
WAMTA: Workshop on Asynchronous Many-Task Systems and Applications
February 15, 2023

Michelle Mills Strout with slides from Brad Chamberlain, Ben Albrecht, Elliot Ronaghan, Brandon Neth, and Scott Bachman

APPLICATION EXAMPLES OF LEVERAGING
TASK PARALLELISM WITH CHAPEL

• Lead:
• Michelle Strout

• Tech Lead:
• Brad Chamberlain

• Manager:
• Tim Zinsky

• Subteam leads:
• Michael Ferguson
• Elliot Ronaghan
• Engin Kayraklioglu
• Lydia Duncan

• BTR/DevOps:
• Bhavani Jayakumaran

• Visiting Scholar from NCAR:
• Scott Bachman

CURRENT CHAPEL DEVELOPMENT TEAM AT HPE

2

Developers:
Ahmad Rezaii
Andy Stone
Anna Rift
Ben Harshbarger
Ben McDonald
Daniel Fedorin
David Iten
David Longnecker
Jade Abraham
Jeremiah Corrado
John Hartman
Vass Litvinov

Chapel is a general-purpose programming language that provides
ease of parallel programming,
high performance, and
portability, enabling development on laptops and execution on supercomputers.

Some history
2002: Design and development started with DARPA HPCS program,
2002-now: core development team continuously funded and grown from 5 to 21 FTEs,
2019: Arkouda data analytics package written in Chapel by others to provide interactive
supercomputing (https://github.com/Bears-R-Us/arkouda), and
2019-now: Arkouda being used in production, and CHAMPs, ChplUltra, and ChOp being
actively developed and used to do research.

3

CHAPEL PROGRAMMING LANGUAGE

https://github.com/Bears-R-Us/arkouda

4

HOW APPLICATIONS ARE USING CHAPEL

Chapel server for a Python
client (~30K lines of Chapel)

Arkouda: NumPy at Massive Scale
Mike Merrill, Bill Reus, et al.
US DoD

Rewrite existing codes into
Chapel (~100K lines of Chapel)

CHAMPS: 3D Unstructured CFD
Éric Laurendeau, Simon Bourgault-Côté,

Matthieu Parenteau, et al.
École Polytechnique Montréal

Writing code in Chapel
(~10k lines of including parallel FFT)

ChplUltra: Simulating Ultralight
Dark Matter
Nikhil Padmanabhan, J. Luna Zagorac, et al.
Yale University / University of Auckland

Calling out to Cuda
(~1k lines of Chapel)

ChOp: Chapel-based Optimization
Tiago Carneiro, Nouredine Melab, et al.
INRIA Lille, France

Arkouda data analytics framework
• Sorting is within 2-3x of the world record
• Loading an HDF5 file, gather, scatter, and stream are all significantly

faster than with Dask
• Arkouda can do groupby and argsort, which Dask can't

CHAMPS Aeronautics Code
• performance and scalability competitive with MPI + C++
• CHAMPS scales up to 256 nodes/locales on Cray XC. That experiment

had 640 million cells in a 3D grid

Coral Reef Diversity Image Analysis
• Computation in Matlab took days, Chapel version with some

algorithmic improvements takes seconds

5

MOTIVATION: APPS WRITTEN IN CHAPEL ARE FAST AND SCALABLE

• A task is a unit of computation that can and should be
executed in parallel with other tasks

• Tasks can share data with other tasks through the lexical
scoping of variables in the program's global namespace

• The mapping of tasks to nodes is done either
• by the programmer explicitly by using the concept of locales

or
• implicitly through the 'forall' data parallelism abstraction

when iterating over distributed data structures
–'forall' is explicit mapped to locales under the hood
–can be user-defined with an iterator

• Tasks can execute indefinitely until they yield control
explicitly or through synchronization constructs

6

TASKS IN CHAPEL

task

task

task

• Synchronous parallellism
• 'coforall', distributed memory parallelism across processes/locales

with 'on' syntax
• 'coforall', shared-memory parallelism over threads
• 'cobegin', executes all statements in block in parallel

• Asynchronous parallelism
• 'begin', creates an asynchronous task
• 'sync' and 'atomic' vars for task coordination
• spawning subprocesses

• Higher-level parallelism abstractions
• 'forall', data parallelism and iterator abstraction
• 'foreach', SIMD parallelism
• 'scan', operations such as cumulative sums
• 'reduce', operations such as summation

