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Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability, enabling development on laptops and execution on supercomputers.

Some history
2002: Design and development started with DARPA HPCS program,
2002-now: core development team continuously funded and grown from 5 to 21 FTEs,
2019: Arkouda data analytics package written in Chapel by others to provide interactive 
supercomputing (https://github.com/Bears-R-Us/arkouda), and
2019-now: Arkouda being used in production, and CHAMPs, ChplUltra, and ChOp being 
actively developed and used to do research.
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CHAPEL PROGRAMMING LANGUAGE

https://github.com/Bears-R-Us/arkouda
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HOW APPLICATIONS ARE USING CHAPEL

Chapel server for a Python 
client (~30K lines of Chapel)

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.
US DoD

Rewrite existing codes into 
Chapel (~100K lines of Chapel)

CHAMPS: 3D Unstructured CFD
Éric Laurendeau, Simon Bourgault-Côté, 

Matthieu Parenteau, et al.
École Polytechnique Montréal

Writing code in Chapel 
(~10k lines of including parallel FFT)

ChplUltra: Simulating Ultralight 
Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac,  et al.
Yale University / University of Auckland

Calling out to Cuda
(~1k lines of Chapel )

ChOp: Chapel-based Optimization
Tiago Carneiro, Nouredine Melab, et al.
INRIA Lille, France



Arkouda data analytics framework
• Sorting is within 2-3x of the world record
• Loading an HDF5 file, gather, scatter, and stream are all significantly 

faster than with Dask
• Arkouda can do groupby and argsort, which Dask can't

CHAMPS Aeronautics Code
• performance and scalability competitive with MPI + C++
• CHAMPS scales up to 256 nodes/locales on Cray XC. That experiment 

had 640 million cells in a 3D grid

Coral Reef Diversity Image Analysis
• Computation in Matlab took days, Chapel version with some 

algorithmic improvements takes seconds
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MOTIVATION: APPS WRITTEN IN CHAPEL ARE FAST AND SCALABLE



• A task is a unit of computation that can and should be 
executed in parallel with other tasks

• Tasks can share data with other tasks through the lexical 
scoping of variables in the program's global namespace

• The mapping of tasks to nodes is done either
• by the programmer explicitly by using the concept of locales 

or
• implicitly through the 'forall' data parallelism abstraction 

when iterating over distributed data structures
–'forall' is explicit mapped to locales under the hood
–can be user-defined with an iterator

• Tasks can execute indefinitely until they yield control 
explicitly or through synchronization constructs
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TASKS IN CHAPEL

task

task

task



• Synchronous parallellism
• 'coforall', distributed memory parallelism across processes/locales 

with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation
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TASK PARALLELISM SUPPORTED BY CHAPEL

iterationiteration
coforall

iteration

stmt
beginbegin

begin

stmt

stmt



• "Hello world", shared and distributed-memory parallel: 'coforall'
• HPO, HyperParameter Optimization for ML training: subprocess spawning
• Arkouda, data analytics package: 'coforall', 'scan', 'forall'
• CHAMPS, 3D computational fluid dynamics for airplanes: 'coforall'
• ChOp, Chapel-based Optimization: 'forall', 'coforall', 'begin', 'atomic'
• ParFlow, C+MPI hydrodynamics code calling out to Chapel: 'forall'
• Coral reef, image analysis for eco diversity: 'coforall', 'forall', 'cobegin'
• Arbitrary task graphs: 'begin', 'atomic'
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USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS
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USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed 
'coforall'

Threaded 
'coforall'

Asynchronous 
'begin'

'cobegin' sync or 
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402
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CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

• Locales can run tasks and store variables
• Think “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4   # or  ‘–nl 4’
Four nodes/CPUs
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TASK-PARALLEL “HELLO WORLD”

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl
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TASK-PARALLEL “HELLO WORLD”

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl
‘here’ refers to the locale on 

which we’re currently running

how many processing units 
(think “cores”) does my locale have?

what’s my locale’s name?
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TASK-PARALLEL “HELLO WORLD”

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

a 'coforall’ loop executes each 
iteration as an independent task
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TASK-PARALLEL “HELLO WORLD”

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

So far, this is a shared-memory program

Nothing refers to remote locales, 
explicitly or implicitly

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032
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TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);
}  

}

helloTaskPar.chpl
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TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);
}  

}

helloTaskPar.chpl create a task per locale 
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar -nl=4
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033

Hello from task 3 of 4 on n1034 
Hello from task 1 of 4 on n1035

…
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USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed 
'coforall'

Threaded 
'coforall'

Asynchronous 
'begin'

'cobegin' sync or 
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402


• Python interface and Chapel backend

• Supported distributed optimization as well as 
distributed training
• E.g., 20 nodes, 5 HPO instances each training on 

