cudaThreadSynchronlze()
cudaFree (d_a);
cudaFree (d_b) ;
cudaFree (d_c);
__global _ void set_array(float *a, float value, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < len) a[idx] = wvalue;
}
__global _ void STREAM Triad(float *a, float *b, float *c,
float scalar, int len) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;

a[idx]+scalar*b[idx];

HPC suffers from too many distinct notations for expressmg parallelism and locality

N) ;

STREAM Triad: Chapel .
Chapel
config const m = 1000,
alpha = 3.0;
const ProblemSpace = {1..m}(dmapped ..; .__ﬂ“BSpedal
sauce
var A, B, C: [ProblemSpace] real;
B =2.0;
C =1.0;
A =B + alpha * C;
— N —_— —_—
I I I I I I I I I
D) || e D | | O D | | e e e
D || e | | e || e
OO | | O I I I | | T I LI T IO lﬂl‘lﬂ.*.ﬁ-F-h. L
(=] o - I - B - B - B DI DO

Philosophy: Good language design can tease details of locality and

parallelism away from an algorithm, permitting the compiler, runtime,

applied scientist, and HPC expert to each focus on their strengths.

Motivating Chapel Themes

1) General Parallel Programming

2) Global-View Abstractions

3) Multiresolution Design

4) Control over Locality/Affinity

5) Reduce HPC — Mainstream Language Gap

1) General Parallel Programming .o

With a unified set of concepts... \

...express any parallelism desired in a user’s program
o Styles: data-parallel, task-parallel, concurrency, nested, ...
e Levels: model, function, loop, statement, expression

...target any parallelism available in the hardware
e Types: machines, nodes, cores, instruction

Type of HW Parallelism Programming Model Unit of Parallelism

Inter-node Chapel task(or executable)
Intra-node/multicore Chapel iteration/task
Instruction-level vectors/threads Chapel iteration
GPU/accelerator Chapel SIMD function/task

2) Global-View Abstractions

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View

§ EHE
+ T 2
= [T |

-
| e,
e

Local-View

\
=AY
(Y \
e \
\
\
(4]

2) Global-View Abstractions

In pictures: “Apply a 3-Point Stencil to a vector”

Global-View

§ EHE

R

Local-View

2) Global-View Abstractions

In code: “Apply a 3-Point Stencil to a vector”

Global-View

~_

‘proc main () {
‘ var n = 1000;
! var A, B: [l..n] real;
/7”5“\ forall i in 2..n-1 do

YYYVVVVYY

B[i] = (A[i-1] + A[i+1])/2;

}

Local-View (SPMD)

EN

proc main () {
var n = 1000;
var p = numProcs (),
me = myProc(),
myN = n/p,
var A, B: [0..myN+1] real;
if (me < p-1) {
send (me+1, A[myN]);
recv (me+1l, A[myN+1]);
}
if (me > 0)
send (me-1,
recv (me-1,
}
forall i in 1..myN do

B[i] = (A[1i-1] + A[i+11)/2;

{
AlL]);
A[O])

Bug: Refers to uninitialized values at ends of A

e Y

2) Global-View Abstractions .o

In code: “Apply a 3-Point Stencil to a vector”

Global-View § Local-View (SPMD)
\ proc m Assumes p divides n
. . v = 1000;
Pro i) b, - numprocs),
- . B ,
l var A, B: [l..n] real; myN :mi/;?c()
Lo = 1,
,//,m\,\,, forall i in 2..n-1 do EEZH? i
\&%%U{ B[i] = (A[i-1] + A[i+11)/2; var A, B: [0..myN+1] real;
v if (me < p-1) {
send (me+1, A[myN]);
recv (me+l, A[myN+1]);
_ : } else
Communication becomes | AmyHi = myN-1;
geometrically more complex |— (]| if <m§(> 0>1 {A[l])
. . . send (me-1, ;
for higher-dimensional arrays recv (me-1., A[0]);
} else
myLo = 2;
forall 1 in mylLo..myHi1 do
B[i] = (A[1i-1] + A[i+1]1)/2;
}