7

TASK PARALLELISM SUPPORTED BY CHAPEL

iterationiteration
coforall

iteration

stmt
beginbegin

begin

stmt

stmt

• "Hello world", shared and distributed-memory parallel: 'coforall'
• HPO, HyperParameter Optimization for ML training: subprocess spawning
• Arkouda, data analytics package: 'coforall', 'scan', 'forall'
• CHAMPS, 3D computational fluid dynamics for airplanes: 'coforall'
• ChOp, Chapel-based Optimization: 'forall', 'coforall', 'begin', 'atomic'
• ParFlow, C+MPI hydrodynamics code calling out to Chapel: 'forall'
• Coral reef, image analysis for eco diversity: 'coforall', 'forall', 'cobegin'
• Arbitrary task graphs: 'begin', 'atomic'

8

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

9

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402

11

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402

12

CHAPEL EXECUTION MODEL AND TERMINOLOGY: LOCALES

• Locales can run tasks and store variables
• Think “compute node” on a parallel system
• User specifies number of locales on executable’s command-line

locale 0 locale 1 locale 2 locale 3

Locales array:

User’s code starts running as a single task on locale 0

prompt> ./myChapelProgram --numLocales=4 # or ‘–nl 4’
Four nodes/CPUs

13

TASK-PARALLEL “HELLO WORLD”

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

14

TASK-PARALLEL “HELLO WORLD”

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl
‘here’ refers to the locale on

which we’re currently running

how many processing units
(think “cores”) does my locale have?

what’s my locale’s name?

15

TASK-PARALLEL “HELLO WORLD”

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

a 'coforall’ loop executes each
iteration as an independent task

16

TASK-PARALLEL “HELLO WORLD”

const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);

helloTaskPar.chpl

So far, this is a shared-memory program

Nothing refers to remote locales,
explicitly or implicitly

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 3 of 4 on n1032
Hello from task 2 of 4 on n1032

17

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);
}

}

helloTaskPar.chpl

18

TASK-PARALLEL “HELLO WORLD” (DISTRIBUTED VERSION)

coforall loc in Locales {
on loc {
const numTasks = here.numPUs();
coforall tid in 1..numTasks do
writef("Hello from task %n of %n on %s\n",

tid, numTasks, here.name);
}

}

helloTaskPar.chpl create a task per locale
on which the program is running

have each task run ‘on’ its locale

then print a message per core,
as before

prompt> chpl helloTaskPar.chpl
prompt> ./helloTaskPar -nl=4
Hello from task 1 of 4 on n1032

Hello from task 4 of 4 on n1032

Hello from task 1 of 4 on n1034

Hello from task 2 of 4 on n1032

Hello from task 1 of 4 on n1033

Hello from task 3 of 4 on n1034
Hello from task 1 of 4 on n1035

…

20

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402

• Python interface and Chapel backend

• Supported distributed optimization as well as
distributed training
• E.g., 20 nodes, 5 HPO instances each training on

4 nodes

• Chapel code includes spawning subprocesses, which
is a non-blocking operation
• Blocking on the completion of the subprocess can

be done with a 'wait'

21

CRAY HYPERPARAMETER OPTIMIZATION (HPO)

22

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402

What is it?
• A Python library supporting a key subset of NumPy and Pandas for Data Science
• Implemented using a client-server model with Chapel as the server to support scalability
• Designed to compute results within the human thought loop (seconds to minutes on TB-scale arrays)
• ~30K lines of Chapel

Who did it?
• Mike Merrill, Bill Reus, et al., US DOD
• Open-source: https://github.com/Bears-R-Us/arkouda

Why Chapel?
• high-level language with C-comparable performance
• great distributed array support
• ports from laptop to supercomputer
• close to Pythonic—thus is readable for Python users who look under the hood

23

ARKOUDA IN ONE SLIDE

https://github.com/Bears-R-Us/arkouda

• Recent hero run performed on large Apollo system
• 72 TiB of 8-byte values
• 480 GiB/s (2.5 minutes elapsed time)
• used 73,728 cores of AMD Rome
• ~100 lines of Chapel code

• Believed to be within 2-3x of world record
• however, a bit apples-to-oranges:

– they sort larger key values (to their benefit)
– their data starts on disk (SSD)

24

ARKOUDA ARGSORT: HERO RUN

• Lots of 'forall' used over distributed arrays
• Superfast radix sort uses 'coforall' and 'scan'

25

PARALLEL PATTERNS IN ARKOUDA

26

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402

What is it?
• Computational Fluid Dynamics framework for airplane simulation written from scratch
• Modular design, permitting various computational modules to be integrated (or not)
• First ~48k lines written in ~2 years, now up to over 100k lines

Who did it?
• Professor Eric Laurendeau’s team at Polytechnique Montreal
• not open-source (yet), but available by request to researchers

Task Parallel Patterns
• SPMD-like parallelism with 'coforall's
• Threaded parallelism with 'coforall's

27

CHAMPS IN ONE SLIDE

• Eric Laurendeau (PI) gave our CHIUW 2021 keynote
• title: HPC Lessons From 30 Years of Practice in CFD Towards Aircraft Design and Analysis
• students also gave talks on their individual efforts
• key excerpt:

"So CHAMPS, that's the new solver that has been made, and all made by the students... So, [Chapel] promotes the programming efficiency.
It was easy for them to learn. ...I see the end result. We ask students at the master's degree to do stuff that would take 2 years and they do
it in 3 months. And I'm not joking, this is from 2 years to 3 months. So if you want to take a summer internship and you say 'program a new
turbulance model', well they manage. And before, it was impossible to do."

