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Overall Goal 

• Improve the runtime of certain types of parallel computers 

– In particular, message passing computers 

 

• Approach 

– Start with an explicitly parallel program  

– Use modulo unrolling to minimize communication cost between nodes 

of the parallel computer 

 

• Advantage: Faster scientific and data processing computation 

 

• How can this method be applied to other PGAS languages 

besides Chapel? 
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Message Passing 

Architectures  
• Communicate data among a set of processors with separate 

address spaces using messages 

– Remote Direct Memory Access (RDMA) 

• High Performance Computing Systems 

• 100-100,000 compute nodes 

• Complicates compilation 
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PGAS Languages  

• Partitioned Global Address Space (PGAS) 

• Provides illusion of a shared memory system 

on top of a distributed memory system 

• Allows the programmer to reason about 

locality without dealing with low-level data 

movement 

• Example - CHAPEL 
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CHAPEL 

• PGAS language developed by Cray Inc. 

• Programmers express parallelism explicitly 

• Features to improve programmer productivity 

• Targets large scale and desktop systems  

• Opportunities for performance optimizations! 
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Our Work’s 

Contribution 

We present an optimization for parallel loops 

with affine array accesses in CHAPEL.  

 

The optimization uses a technique known as 

modulo unrolling to aggregate messages and 

improve the runtime performance of loops for 

distributed memory systems using message 

passing.  
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• Introduction and Motivation 

• Modulo Unrolling  

• Optimized Cyclic and Block Cyclic Dists 

• Results 

Outline 
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Affine Array Accesses 

• Most common type of array access in 

scientific codes 

– A[i],  A[j],  A[3],  A[i+1],  A[i + j],  A[2i + 3j] 

– A[i, j],  A[3i, 5j] 

• Array accesses are affine if the access on 

each dimension is a linear expression of the 

loop indices  

– E.g. A[ai + bj + c] for a 2D loop nest 

– Where a, b, and c are constant integers 
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Example Parallel Loop 

in CHAPEL 
 

forall i in 1..10 do 

 A[i] = B[i+2];  

  

B: 

A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

What happens when the data is 

distributed? 
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Data Distributions in 

CHAPEL 

• Describe how data is allocated across 

locales for a given program 

– A locale is a unit of a distributed computer (processor 

and memory) 

• Users can distribute data with CHAPEL’s 

standard modules or create their own 

distributions  

• Distributions considered in this study 

– Cyclic 

– Block  

– Block Cyclic 
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Data Distributions in 

CHAPEL - Block 

use BlockDist; 

 

var domain = {1..15};  

var distribution = domain dmapped Block(boundingBox=domain); 

var A: [distribution] int; 

// A is now distributed in the following fashion 

 

A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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Data Distributions in 

CHAPEL - Cyclic 

use CyclicDist; 

 

var domain = {1..15};  

var distribution = domain dmapped Cyclic(startIdx=domain.low); 

var A: [distribution] int; 

// A is now distributed in the following fashion 

 

A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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Data Distributions in 

CHAPEL – Block Cyclic 

use BlockCycDist; 

 

var domain = {1..15};  

var distribution = dom dmapped BlockCyclic(blocksize=3); 

var A: [distribution] int; 

// A is now distributed in the following fashion 

 

A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

*similar code is used to distributed multi-dimensional 

arrays 
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Distributed Parallel 

Loop in CHAPEL 
 

forall i in 1..10 do 

 A[i] = B[i+2];  

  

• 4 Messages 

• Locale 1  Locale 0 containing B[6] 

• Locale 1  Locale 0 containing B[7] 

• Locale 2  Locale 1 containing B[11] 

• Locale 2  Locale 1 containing B[12] 

B: 

A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
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Data Communication in 

CHAPEL can be Improved 

• Locality check at each loop iteration 

– Is B[i+2] local or remote? 

• Each message contains only 1 element 

• We could have aggregated messages 

– Using GASNET strided get/put in CHAPEL 

– Locale 1  Locale 0 containing B[6], B[7] 

– Locale 2  Locale 1 containing B[11], B[12] 

• Growing problem 

– Runtime increases for larger problems and 

more complex data distributions 
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Data Transfer Round Trip 

Time for Infiniband 
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Bandwidth measurements 

for Infiniband 
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How to improve this? 