» Al YVYY
\.'—— D
| evem e
N

a0
=

2) Global-View Programming: A Final Note .o

e A language may support both global- and local-view !
programming — in particular, Chapel does

proc main () {
coforall loc in Locales do
on loc do
MySPMDProgram(loc.1d, Locales.numElements);

}

proc MySPMDProgram (myImageID, numlImages) {

}

“\\.'—_ D
[v e
A

3) Multiresolution Design o

Multiresolution Design: Support multiple tiers of features
e higher levels for programmability, productivity
e lower levels for greater degrees of control

Chapel language concepts

(Domain Maps)

Task Parallelism
Base Language

Locality Control

Target Machine

e build the higher-level concepts in terms of the lower
e permit the user to intermix layers arbitrarily

| Crem

4) Control over Locality/Affinity A

Consider:
e Scalable architectures package memory near processors
e Remote accesses take longer than local accesses

Therefore:
e Placement of data relative to tasks affects scalability
e Give programmers control of data and task placement

Note:
e Over time, we expect locality to matter more and more
within the compute node as well

COMPUTE I STORE ANALYZE

Aw\ _m-
Nae/ Copyright 2015 Cray Inc.

PGAS Programming in a Nutshell .o

Global Address Space: \

e permit parallel tasks to access variables by naming them
e regardless of whether they are local or remote
e compiler / library / runtime will take care of communication

OK to access i, j, and k
wherever they live

L LS

N ,”-5\

;A

0 7

Images / Threads / Locales / Places / etc. (think: “compute nodes”)

C 2

/

\ n
\
\\——,

PGAS Programming in a Nutshell .o

Global Address Space: \

e permit parallel tasks to access variables by naming them
e regardless of whether they are local or remote
e compiler / library / runtime will take care of communication

Partitioned:

e establish a strong model for reasoning about locality
e every variable has a well-defined location in the system
e |ocal variables are typically cheaper to access than remote ones

| and j are remote, so e
need to “get” their values SN X

S -
-~ -
-~ -
-~ -
-~ -
~ -
-~ -

i
0

Images / Threads / Locales / Places / etc. (think: “compute nodes”)

C 3

PGAS Programming in a Nutshell .o

Global Address Space: \

e permit parallel tasks to access variables by naming them
e regardless of whether they are local or remote
e compiler / library / runtime will take care of communication

Partitioned:

Communication is implicit!
One sided GET and PUT.

Images / Threads / Locales / Places / etc. (think: “compute nodes”)

C @

5) Reduce HPC «— Mainstream Language Gap — Yy

Consider:

e Students graduate with training in Java, Matlab, Python, etc.

e Yet HPC programming is dominated by Fortran, C/C++, MPI

We’d like to narrow this gulf with Chapel:
e to leverage advances in modern language design
e to better utilize the skills of the entry-level workforce...

e ...while not alienating the traditional HPC programmer
e e.g., support object-oriented programming, but make it optional

COMPUTE I STORE ANALYZE

o=
f\l it
'\:-s"_/ Copyright 2015 Cray Inc.

R
@

Processing Twitter @mentions Graphs in Chapel

Processing Tweets: Motivation . o

Motivating Question: Is Chapel useful for Data Analytics? \
e \What would it look like?
e What features are we missing?

Processing Tweets: Background .o

Twitter: an online social networking service that enables users to |
send and read short 140-character messages called "tweets" -

Wikipedia ’
e tweets support referencing other users via @username

Benchmark: Label Propagation for Community Detection
e can be considered to capture a data analytics workflow

e see CUG'15 paper: Implementing a social-network analytics pipeline
using Spark on Urika XA

e a few implementations of this benchmark exist
e e.g., Spark

"’:*\ COMPUTE I STORE ANALYZE
C

Copyright 2015 Cray Inc.

Processing Tweets: Computation Steps . o

e Computation consists of these steps: \

S

e Read in gzip files storing JSON-encoded tweets

e Find pairs of Twitter users that @mention each other

e Construct a graph from such users

e Run a label propagation algorithm on that graph

e Output the community structure resulting from label propagation

Community 1 Community 2

Processing Tweets: Label Propagation o

Label Propagation Algorithm \

(described in Near linear time algorithm to detect community structures in
large-scale networks)

1
2.
3.
4

Initialize the labels at all nodes in the network.

