
Affine Loop Optimization using

Modulo Unrolling in CHAPEL

Aroon Sharma, Darren Smith, Joshua Koehler,

Rajeev Barua, Michael Ferguson

2

Overall Goal

• Improve the runtime of certain types of parallel computers

– In particular, message passing computers

• Approach

– Start with an explicitly parallel program

– Use modulo unrolling to minimize communication cost between nodes

of the parallel computer

• Advantage: Faster scientific and data processing computation

• How can this method be applied to other PGAS languages

besides Chapel?

3

Message Passing

Architectures
• Communicate data among a set of processors with separate

address spaces using messages

– Remote Direct Memory Access (RDMA)

• High Performance Computing Systems

• 100-100,000 compute nodes

• Complicates compilation

4

PGAS Languages

• Partitioned Global Address Space (PGAS)

• Provides illusion of a shared memory system

on top of a distributed memory system

• Allows the programmer to reason about

locality without dealing with low-level data

movement

• Example - CHAPEL

5

CHAPEL

• PGAS language developed by Cray Inc.

• Programmers express parallelism explicitly

• Features to improve programmer productivity

• Targets large scale and desktop systems

• Opportunities for performance optimizations!

6

Our Work’s

Contribution

We present an optimization for parallel loops

with affine array accesses in CHAPEL.

The optimization uses a technique known as

modulo unrolling to aggregate messages and

improve the runtime performance of loops for

distributed memory systems using message

passing.

7

• Introduction and Motivation

• Modulo Unrolling

• Optimized Cyclic and Block Cyclic Dists

• Results

Outline

8

Affine Array Accesses

• Most common type of array access in

scientific codes

– A[i], A[j], A[3], A[i+1], A[i + j], A[2i + 3j]

– A[i, j], A[3i, 5j]

• Array accesses are affine if the access on

each dimension is a linear expression of the

loop indices

– E.g. A[ai + bj + c] for a 2D loop nest

– Where a, b, and c are constant integers

9

Example Parallel Loop

in CHAPEL

forall i in 1..10 do

 A[i] = B[i+2];

B:

A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

What happens when the data is

distributed?

10

Data Distributions in

CHAPEL

• Describe how data is allocated across

locales for a given program

– A locale is a unit of a distributed computer (processor

and memory)

• Users can distribute data with CHAPEL’s

standard modules or create their own

distributions

• Distributions considered in this study

– Cyclic

– Block

– Block Cyclic

11

Data Distributions in

CHAPEL - Block

use BlockDist;

var domain = {1..15};

var distribution = domain dmapped Block(boundingBox=domain);

var A: [distribution] int;

// A is now distributed in the following fashion

A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12

Data Distributions in

CHAPEL - Cyclic

use CyclicDist;

var domain = {1..15};

var distribution = domain dmapped Cyclic(startIdx=domain.low);

var A: [distribution] int;

// A is now distributed in the following fashion

A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13

Data Distributions in

CHAPEL – Block Cyclic

use BlockCycDist;

var domain = {1..15};

var distribution = dom dmapped BlockCyclic(blocksize=3);

var A: [distribution] int;

// A is now distributed in the following fashion

A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

*similar code is used to distributed multi-dimensional

arrays

14

Distributed Parallel

Loop in CHAPEL

forall i in 1..10 do

 A[i] = B[i+2];

• 4 Messages

• Locale 1  Locale 0 containing B[6]

• Locale 1  Locale 0 containing B[7]

• Locale 2  Locale 1 containing B[11]

• Locale 2  Locale 1 containing B[12]

B:

A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15

Data Communication in

CHAPEL can be Improved

• Locality check at each loop iteration

– Is B[i+2] local or remote?

• Each message contains only 1 element

• We could have aggregated messages

– Using GASNET strided get/put in CHAPEL

– Locale 1  Locale 0 containing B[6], B[7]

– Locale 2  Locale 1 containing B[11], B[12]

• Growing problem

– Runtime increases for larger problems and

more complex data distributions

16

Data Transfer Round Trip

Time for Infiniband

0

0.5

1

1.5

2

2.5

3

3.5

4

0 200 400 600 800 1000 1200

Latency (μs)

Data size (bytes)

17

Bandwidth measurements

for Infiniband

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600 800 1000 1200

Bandwidth
(MB/s)

Data size (bytes)

18

How to improve this?

