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Overall Goal ‘ “

Improve the runtime of certain types of parallel computers
— In particular, message passing computers

» Approach
— Start with an explicitly parallel program

— Use modulo unrolling to minimize communication cost between nodes
of the parallel computer

« Advantage: Faster scientific and data processing computation

« How can this method be applied to other PGAS languages
besides Chapel?
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Message Passing
Architectures

« Communicate data among a set of processors with separate
address spaces using messages

— Remote Direct Memory Access (RDMA)
« High Performance Computing Systems
e 100-100,000 compute nodes
« Complicates compilation

B M, P, M,

Q00O

Link 1 Link 2 Link n

Interconnection Network
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PGAS Languages ®

« Partitioned Global Address Space (PGAS)

* Provides illusion of a shared memory system
on top of a distributed memory system

« Allows the programmer to reason about
locality without dealing with low-level data
movement

« Example - CHAPEL
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CHAPEL ‘ ﬁ‘

PGAS language developed by Cray Inc.
Programmers express parallelism explicitly
Features to improve programmer productivity
Targets large scale and desktop systems
Opportunities for performance optimizations!

W THE A. JAMES CLARK SCHOOL ¢of ENGINEERING



Our Work’s . f‘

Contribution

We present an optimization for parallel loops
with affine array accesses in CHAPEL.

The optimization uses a technique known as
modulo unrolling to aggregate messages and
iImprove the runtime performance of loops for

distributed memory systems using message
passing.
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Outline

Introduction and Motivation

* Modulo Unrolling

« Optimized Cyclic and Block Cyclic Dists
* Results
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Affine Array Accesses ‘ ﬁ‘

« Most common type of array access in
scientific codes

— Ali], Alll, A[3], Afi+1], Afi +j], A[2i + 3j]
— All, ], AJ3I, 5]]

* Array accesses are affine if the access on
each dimension is a linear expression of the
loop Indices
— E.g. Alal + bj + c] for a 2D loop nest
— Where a, b, and c are constant integers
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Example Parallel Loop ‘ »
in CHAPEL

forall i in 1..10 do ‘é‘l’;ﬁtbﬁf‘;dpfns when the data is
A[i] = B[i+2];

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NS
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Data Distributions in ‘ '

CHAPEL

 Describe how data is allocated across

locales for a given program
— A locale is a unit of a distributed computer (processor
and memory)

« Users can distribute data with CHAPEL's
standard modules or create their own
distributions

 Distributions considered In this study

— Cyclic
— Block
— Block Cyclic
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Data Distributions in ‘ ﬁ‘

CHAPEL - Block

use BlockDist;

var domain = {1..15};

var distribution = domain dmapped Block(boundingBox=domain);
var A: [distribution] int;

/Il A 'is now distributed in the following fashion

1 2 3 45 6 7 8 91011 12 13 14 15 [1 Locale0

Al T T T T Tmi T[T s [ Locale1
I Locale 2
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Data Distributions in ‘ ﬁ‘

CHAPEL - Cyclic

use CyclicDist;

var domain = {1..15};

var distribution = domain dmapped Cyclic(startldx=domain.low);
var A: [distribution] int;

/Il A 'is now distributed in the following fashion

1 2 3 4 5 6 7 8 9 1011 12 131415 [ LocaleO

AL T T [ B [ mw [ mm [ 1 Localef
I Locale 2
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Data Distributions in ‘ '

CHAPEL - Block Cyclic

use BlockCycDist;

var domain = {1..15};
var distribution = dom dmapped BlockCyclic(blocksize=3);

var A: [distribution] int;
/Il A 'is now distributed in the following fashion

1 2 3 4 5 6 7 8 9 1011 12 131415 [ LocaleO

ACT T T 7 [ T e [ Localet
I Locale 2

*similar code is used to distributed multi-dimensional
arrays
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Distributed Parallel ‘ »

Loop in CHAPEL

forall11n 1..10 do
A[i] = Bl[i+2];

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S EE

I Locale 2

* 4 Messages
« Locale 1 - Locale 0 containing B[6]
Locale 1 - Locale 0 containing B[7]
Locale 2 - Locale 1 containing B[11]
Locale 2 - Locale 1 containing B[12]
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Data Communication in . '
CHAPEL can be Improved

« Locality check at each loop iteration
— Is B[i+2] local or remote?

Each message contains only 1 element

We could have aggregated messages

— Using GASNET strided get/put in CHAPEL
— Locale 1 - Locale 0 containing B[6], B[7]

— Locale 2 = Locale 1 containing B[11], B[12]

Growing problem

— Runtime increases for larger problems and
more complex data distributions
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Data Transfer Round Trip ‘ ﬁ‘
Time for Infiniband
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Bandwidth measurements‘ "
for Infiniband

3500
3000 9
2500
@
Bandwidth 00 //,/’/'
(MBIS) 1500
1000
500

0 200 400 600 800 1000 1200
Data size (bytes)

m THE A. JAMES CLARK SCHOOL of ENGINEERING




18

How to improve this?