Seti=1.

Arrange the nodes in the network in a random order and set it to X.
For each x 1in X, set node x’s label to the one that occurs most
frequently among neighbors, with ties broken uniformly randomly.
If every node has a label that the maximum number of neighbors
have, stop the algorithm. Otherwise, set i =i+ 1 and go to step 3.

http://arxiv.org/pdf/0709.2938.pdf
http://arxiv.org/pdf/0709.2938.pdf

Processing Tweets: Implementation Overview .

e <400 lines of Chapel code
e plus a Graph module (< 300 lines, to become a standard module)
e plus some improvements to existing Chapel modules

e current version is single-locale
e ultimately, need to support multi-locale in order to run larger data sets

e graph representation similar to other Chapel graph codes
e e.g., SSCA#2

COMPUTE I STORE ANALYZE

Copyright 2015 Cray Inc.

)

Processing Tweets: /1O o

e Reading the tweets to build the graph is ~1/2 of the code |
e Command line input lists files and directories to process
o findfiles() iterator used to enumerate files in a directory

e Reads file using gunzip via the new Spawn module
e Uses new functionality for JSON I/O

e concept: use types and I/O that ignore irrelevant fields
e (details in a sidebar following this section)

Processing Tweets: Algorithm in Chapel

Algorithm closely matches the psuedocode:

var 1 = 0;

var go: atomic bool;

go.write (true) ;

while go.read(..) && 1 < maxiter /{
go.write (false) ;
// for each x in the randomized order
forall vid in reordered vertices {

// set the label to the most frequent among neigbors

mylabel = labels[vid].read(memory order relaxed);

maxlabel = mostCommonlLabelInNeighbors (vid) ;

if countNeighborsWith (vid, mylabel) <
countNeighborsWith (vid, maxlabel) then
go.write (true); //stop the algorithmif ...

labels[vid] .write (maxlabel, memory order relaxed);

\
. CcCR=RAY |
Processing Tweets: Caveats

The next few slides compare our Chapel version against a Spark
version

Important Notes:

e Spark includes resiliency features while Chapel currently does not
e neither implementation is necessarily optimal

'C COMPUTE I STORE ANALYZE
__"'/ Copyright 2015 Cray Inc.

Processing Tweets: Productivity Comparison .o
* \
Spark Chapel
e RDDs are immutable e Chapel arrays are mutable
e create new RDD every e Algorithm can update labels in-
iteration through algorithm place

e Algorithm written in terms of e Algorithm written in terms

mapping a fn on data of parallel loops

e difficult to visit vertices in e straightforward to visit vertices
random order in random order

e movement of information is e movement of information
described as messages occurs through variable reads
contributing to a new RDD and writes

e breaking ties randomly might e breaking ties randomly is an
require a custom operator easy change

These differences reflect Spark’s declarative nature vs. Chapel’s imperative design.

’/:*‘ COMPUTE I STORE I ANALYZE
G

Copyright 2015 Cray Inc.

Processing Tweets: Performance Comparison .o

e We performed an initial performance comparison between our

Chapel version and the Spark version
e preliminary results are promising

e However, there are several caveats:

e the results are completely apples-to-oranges:

e different architectures

o different system scales

o different data set sizes

(reflects Chapel code being single-locale only, early stages of study)
e a multi-locale Chapel version will likely perform very differently

e multi-locale execution will be necessary for larger dataset scales

e For these reasons, we’ve decided not to release results until

we can perform a more rigorous study
e specifically, multi-locale Chapel, same data set, same architecture

’/:*‘ COMPUTE I STORE ANALYZE
G

Copyright 2015 Cray Inc.

Processing Tweets: Impact, Status, Next Steps =T

e \
\

Impact: \
e A positive early indication of Chapel’s applicability to data analytics

Status:

e Have a prototype data analytics benchmark
e reliant on pending modifications to Chapel library
e Productivity and performance are promising

Next Steps:

Commit library modifications to master
e Create a multi-locale version
e primary effort: multi-locale graph data structures / domain maps
e Compare performance with other implementations, scientifically
Describe this study in a paper to disseminate the results, get feedback

@\ COMPUTE I STORE ANALYZE
—

Copyright 2015 Cray Inc.