4 nodes

• Chapel code includes spawning subprocesses, which 
is a non-blocking operation
• Blocking on the completion of the subprocess can 

be done with a 'wait'
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CRAY HYPERPARAMETER OPTIMIZATION (HPO)
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USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS
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Asynchronous 
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'cobegin' sync or 
atomic vars

subprocesses forall scan

Hello World ✔ ✔
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Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402


What is it?
• A Python library supporting a key subset of NumPy and Pandas for Data Science
• Implemented using a client-server model with Chapel as the server to support scalability
• Designed to compute results within the human thought loop (seconds to minutes on TB-scale arrays)
• ~30K lines of Chapel

Who did it?
• Mike Merrill, Bill Reus, et al., US DOD
• Open-source: https://github.com/Bears-R-Us/arkouda

Why Chapel?
• high-level language with C-comparable performance
• great distributed array support
• ports from laptop to supercomputer
• close to Pythonic—thus is readable for Python users who look under the hood
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ARKOUDA IN ONE SLIDE

https://github.com/Bears-R-Us/arkouda


• Recent hero run performed on large Apollo system
• 72 TiB of 8-byte values
• 480 GiB/s (2.5 minutes elapsed time)
• used 73,728 cores of AMD Rome
• ~100 lines of Chapel code

• Believed to be within 2-3x of world record
• however, a bit apples-to-oranges:

– they sort larger key values (to their benefit)
– their data starts on disk (SSD)
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ARKOUDA ARGSORT: HERO RUN



• Lots of 'forall' used over distributed arrays
• Superfast radix sort uses 'coforall' and 'scan'
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PARALLEL PATTERNS IN ARKOUDA
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USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed 
'coforall'

Threaded 
'coforall'

Asynchronous 
'begin'

'cobegin' sync or 
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔
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Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402


What is it?
• Computational Fluid Dynamics framework for airplane simulation written from scratch
• Modular design, permitting various computational modules to be integrated (or not)
• First ~48k lines written in ~2 years, now up to over 100k lines

Who did it?
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• not open-source (yet), but available by request to researchers

Task Parallel Patterns
• SPMD-like parallelism with 'coforall's
• Threaded parallelism with 'coforall's
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CHAMPS IN ONE SLIDE



• Eric Laurendeau (PI) gave our CHIUW 2021 keynote
• title: HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis
• students also gave talks on their individual efforts
• key excerpt:

"So CHAMPS, that's the new solver that has been made, and all made by the students...  So, [Chapel] promotes the programming efficiency.  
It was easy for them to learn.  ...I see the end result.  We ask students at the master's degree to do stuff that would take 2 years and they do 
it in 3 months.  And I'm not joking, this is from 2 years to 3 months. So if you want to take a summer internship and you say 'program a new 
turbulance model', well they manage.  And before, it was impossible to do."

• CHAMPS participating in 4th CFD High Lift Prediction Workshop and 1st Icing Prediction Workshop
• teams compete against one another to do the same massive simulations

– entries compared in terms of model accuracy, performance, practicality

• sponsored by AIAA and NASA
• initial results are looking competitive to longer-lived / more established codes from Stanford, MIT, etc.
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CHAMPS: QUOTE AND STATUS FROM THE PI
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USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS
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Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402


What is it?
• Tree-based, branch and bound optimization 

algorithms
• irregular tree, lots of pruning

Who did it?
• Tiago Carneiro and Nouredine Melab at the Imec -

Belgium and INRIA Lille
• Open-source: https://github.com/tcarneirop/ChOp

Chapel Task Parallel Constructs
• Heavy use of 'forall' to implement a distributed task 

load balancer
• Using 'begin' and 'atomic' variables in checkpointing 

code
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CHOP IN ONE SLIDE

from slides for "Towards Ultra-scale Optimization Using 
Chapel" by Tiago Carneiro (University of Luxembourg) and 
Nouredine Melab (INRIA Lille), CHIUW 2021

https://github.com/tcarneirop/ChOp
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USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS
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There will be fun questions throughout the talk

https://pollev.com/michellestrout402
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PARFLOW

• Watershed hydrology model
• Bottom of the bedrock to the 

top of the canopy
• Began in 1998
• > 1,000,000 lines of C code

• Chapel piece
• Summer intern project
• MPI+C code calls out to

Chapel
• Uses 'forall' for ...

– Shared-memory parallelism
– User-defined iterators over 

boundary conditions
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SURFACE TRAVERSAL, C VS CHAPEL

Surface Traversal Macro, C Surface Traversal, Chapel



34

CHAPEL NEEDS 40% LESS CODE
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• Analyzing images for coral reef diversity

• Less than 300 lines of code scales out to 100s of processors

• Full maps calculated in seconds, rather than days

• Task parallel patterns
• 'forall' in convolve_and_calculate doing shared memory, thread-level parallelism per node
• 'coforall' in main doing distributed memory parallelism over swaths of the image
• 'cobegin' could be used to input different file formats in parallel
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IMAGE PROCESSING FOR CORAL REEF DISSIMILARITY



Create a (P x P) mask to find all 
points within a given radius.