« Use knowledge about how data is distribute

and loop access patterns to aggregate
messages and reduce runtime of affine

parallel loops
 We are not trying to
— Apply automatic parallelization to CHAPEL
— Come up with a new data distribution
— Bias or override the programmer to a particular
distribution
 We are trying to

— Improve CHAPEL'’s existing data distributions to
perform better than their current implementation
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Outline

Introduction and Motivation

 Modulo Unrolling

« Optimized Cyclic and Block Cyclic Dists
* Results
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Modulo Unrolling — see Barua1999

« Method to statically disambiguate array
accesses at compile time

« Unroll the loop by factor = number of locales

« Each array access will reside on a single
locale across loop iterations

* |ntended to improve memory parallelism for
tiled architectures in sequential loops

* Applicable for Cyclic and Block Cyclic

<
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Modulo Unrolling Example

for |-|n 1"99 { | Each iteration of the loop
All] = Afli] + B[i+1]; accesses data on a
} different locale

1 23 4 56 7 8 9 1011 12 13 14 15 16 [ Locale 0
A C T T T e [ Locale 1
I Locale 2

B-l:j__r__::_::_::_'“ B Locale 3
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Modulo Unrolling Example

foriin 1..99 by 4 {

All] = All] + B[i+1];
Al[i+1] = A[I+1] + BJ[i+2],
Ali+2] = A[i+2] + BJi+3];
A[I+3] = A[i+3] + BJi+4];

Loop unrolled by a factor of 4
automatically by the compiler

}
1 23 4 56 7 8 9 1011 12 13 14 15 16 [ Locale 0
AT T T - 0 Locale 1
I Locale 2
B: [ T T
B Locale 3
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Modulo Unrolling Example

foriin 1..99 by 4 {

23

Alil] = Ali] |+ B[i+1];
A[lI+1] = A[I+1] + B
AlI+2] = AJi+2] + B
A[I+3] = A[i+3] + B

' Chapel?

’
"l
d

£,

<
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1+2];
1+3];
1+4];

Locale O Locale 1 Locale 2 Locale 3
All], A[3], Al2], Al6], AL3], A[7], Al4], A[8],
A9, ... A[10], ... A1), ... A[12], ...
B[1], B[5], B[2], B[6], B[3], B[], B[4], B[8],
B9], ... B[10], ... B[11], ... B[12], ...

[ ] LocaleO
[] Locale 1
I Locale 2
B Locale3

How do we apply this concept in
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Outline

 |ntroduction and Motivation

* Previous Work

* Modulo Unrolling

 Optimized Cyclic and Block Cyclic Dists
* Results

 What about Block?
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CHAPEL Zippered ®

lteration

 lterators
— Chapel construct similar to a function
— return or “yield” multiple values to the callsite
— Can be used in loops

iter fib(n: int) { for fin fib(5) {

var current = 0, Writeln(f);
next = 1; )
foriin 1..n{ Being used in a loop

yield current; f is the next yielded

current +f next; | value of fib after each
current <=> next; iteration

}
} Output: 0, 1,1, 2, 3
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CHAPEL Zippered ®

lteration

e Zippered lteration

— Multiple iterators of the same size are traversed
simultaneously

— Corresponding iterations processed together

for (i, f) in zip(1..5, fib(5)) { Output
writeln(“Fibonacci ”, i, “ =7, f);

}

Fibonacci1 =0
Fibonacci2 =1
Fibonacci 3 =1
Fibonacci 4 = 2
Fibonacci 5 =3
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CHAPEL Zippered ®

lteration

e Can be used with parallel for loops

 Leader iterator

— Creates tasks to implement parallelism and
assigns iterations to tasks

 Follower iterator

— Carries out work specified by leader (yielding
elements) usually serially
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CHAPEL Zippered ‘ '®
lteration

Follower iterators of A, B, and C will be
responsible for doing work for each task

forall (a, b, ¢) in zip(A, B, C) {
code...