Sidebar on /O for Twitter Processing in Chapel

Example Tweet in JSON format o

e Tweets have 34 top-level fields
¢ including nested structures containing much more data

{"coordinates™: null, "created_at": "Fri Oct 16 16:00:00 +0000 2015", "“favorited": false, "truncated": false, "id_str": "28031452151", "entities™:
{"urls": [{“expanded url™: null, "url": "http://chapel.cray.com”, "indices": [69, 100]}], "hashtags": [], "user_mentions": [{"name" "Cray
Inc.”, "id_str": "23424245", "id": 23424245, "indices": [25, 30], "screen_name": "cray" }]}, "in_reply_to_user_id_str": null, "text": "Let's
mentlon the user @cray — here is an embedded ur http://chapel.cray.com"”, "contributors": null, "id": 28039652140, "retweet_count":
null, "in_reply to_status_id_str'": null, "geo": null, "retweeted": false, "in_reply_to_user_id": null, "user": { "proﬁIe_sidebar_border_color":
"CODEED", "name": "Cray Inc.", "profile_sidebar _fill_color": "DDEEF6", "profile_background_tile": false, "profile_image_url": "http:/
a3.twimg. cornlproﬁle |magesl2342452f icon_normal.png", "location™: “Seattle WA", "created_at": "Fri Oct 10 23:10:00 +0000 2008", "id_str":
"23502385", "follow_request_sent™: false, "profile_link_color": "0084B4", “favourrtes count": 1, "url": "http://cray.com",
"contributors_enabled™: false, "utc_offset": -25200, "id": 23548250, “proﬁle use_background_i |mage“ true, "listed_count": 23, "protected":
false, "lang™ "en", "profile_text_color": "333333", "foIIowers count": 1000, “time_zone™: "Mountain Time (US & Canada)", "verified™: false,
“geo_enabled" true, "proﬁle_background_color" "CODEED", "notrﬁcatlons“ false, "description": "Cray Inc", "friends_count": 71,

proﬁle background_image_url": "http://s.twimg.com/a/2349257201/images/themes/theme1/bg.png", "statuses_count™: 302,
"screen_name": "gnip", "following": false, "show_all_inline_media": false }, "in_reply_to_screen_name": null, "source": "web", "place": null,
"in_reply to_status_id"™: null}

o N

Reading JSON Tweets

// define Chapel records whose fields reflect only
//the portions of the JSON data we care about

record TweetUser ({
var id: int;
}

record TweetEntities {

var user mentions: list (TweetUser);

}
record User {
var id: int;
}
record Tweet ({
var id: int,
user: User,
entities: TweetEntities;

proc process json(..) {
var tweet: Tweet;

while true {
/' “%~jt” format string:
/ j: JSON format
// t any record
// ~: skip other fields
got = logfile.readf ("%~3jt",
tweet,

error=err) ;

if got && !err then
handle tweet (tweet);

if err == EFORMAT then ...;

if err == EEOF then break;

Open Issue: How to Read Arrays from JSON .o

Current approach: \

record TweetEntities {

var user mentions: list (TweetUser);

Desired approach:
record TweetEntities {

var user mentions: [1..0] TweetUser;
// not possible to know array’s length in advance, determined by file contents
// would like a way to read this record that resizes the array appropriately...

\
g : cRAayYy ||
Legal Disclaimer . o

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any * \
intellectual property rights is granted by this document.

\

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without
notice.

Cray hardware and software products may contain design defects or errors known as ernata, which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames intemally to identify products that are in development and not yet publically announced for release.
Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing
and any use of Cray Inc. intemal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate
performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or
configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design,
SONEXION, URIKA, and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL,
CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX;, LIBSCI, NODEKARE, THREADSTORM. The following
system family marks, and associated model number marks, are trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT, and
XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds,
owner of the mark on a worldwide basis. Other trademarks used in this document are the property of their respective
owners.

Copyright 2014 Cray Inc.

C @

http://chapel.cray.com chapel info@cray.com http://github.com/chapel-lang/chapel/