• CHAMPS participating in 4th CFD High Lift Prediction Workshop and 1st Icing Prediction Workshop
• teams compete against one another to do the same massive simulations

– entries compared in terms of model accuracy, performance, practicality

• sponsored by AIAA and NASA
• initial results are looking competitive to longer-lived / more established codes from Stanford, MIT, etc.

28

CHAMPS: QUOTE AND STATUS FROM THE PI

29

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402

What is it?
• Tree-based, branch and bound optimization

algorithms
• irregular tree, lots of pruning

Who did it?
• Tiago Carneiro and Nouredine Melab at the Imec -

Belgium and INRIA Lille
• Open-source: https://github.com/tcarneirop/ChOp

Chapel Task Parallel Constructs
• Heavy use of 'forall' to implement a distributed task

load balancer
• Using 'begin' and 'atomic' variables in checkpointing

code

30

CHOP IN ONE SLIDE

from slides for "Towards Ultra-scale Optimization Using
Chapel" by Tiago Carneiro (University of Luxembourg) and
Nouredine Melab (INRIA Lille), CHIUW 2021

https://github.com/tcarneirop/ChOp

31

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402

32

PARFLOW

• Watershed hydrology model
• Bottom of the bedrock to the

top of the canopy
• Began in 1998
• > 1,000,000 lines of C code

• Chapel piece
• Summer intern project
• MPI+C code calls out to

Chapel
• Uses 'forall' for ...

– Shared-memory parallelism
– User-defined iterators over

boundary conditions

33

SURFACE TRAVERSAL, C VS CHAPEL

Surface Traversal Macro, C Surface Traversal, Chapel

34

CHAPEL NEEDS 40% LESS CODE

35

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402

• Analyzing images for coral reef diversity

• Less than 300 lines of code scales out to 100s of processors

• Full maps calculated in seconds, rather than days

• Task parallel patterns
• 'forall' in convolve_and_calculate doing shared memory, thread-level parallelism per node
• 'coforall' in main doing distributed memory parallelism over swaths of the image
• 'cobegin' could be used to input different file formats in parallel

36

IMAGE PROCESSING FOR CORAL REEF DISSIMILARITY

Create a (P x P) mask to find all
points within a given radius.

P

P

We convolve this mask over the
entire domain and perform a
weighted reduce at each location.

(Add up weighted values of
all points in neighborhood)

We convolve this mask over the
entire domain and perform a
weighted reduce at each location.

We convolve this mask over the
entire domain and perform a
weighted reduce at each location.

We convolve this mask over the
entire domain and perform a
weighted reduce at each location.

We convolve this mask over the
entire domain and perform a
weighted reduce at each location.

We convolve this mask over the
entire domain and perform a
weighted reduce at each location.

etc.

We convolve this mask over the
entire domain and perform a
weighted reduce at each location.

ALGORITHM: Divide the domain into “strips” and allocate a task for each strip.

Task 1

Task 2

…

Task (n-1)

Task n

46

USE OF TASKS IN SOME APPLICATIONS AND BENCHMARKS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or
atomic vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
There will be fun questions throughout the talk

https://pollev.com/michellestrout402

• Encoding dependencies
• Array of 'atomic int'
• 'numToWaitFor[i]' is the number of tasks that task i

depends on

• Starting asynchronous tasks
• 'for' loop
• 'begin' block statement defines each task i

• Waiting for dependencies to resolve
• Each task waits for the number of tasks it depends

on to go to zero
• 'numToWaitFor[i].waitFor(0)'

• Tell dependent tasks when done
• 'numToWaitFor[j].fetchadd(-1)'

47

ARBITRARY TASK GRAPHS

• Chapel compiler generating code for GPUs
• Nascent support for NVIDIA
• Exploring AMD and Intel support

• Chapel code calling CUDA examples
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
• https://github.com/chapel-

lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl

• Key concepts
• Using the 'locale' concept to indicate execution and data

allocation on GPUs
• 'forall' and 'foreach' loops will be converted to kernels
• Arrays declared in 'on here.gpus[0]' blocks are allocated on the

GPU

• For more info...
• https://chapel-lang.org/docs/technotes/gpu.html

48

TASKS ON GPUS? GPU SUPPORT IN CHAPEL

https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/stream/streamChpl.chpl
https://github.com/chapel-lang/chapel/blob/main/test/gpu/interop/cuBLAS/cuBLAS.chpl
https://chapel-lang.org/docs/technotes/gpu.html