• Use knowledge about how data is distributed

and loop access patterns to aggregate

messages and reduce runtime of affine

parallel loops

• We are not trying to

– Apply automatic parallelization to CHAPEL

– Come up with a new data distribution

– Bias or override the programmer to a particular

distribution

• We are trying to

– Improve CHAPEL’s existing data distributions to

perform better than their current implementation

19

• Introduction and Motivation

• Modulo Unrolling

• Optimized Cyclic and Block Cyclic Dists

• Results

Outline

20

• Method to statically disambiguate array

accesses at compile time

• Unroll the loop by factor = number of locales

• Each array access will reside on a single

locale across loop iterations

• Intended to improve memory parallelism for

tiled architectures in sequential loops

• Applicable for Cyclic and Block Cyclic

 Modulo Unrolling – See Barua1999

21

for i in 1..99 {

 A[i] = A[i] + B[i+1];

}

Modulo Unrolling Example

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Each iteration of the loop

accesses data on a

different locale

22

for i in 1..99 by 4 {

 A[i] = A[i] + B[i+1];

 A[i+1] = A[i+1] + B[i+2];

 A[i+2] = A[i+2] + B[i+3];

 A[i+3] = A[i+3] + B[i+4];

}

Modulo Unrolling Example

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Loop unrolled by a factor of 4

automatically by the compiler

23

for i in 1..99 by 4 {

 A[i] = A[i] + B[i+1];

 A[i+1] = A[i+1] + B[i+2];

 A[i+2] = A[i+2] + B[i+3];

 A[i+3] = A[i+3] + B[i+4];

}

Modulo Unrolling Example

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Locale 0 Locale 1 Locale 2 Locale 3

A[1], A[5],

A[9], …

B[1], B[5],

B[9], …
B[2], B[6],

B[10], …

B[3], B[7],

B[11], …

B[4], B[8],

B[12], …

A[2], A[6],

A[10], …

A[3], A[7],

A[11], …
A[4], A[8],

A[12], …

How do we apply this concept in

Chapel?

24

• Introduction and Motivation

• Previous Work

• Modulo Unrolling

• Optimized Cyclic and Block Cyclic Dists

• Results

• What about Block?

Outline

25

CHAPEL Zippered

Iteration

• Iterators

– Chapel construct similar to a function

– return or “yield” multiple values to the callsite

– Can be used in loops

iter fib(n: int) {

 var current = 0,

 next = 1;

 for i in 1..n {

 yield current;

 current += next;

 current <=> next;

 }

}

for f in fib(5) {

 writeln(f);

}

f is the next yielded

value of fib after each

iteration

Being used in a loop

Output: 0, 1, 1, 2, 3

26

CHAPEL Zippered

Iteration

• Zippered Iteration

– Multiple iterators of the same size are traversed

simultaneously

– Corresponding iterations processed together

for (i, f) in zip(1..5, fib(5)) {

 writeln(“Fibonacci ”, i, “ = ”, f);

}

Output

Fibonacci 1 = 0

Fibonacci 2 = 1

Fibonacci 3 = 1

Fibonacci 4 = 2

Fibonacci 5 = 3

27

CHAPEL Zippered

Iteration

• Can be used with parallel for loops

• Leader iterator

– Creates tasks to implement parallelism and

assigns iterations to tasks

• Follower iterator

– Carries out work specified by leader (yielding

elements) usually serially

28

CHAPEL Zippered

Iteration

forall (a, b, c) in zip(A, B, C) {

 code…

}

 Because it is first, A’s leader iterator

will divide up the work among available tasks

Follower iterators of A, B, and C will be

responsible for doing work for each task

*See Chamberlain2011

for more detail on

leader/follower semantics

29

CHAPEL Zippered

Iteration

• It turns out any parallel forall loop with affine

array accesses can be written using zippered

iteration over array slices

forall i in 1..10 {

 A[i] = B[i+2];

}

forall (a,b) in zip(A[1..10], B[3..12]){

 a = b;

} Zippered iteration

Implement modulo unrolling and message aggregation within

the leader and follower iterators of the Block Cyclic and Cyclic

distributions!