}

Because it is first, A's leader iterator
will divide up the work among available tasks

*See Chamberlain2011
for more detall on
leader/follower semantics
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CHAPEL Zippered ®

lteration

* |t turns out any parallel forall loop with affine
array accesses can be written using zippered
iteration over array slices

foralliin 1..10 { forall (a,b) in zip(A[1..10], B[3..12]1{
Ali] = B[i+2]; a=b;
} Zippered iteration }

Implement modulo unrolling and message aggregation within
the leader and follower iterators of the Block Cyclic and Cyclic
distributions!
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Modulo Unrolling In
CHAPEL Cyclic
Distribution

forall (a,b) in zip(A[1..10], B[3..12]) do
a=b;

»

1 23 4 56 7 8 9 1011 12 13 14 15 16 [1 Locale 0
A: [ ] Locale1
I Locale 2
B: [
[ ]

\\ // o Locale 3

Leader iterator allocates locale 0 with

Locale O iterations 1, 5, 9, ...

*  Follower iterator of B recognizes that its work
3, 7,11, ... is remote on locale 2

+ Elements of B’s chunk of work brought to
locale 0 via 1 bulk get message to a local
buffer

+ Elements of local buffer are now yielded back
to loop header

THE A. JAMES CLARK SCHOOL ¢of ENGINEERING

*if yielded elements are
written to during the loop, a
similar bulk put message is
required to update remote
portions of array
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Modulo Unrolling In -
CHAPEL Block Cyclic ‘ “
Distribution

forall (a,b) in zip(A[1..10], B[3..12]) do

a=>b;
1 23 456 7 8 91011 1213 14 15 16 Bl locale0
ACT DI I | [ | - [ Locale 1
I Locale 2
B:-LIT T T T TN [ ]
\// B Locale3

Aggregation now occurs with elements in the
Locale O same location within each block

Both leader and follower needed to be
modified
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Cyclic Follower
Implementation

1 iter CyclicArr.these (param tag: iterKind, followThis, param fast: bool = false) var!

2 where tag == iterKind.follower {!

3!

4 //check that all elements in chunk are from the same locale!

5 for i in 1..rank {!

6 if (followThis (i) .stride * dom.whole.dim (i) .stride % !

7 dom.dist.targetLocDom.dim (i) .size != 0) {!

8 //call original follower iterator helper for nonlocal elements!

9 } 3!

10 if arrSection.locale.id == here.id then local {!

11 //original fast follower iterator helper for local elements!

12 } else {!

13 ! //allocate local buffer to hold remote elements, compute source and destination ! !
14 //strides, number of elements to communicate!

15 ! 'chpl comm gets (buf, deststr, arrSection.myElems. value.theData, srcstr, count);!
16 ! !var changed = false;'!

17 ! for i in buf {!

18 ! ! !var old i = i;!

19 ! ! yield i;!

20 ! ! !var new val = i;!

21 ! ! 'if (old val !'= new val) then changed = true;'!

22 1! - -

23 ! 'if changed then !

24 ! chpl comm puts (arrSection.myElems. value.theData, srcstr, buf, deststr, count);!
25 1} 3!

THE A. JAMES CLARK SCHOOL ¢of ENGINEERING UNIVERSITY OF MARYLAND
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Outline

Introduction and Motivation

Previous Work

* Modulo Unrolling

« Optimized Cyclic and Block Cyclic Dists
 Results
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Benchmarks

Name Lines of Input Size Description Elements per
Code follower
iterator chunk

2mm 221 128 x 128 2 matrix multiplications (D=A*B; E=C*D) | 4

fw 153 64 x 64 Floyd-Warshall all-pairs shortest path 2
algorithm

trmm 133 128 x 128 Triangular matrix multiply 8

correlation 235 512 x 512 Correlation computation 16

covariance | 201 512 x 512 Covariance computation 16

cholesky 182 256 x 256 Cholesky decomposition 16

lu 143 128 x 128 LU decomposition 8

mvt 185 4000 Matrix vector product and transpose 250

syrk 154 128 x 128 Symmetric rank-k operations 8

fdtd-2d 201 1000 x 1000 2D Finite Different Time Domain Kernel 16000

fdtd-apml 333 64 x 64 x 64 FDTD using Anisotropic Perfectly 4
Matched Layer

jacobi1D 138 10000 1D Jacobi stencil computation 157

jacobi2D 152 400 x 400 2D Jacobi stencil computation 2600

stencil9t 142 400 x 400 9-point stencil computation 2613

pascalt 126 100000, 100003 | Computation of pascal triangle rows 1563

folding¥ 139 50400 Strided sum of consecutive array 394
elements

* Data collected on 10 node Golgatha cluster at LTS
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Runtime Comparisons
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Message Count
Comparisons
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Overall Improvement of _,
. 0
Modulo Unrolling ‘ ’

* On average Cyclic with modulo unrolling
results in

— 36% reduction In runtime
— 64% fewer messages

* On average Block Cyclic with modulo
unrolling results In

— 53% reduction in runtime
— 72% fewer messages
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Conclusion . '