• Chapel is a general-purpose programming language designed to leverage parallelism
• It is being used in some large production codes

• Performance: The resulting applications are fast and scalable
• Programmability: The code is relatively easy to write and maintain

• Chapel supports many different task parallelism patterns

49

TALK TAKEAWAYS

Application Distributed
'coforall'

Threaded
'coforall'

Asynchronous
'begin'

'cobegin' sync or atomic
vars

subprocesses forall scan

Hello World ✔ ✔

HPO ✔ ✔ ✔

Arkouda ✔ ✔ ✔ ✔

CHAMPS ✔ ✔

ChOp ✔ ✔ ✔ ✔

ParFlow ✔

Coral Reef ✔ ✔ ✔ ✔

Task Graph ✔ ✔

Poll Everywhere link: pollev.com/michellestrout402
Let me know your thoughts in a short survey

https://pollev.com/michellestrout402

• Links for some Chapel examples
• Blog posts for Advent of Code, https://chapel-lang.org/blog/index.html

– Especially check out days 11 and 12 since they cover sync variables and atomics

• Wavelet example by Jeremiah Corrado, Slides and Code at
https://github.com/mstrout/ChapelForPythonProgrammersFeb2023/tree/main/wavelet_example

• Primers, https://chapel-lang.org/docs/primers/index.html
• Test directory in main repository, https://github.com/chapel-lang/chapel/tree/main/test

• Using a container on your laptop
• See https://github.com/mstrout/ChapelForPythonProgrammersFeb2023 for some example code
• First, install podman or docker for your machine and then start them up
• Then, the below commands work with podman or docker

podman pull docker.io/chapel/chapel # takes about 3 minutes
cd ChapelForPythonProgrammersFeb2023 # assuming git clone has happened
podman run --rm -v "$PWD":/myapp -w /myapp chapel/chapel chpl hello.chpl
podman run --rm -v "$PWD":/myapp -w /myapp chapel/chapel ./hello

50

USE A CONTAINER TO CHECKOUT SOME CHAPEL EXAMPLES

https://chapel-lang.org/blog/index.html
https://github.com/mstrout/ChapelForPythonProgrammersFeb2023/tree/main/wavelet_example
https://chapel-lang.org/docs/primers/index.html
https://github.com/chapel-lang/chapel/tree/main/test
https://github.com/mstrout/ChapelForPythonProgrammersFeb2023

Chapel homepage: https://chapel-lang.org
• (points to all other resources)

Social Media:
• Twitter: @ChapelLanguage
• Facebook: @ChapelLanguage
• YouTube: http://www.youtube.com/c/ChapelParallelProgrammingLanguage

Community Discussion / Support:
• Discourse: https://chapel.discourse.group/
• Gitter: https://gitter.im/chapel-lang/chapel
• Stack Overflow: https://stackoverflow.com/questions/tagged/chapel

• GitHub Issues: https://github.com/chapel-lang/chapel/issues

51

CHAPEL RESOURCES

https://chapel-lang.org/
https://twitter.com/ChapelLanguage
https://www.facebook.com/ChapelLanguage/
http://www.youtube.com/c/ChapelParallelProgrammingLanguage
https://chapel.discourse.group/
https://gitter.im/chapel-lang/chapel
https://stackoverflow.com/questions/tagged/chapel
https://github.com/chapel-lang/chapel/issues

"Task Bench: A Parameterized
Benchmark for Evaluating Parallel
Runtime Performance" by Elliott
Slaughter, Wei Wu, Yuankun Fu,
Legend Brandenburg, Nicolai Garcia,
Wilhem Kautz, Emily Marx, Kaleb S.
Morris, Qinglei Cao, George Bosilca,
Seema Mirchandaney, Wonchan Lee,
Sean Treichler, Patrick McCormick,
and Alex Aiken. In the International
Conference for High Performance
Computing, Networking, Storage and
Analysis (SC 2020).

52

CHAPEL TASKS ARE EFFICIENT

53

CHAPEL DOES WELL EVEN WHEN # OF DEPENDENCIES INCREASE

"Task Bench: A Parameterized
Benchmark for Evaluating Parallel
Runtime Performance" by Elliott
Slaughter, Wei Wu, Yuankun Fu,
Legend Brandenburg, Nicolai Garcia,
Wilhem Kautz, Emily Marx, Kaleb S.
Morris, Qinglei Cao, George Bosilca,
Seema Mirchandaney, Wonchan Lee,
Sean Treichler, Patrick McCormick,
and Alex Aiken. In the International
Conference for High Performance
Computing, Networking, Storage and
Analysis (SC 2020).