30

Modulo Unrolling in

CHAPEL Cyclic

Distribution
forall (a,b) in zip(A[1..10], B[3..12]) do

 a = b;

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Locale 0
• Leader iterator allocates locale 0 with

iterations 1, 5, 9, …

• Follower iterator of B recognizes that its work

3, 7, 11, … is remote on locale 2

• Elements of B’s chunk of work brought to

locale 0 via 1 bulk get message to a local

buffer

• Elements of local buffer are now yielded back

to loop header

*if yielded elements are

written to during the loop, a

similar bulk put message is

required to update remote

portions of array

31

Modulo Unrolling in

CHAPEL Block Cyclic

Distribution
forall (a,b) in zip(A[1..10], B[3..12]) do

 a = b;

Locale 3

16
A:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B:

…

…

Locale 0
• Aggregation now occurs with elements in the

same location within each block

• Both leader and follower needed to be

modified

32

Cyclic Follower

Implementation

1 iter CyclicArr.these(param tag: iterKind, followThis, param fast: bool = false) var!

2 where tag == iterKind.follower {!

3!

4 //check that all elements in chunk are from the same locale!

5 for i in 1..rank {!

6 if (followThis(i).stride * dom.whole.dim(i).stride % !

7 dom.dist.targetLocDom.dim(i).size != 0) {!

8 //call original follower iterator helper for nonlocal elements!

9 } }!

10 if arrSection.locale.id == here.id then local {!

11 //original fast follower iterator helper for local elements!

12 } else {!

13 ! //allocate local buffer to hold remote elements, compute source and destination ! !

14 //strides, number of elements to communicate!

15 ! !chpl_comm_gets(buf, deststr, arrSection.myElems._value.theData, srcstr, count);!

16 ! !var changed = false;!

17 ! !for i in buf {!

18 ! ! !var old_i = i;!

19 ! ! yield i;!

20 ! ! !var new_val = i;!

21 ! ! !if(old_val != new_val) then changed = true;!

22 ! !}!

23 ! !if changed then !

24 ! chpl_comm_puts(arrSection.myElems._value.theData, srcstr, buf, deststr, count);!

25 } }!

33

• Introduction and Motivation

• Previous Work

• Modulo Unrolling

• Optimized Cyclic and Block Cyclic Dists

• Results

Outline

34

Benchmarks

* Data collected on 10 node Golgatha cluster at LTS

35

Runtime Comparisons

36

Message Count

Comparisons

37

Overall Improvement of

Modulo Unrolling

• On average Cyclic with modulo unrolling

results in

– 36% reduction in runtime

– 64% fewer messages

• On average Block Cyclic with modulo

unrolling results in

– 53% reduction in runtime

– 72% fewer messages

38

• We’ve presented optimized Cyclic and Block Cyclic

distributions in CHAPEL that perform modulo

unrolling

• Our results for Cyclic Modulo and Block Cyclic

Modulo show improvements in runtime and message

counts for affine programs

Conclusion

39

• Scalability Testing

– Strong (Varying number of locales)

– Weak (Varying the input sizes)

– Block Size

• Add dynamic checks to determine when to turn

on/off modulo unrolling to achieve better overall

speedups

• Experiment with non-blocking communication

schemes to overlap communication and computation

Future Work

40

Questions?

41

Backup Slides

42

[1] Barua, R., & Lee, W. (1999). Maps: A Compiler-

Managed Memory System for Raw Machine.

Proceedings of the 26th International Symposium on

Computer Architecture, (pp. 4-15).

[2] User-Defined Parallel Zippered Iterators in Chapel,

Chamberlain, Choi, Deitz, Navarro; October 2011

[3] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen,

and C. Bastoul. The polyhedral model is more widely

applicable than you think. In ETAPS International

Conference on Compiler Construction (CC’2010),

pages 283–303, Mar. 2010.

References

43

Pseudocode of Compiler

Transformation
1 forall i in s..e by n {!

2 //affine array expressions!

3 A1[a1*i+b1] = A2[a2*i+b2] + 3;!

4 }!