• Use knowledge about how data is distributed 

and loop access patterns to aggregate 

messages and reduce runtime of affine 

parallel loops 

• We are not trying to 

– Apply automatic parallelization to CHAPEL 

– Come up with a new data distribution 

– Bias or override the programmer to a particular 

distribution 

• We are trying to  

– Improve CHAPEL’s existing data distributions to 

perform better than their current implementation 
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• Introduction and Motivation 

• Modulo Unrolling  

• Optimized Cyclic and Block Cyclic Dists 

• Results 

 

 

 

Outline 
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• Method to statically disambiguate array 

accesses at compile time 

• Unroll the loop by factor = number of locales 

• Each array access will reside on a single 

locale across loop iterations  

• Intended to improve memory parallelism for 

tiled architectures in sequential loops 

• Applicable for Cyclic and Block Cyclic 

  Modulo Unrolling – See Barua1999 
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for i in 1..99 { 

   A[i] = A[i] + B[i+1];   

} 

Modulo Unrolling Example 

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Each iteration of the loop 

accesses data on a 

different locale 
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for i in 1..99 by 4 { 

   A[i] = A[i] + B[i+1];   

   A[i+1] = A[i+1] + B[i+2]; 

   A[i+2] = A[i+2] + B[i+3]; 

   A[i+3] = A[i+3] + B[i+4]; 

} 

Modulo Unrolling Example 

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Loop unrolled by a factor of 4 

automatically by the compiler 
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for i in 1..99 by 4 { 

   A[i] = A[i] + B[i+1];   

   A[i+1] = A[i+1] + B[i+2]; 

   A[i+2] = A[i+2] + B[i+3]; 

   A[i+3] = A[i+3] + B[i+4]; 

} 

Modulo Unrolling Example 

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Locale 0 Locale 1 Locale 2 Locale 3 

A[1], A[5], 

A[9], … 

B[1], B[5], 

B[9], … 
B[2], B[6], 

B[10], … 

B[3], B[7], 

B[11], … 

B[4], B[8], 

B[12], … 

A[2], A[6], 

A[10], … 

A[3], A[7], 

A[11], … 
A[4], A[8], 

A[12], … 

How do we apply this concept in 

Chapel? 
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• Introduction and Motivation 

• Previous Work 

• Modulo Unrolling  

• Optimized Cyclic and Block Cyclic Dists 

• Results 

• What about Block? 

 

 

 

 

Outline 
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CHAPEL Zippered 

Iteration 

• Iterators  

– Chapel construct similar to a function  

– return or “yield” multiple values to the callsite 

– Can be used in loops 

 

 

iter fib(n: int) { 

   var current = 0,  

   next = 1;  

   for i in 1..n {  

      yield current;  

      current += next;  

      current <=> next;  

   } 

} 

 

for f in fib(5) {  

   writeln(f); 

} 

 
f is the next yielded 

value of fib after each 

iteration 

Being used in a loop 

Output: 0, 1, 1, 2, 3 
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CHAPEL Zippered 

Iteration 

• Zippered Iteration 

– Multiple iterators of the same size are traversed 

simultaneously  

– Corresponding iterations processed together 

 
for (i, f) in zip(1..5, fib(5)) {  

   writeln(“Fibonacci ”, i, “ = ”, f); 

} 

 

Output 

 
Fibonacci 1 = 0 

Fibonacci 2 = 1 

Fibonacci 3 = 1 

Fibonacci 4 = 2 

Fibonacci 5 = 3 
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CHAPEL Zippered 

Iteration 

• Can be used with parallel for loops 

• Leader iterator 

– Creates tasks to implement parallelism and 

assigns iterations to tasks 

• Follower iterator 

– Carries out work specified by leader (yielding 

elements) usually serially 
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CHAPEL Zippered 

Iteration 

 

 

forall (a, b, c) in zip(A, B, C) {  

   code… 

} 

 Because it is first, A’s leader iterator 

will divide up the work among available tasks 

Follower iterators of A, B, and C will be 

responsible for doing work for each task 

*See Chamberlain2011 

for more detail on 

leader/follower semantics 
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CHAPEL Zippered 

Iteration 

 

 

• It turns out any parallel forall loop with affine 

array accesses can be written using zippered 

iteration over array slices 

 

 
forall i in 1..10 { 

   A[i] = B[i+2]; 

} 

 

forall (a,b) in zip(A[1..10], B[3..12]){ 

   a = b; 

} Zippered iteration 

Implement modulo unrolling and message aggregation within 

the leader and follower iterators of the Block Cyclic and Cyclic 

distributions! 
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Modulo Unrolling in 

CHAPEL Cyclic 

Distribution  
forall (a,b) in zip(A[1..10], B[3..12]) do 

   a = b;  

  