« We've presented optimized Cyclic and Block Cyclic

distributions in CHAPEL that perform modulo
unrolling

« QOur results for Cyclic Modulo and Block Cyclic

Modulo show improvements in runtime and message
counts for affine programs
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Future Work ‘ '®

Scalability Testing

— Strong (Varying number of locales)
— Weak (Varying the input sizes)

— Block Size

« Add dynamic checks to determine when to turn
on/off modulo unrolling to achieve better overall
speedups

« Experiment with non-blocking communication
schemes to overlap communication and computation
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Questions?
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Backup Slides
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Pseudocode of Compiler '
Transformation

(a)

(d) |s= starting loop bound

e = ending loop bound

n = loop stride

B = block size

N = number of locales

S = current locale identifier

1 forall i in s..e by n {!

2 //affine array expressions!

3 Al[al*i+bl] = A2[a2*i+b2] + 3;|
4 } !

for k in 0.. ((lcm(B,n)/n)-1) {!

forall i in (stk*n)..e by lcm(B,n) {!
//affine array expressions!

Al[al*i+bl] = A2[a2*i+b2] + 3;!

(b)

g w N

} I
!
1 for k in 0..((lcm(B,n)/n)-1) {!
//i;/7 for j in 0..N-1 {! ‘\\\\\

©| °
4 //fetch elements from affine array expressions!
5 ! //that are not owning expressions of the loop!
6 var bufl = GET (A2[ (stk*n+lcm(B,n)*]j)+b2..etb2 by N*lcm(B,n) *az2]) ;|
7
8 forall i in (st+k*n+lcm(B,n)*j)..e by lcm(B,n)*N {!

9 //affine array expressions!

10 Al[al*i+bl] = bufllh] + 3;!

11

12

13

14

if (f (s+k*n+lcm(B,n)*j)/B mod N == $) {!
var h = 0;!
h++; !

)l
//write buffer elements back if written to during loop!
! if (bufl is modified)!
15 ! SET (A2 [ (s+tk*n+lcm(B,n) *j) +b2..etb2 by N*lcm(B,n)*a2]) = bufl;!

/

UNIVERSITY OF MARYLAND
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What about Block? ‘ "

* Our method does not help the Block
distribution

— Reason: Needs cyclic pattern

 For Block, we use the traditional method
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What about Block? . ﬁ‘

2D Jacobi Example — Transformed Pseudocode

For each block in

forall (k1,k2) in {0..1, 0..1} { parallel
if A[2 + 3k1, 2 + 3k2].locale.id == $ then on $ {

buf_north = get(A[2+3Kk1..4+3k1, 2+3k2-1..4+3k2-1]); ]

buf _south = get(A[2+3k1..4+3k1, 2+3k2+1..4+3k2+1));

buf_east = get(A[2+3k1-1..4+3k1-1, 2+3k2..4+3k2]); ——>Bring in remote

buf_west = get(A[2+3k1+1..4+3k1+1, 2+3k2..4+3k2]); portions of array
— footprint locally

LB i=2+3Kk1;

LB j=2+3k2;

forall(i, j) in {2+3k1..4+3k1, 2+3k2..4+3k2} {
A enll,]] = (buf_north[i-LB_i, j-LB_j] + buf_south[i-LB_i, j-LB_]j] +
buf _east[i-LB_i, j-LB_j] + buf west[i-LB_i, j-LB_j])/4.0;

} ! \ Do the

computation
using local buffers
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What about Block? . ﬁ‘

« It seems that data distributed using Block naturally
results in fewer messages for many benchmarks

« Makes sense because many benchmarks in
scientific computing access nearest neighbor
elements

* Nearest neighbor elements are more likely to reside
on the same locale

* Could we still do better and aggregate messages?
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What about Block? ' n

2D Jacobi Example
i

—>

1 2 3 4 5 6 7 8

2 remote blocks per locale - 2 messages
8 messages with aggregation

* 24 messages without

« Messages without aggregation grows as
problem size grows

; [ ] LocaleO
Jl 3 [ 1 Locale1

4 Bl Llocale?2

2 B Locale3

7

8 Al 1]

Ali-1, 11 AL, J] |Afi+1, ]

forall (i,)) in {2..7, 2..7} {

Aulibi] = (Ali+1, j] + Afi-1, j] + A[i, j+1] + A[i, j-1])/4.0; o
} Afi, j+1]
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LTS Golgatha Cluster ‘ 0’
Hardware Specs "

10 hardware nodes

 Infinlbband communication layer between
nodes

« 2 sockets per node

* Intel Xeon X5760 per socket
— 2.93GHz

— 6 cores (12 hardware threads w/ 2 way
hyperthreading)

— 24GB RAM per processor
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