1 for k in 0..((lcm(B,n)/n)-1) {!

2 forall i in (s+k*n)..e by lcm(B,n) {!

3 //affine array expressions!

4 A1[a1*i+b1] = A2[a2*i+b2] + 3;!

5 } }!

!

!

1 for k in 0..((lcm(B,n)/n)-1) {!

2 for j in 0..N-1 {!

3 if(f(s+k*n+lcm(B,n)*j)/B mod N == $) {!

4 //fetch elements from affine array expressions!

5 ! //that are not owning expressions of the loop!

6 var buf1 = GET(A2[(s+k*n+lcm(B,n)*j)+b2..e+b2 by N*lcm(B,n)*a2]);!

7 var h = 0;!

8 forall i in (s+k*n+lcm(B,n)*j)..e by lcm(B,n)*N {!

9 //affine array expressions!

10 A1[a1*i+b1] = buf1[h] + 3;!

11 h++;!

12 }!

13 //write buffer elements back if written to during loop!

14 ! if(buf1_is_modified)!

15 ! SET(A2[(s+k*n+lcm(B,n)*j)+b2..e+b2 by N*lcm(B,n)*a2]) = buf1;!

16 } } }!

 !

44

[4] Compile-time techniques for data distribution in

distributed memory machines. J Ramanujam, P

Sadayappan - Parallel and Distributed Systems, IEEE

Transactions on, 1991

[5] Chen, Wei-Yu, Costin Iancu, and Katherine Yelick.

"Communication optimizations for fine-grained UPC

applications." Parallel Architectures and Compilation

Techniques, 2005. PACT 2005. 14th International

Conference on. IEEE, 2005.

References

45

• Our method does not help the Block

distribution

– Reason: Needs cyclic pattern

• For Block, we use the traditional method

What about Block?

46

2D Jacobi Example – Transformed Pseudocode

What about Block?

forall (k1,k2) in {0..1, 0..1} {

 if A[2 + 3k1, 2 + 3k2].locale.id == $ then on $ {

 buf_north = get(A[2+3k1..4+3k1, 2+3k2-1..4+3k2-1]);

 buf_south = get(A[2+3k1..4+3k1, 2+3k2+1..4+3k2+1]);

 buf_east = get(A[2+3k1-1..4+3k1-1, 2+3k2..4+3k2]);

 buf_west = get(A[2+3k1+1..4+3k1+1, 2+3k2..4+3k2]);

 LB_i = 2+3k1;

 LB_j = 2+3k2;

 forall(i, j) in {2+3k1..4+3k1, 2+3k2..4+3k2} {

 Anew[i,j] = (buf_north[i-LB_i, j-LB_j] + buf_south[i-LB_i, j-LB_j] +

 buf_east[i-LB_i, j-LB_j] + buf_west[i-LB_i, j-LB_j])/4.0;

 }

}

For each block in

parallel

Bring in remote

portions of array

footprint locally

Do the

computation

using local buffers

47

• It seems that data distributed using Block naturally

results in fewer messages for many benchmarks

• Makes sense because many benchmarks in

scientific computing access nearest neighbor

elements

• Nearest neighbor elements are more likely to reside

on the same locale

• Could we still do better and aggregate messages?

What about Block?

48

2D Jacobi Example

What about Block?

Locale 3

forall (i,j) in {2..7, 2..7} {

 Anew[i,j] = (A[i+1, j] + A[i-1, j] + A[i, j+1] + A[i, j-1])/4.0;

}

A[i, j] A[i-1, j] A[i+1, j]

A[i, j-1]

A[i, j+1]

i

j

1 2 3 4 5 6 7 8
1

2

3

4

5
6

7
8

• 2 remote blocks per locale  2 messages

• 8 messages with aggregation

• 24 messages without

• Messages without aggregation grows as

problem size grows

49

LTS Golgatha Cluster

Hardware Specs

• 10 hardware nodes

• Infiniband communication layer between

nodes

• 2 sockets per node

• Intel Xeon X5760 per socket

– 2.93GHz

– 6 cores (12 hardware threads w/ 2 way

hyperthreading)

– 24GB RAM per processor