P

P



We convolve this mask over the 
entire domain and perform a 
weighted reduce at each location.

(Add up weighted values of 
all points in neighborhood)



We convolve this mask over the 
entire domain and perform a 
weighted reduce at each location.
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We convolve this mask over the 
entire domain and perform a 
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We convolve this mask over the 
entire domain and perform a 
weighted reduce at each location.



etc.

We convolve this mask over the 
entire domain and perform a 
weighted reduce at each location.



ALGORITHM:  Divide the domain into “strips” and allocate a task for each strip.

Task 1

Task 2

…

Task (n-1)

Task n
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• Encoding dependencies
• Array of 'atomic int'
• 'numToWaitFor[i]' is the number of tasks that task i

depends on

• Starting asynchronous tasks
• 'for' loop
• 'begin' block statement defines each task i

• Waiting for dependencies to resolve
• Each task waits for the number of tasks it depends 

on to go to zero
• 'numToWaitFor[i].waitFor(0)'

• Tell dependent tasks when done
• 'numToWaitFor[j].fetchadd(-1)'

47

ARBITRARY TASK GRAPHS



• Chapel compiler generating code for GPUs
• Nascent support for NVIDIA
• Exploring AMD and Intel support

• Chapel code calling CUDA examples
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

• Key concepts
• Using the 'locale' concept to indicate execution and data 

allocation on GPUs
• 'forall' and 'foreach' loops will be converted to kernels
• Arrays declared in 'on here.gpus[0]' blocks are allocated on the 

GPU

• For more info...
• https://chapel-lang.org/docs/technotes/gpu.html
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TASKS ON GPUS?  GPU SUPPORT IN CHAPEL

https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html


• Chapel is a general-purpose programming language designed to leverage parallelism
• It is being used in some large production codes

• Performance: The resulting applications are fast and scalable
• Programmability: The code is relatively easy to write and maintain

• Chapel supports many different task parallelism patterns

49

TALK TAKEAWAYS

Application Distributed 
'coforall'

Threaded 
'coforall'

Asynchronous 
'begin'

'cobegin' sync or atomic 
vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
Let me know your thoughts in a short survey

https://pollev.com/michellestrout402


• Links for some Chapel examples
• Blog posts for Advent of Code, https://chapel-lang.org/blog/index.html

– Especially check out days 11 and 12 since they cover sync variables and atomics

• Wavelet example by Jeremiah Corrado, Slides and Code at 
https://github.com/mstrout/ChapelForPythonProgrammersFeb2023/tree/main/wavelet_example

• Primers, https://chapel-lang.org/docs/primers/index.html
• Test directory in main repository, https://github.com/chapel-lang/chapel/tree/main/test

• Using a container on your laptop
• See https://github.com/mstrout/ChapelForPythonProgrammersFeb2023 for some example code
• First, install podman or docker for your machine and then start them up
• Then, the below commands work with podman or docker

podman pull docker.io/chapel/chapel     # takes about 3 minutes
cd ChapelForPythonProgrammersFeb2023    # assuming git clone has happened
podman run --rm -v "$PWD":/myapp -w /myapp chapel/chapel chpl hello.chpl
podman run --rm -v "$PWD":/myapp -w /myapp chapel/chapel ./hello
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USE A CONTAINER TO CHECKOUT SOME CHAPEL EXAMPLES

https://chapel-lang.org/blog/index.html
https://github.com/mstrout/ChapelForPythonProgrammersFeb2023/tree/main/wavelet_example
https://chapel-lang.org/docs/primers/index.html
https://github.com/chapel-lang/chapel/tree/main/test
https://github.com/mstrout/ChapelForPythonProgrammersFeb2023


Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues
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CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues


"Task Bench: A Parameterized 
Benchmark for Evaluating Parallel 
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Slaughter, Wei Wu, Yuankun Fu, 
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CHAPEL TASKS ARE EFFICIENT
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CHAPEL DOES WELL EVEN WHEN # OF DEPENDENCIES INCREASE

"Task Bench: A Parameterized 
Benchmark for Evaluating Parallel 
Runtime Performance" by Elliott 
Slaughter, Wei Wu, Yuankun Fu, 
Legend Brandenburg, Nicolai Garcia, 
Wilhem Kautz, Emily Marx, Kaleb S. 
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Seema Mirchandaney, Wonchan Lee, 
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and Alex Aiken. In the International 
Conference for High Performance 
Computing, Networking, Storage and 
Analysis (SC 2020).