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Locale 0 
• Leader iterator allocates locale 0 with 

iterations 1, 5, 9, … 

• Follower iterator of B recognizes that its work 

3, 7, 11, … is remote on locale 2 

• Elements of B’s chunk of work brought to 

locale 0 via 1 bulk get message to a local 

buffer 

• Elements of local buffer are now yielded back 

to loop header 

 

*if yielded elements are 

written to during the loop, a 

similar bulk put message is 

required to update remote 

portions of array 
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Modulo Unrolling in 

CHAPEL Block Cyclic 

Distribution  
forall (a,b) in zip(A[1..10], B[3..12]) do 

   a = b;  

  

Locale 3 

16 
A: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

B: 

… 

… 

Locale 0 
• Aggregation now occurs with elements in the 

same location within each block 

• Both leader and follower needed to be 

modified 
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Cyclic Follower 

Implementation 

1   iter CyclicArr.these(param tag: iterKind, followThis, param fast: bool = false) var!

2        where tag == iterKind.follower {!

3!

4   //check that all elements in chunk are from the same locale!

5   for i in 1..rank {!

6        if (followThis(i).stride * dom.whole.dim(i).stride % !

7            dom.dist.targetLocDom.dim(i).size != 0) {!

8             //call original follower iterator helper for nonlocal elements!

9   }    }!

10  if arrSection.locale.id == here.id then local {!

11       //original fast follower iterator helper for local elements!

12  } else {!

13 !    //allocate local buffer to hold remote elements, compute source and destination !     !

14       //strides, number of elements to communicate!

15 ! !chpl_comm_gets(buf, deststr, arrSection.myElems._value.theData, srcstr, count);!

16 ! !var changed = false;!

17 ! !for i in buf {!

18 ! ! !var old_i = i;!

19 ! !     yield i;!

20 ! ! !var new_val = i;!

21 ! !  !if(old_val != new_val) then changed = true;!

22 ! !}!

23 ! !if changed then !

24 !          chpl_comm_puts(arrSection.myElems._value.theData, srcstr, buf, deststr, count);!

25  }    }!
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• Introduction and Motivation 

• Previous Work 

• Modulo Unrolling  

• Optimized Cyclic and Block Cyclic Dists 

• Results 

 

 

 

Outline 
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Benchmarks  

* Data collected on 10 node Golgatha cluster at LTS 
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Runtime Comparisons 



36 

Message Count 

Comparisons 
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Overall Improvement of 

Modulo Unrolling 

• On average Cyclic with modulo unrolling 

results in 

– 36% reduction in runtime 

– 64% fewer messages 

 

• On average Block Cyclic with modulo 

unrolling results in 

– 53% reduction in runtime 

– 72% fewer messages 
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• We’ve presented optimized Cyclic and Block Cyclic 

distributions in CHAPEL that perform modulo 

unrolling 

• Our results for Cyclic Modulo and Block Cyclic 

Modulo show improvements in runtime and message 

counts for affine programs 

Conclusion  
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• Scalability Testing 

– Strong (Varying number of locales) 

– Weak (Varying the input sizes) 

– Block Size 

 

• Add dynamic checks to determine when to turn 

on/off modulo unrolling to achieve better overall 

speedups 

 

• Experiment with non-blocking communication 

schemes to overlap communication and computation 

Future Work  
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Questions?  
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Backup Slides 
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Pseudocode of Compiler 

Transformation 
1   forall i in s..e by n {!

2        //affine array expressions!

3        A1[a1*i+b1] = A2[a2*i+b2] + 3;!

4   }!

1   for k in 0..((lcm(B,n)/n)-1) {!

2        forall i in (s+k*n)..e by lcm(B,n) {!

3             //affine array expressions!

4             A1[a1*i+b1] = A2[a2*i+b2] + 3;!

5   }    }!

!

!

1  for k in 0..((lcm(B,n)/n)-1) {!

2     for j in 0..N-1 {!

3        if(f(s+k*n+lcm(B,n)*j)/B mod N == $) {!

4           //fetch elements from affine array expressions!

5   !       //that are not owning expressions of the loop!

6           var buf1 = GET(A2[(s+k*n+lcm(B,n)*j)+b2..e+b2 by N*lcm(B,n)*a2]);!

7           var h = 0;!

8           forall i in (s+k*n+lcm(B,n)*j)..e by lcm(B,n)*N {!

9              //affine array expressions!

10             A1[a1*i+b1] = buf1[h] + 3;!

11             h++;!

12          }!

13          //write buffer elements back if written to during loop!

14  !       if(buf1_is_modified)!

15  !          SET(A2[(s+k*n+lcm(B,n)*j)+b2..e+b2 by N*lcm(B,n)*a2]) = buf1;!

16 }  }  }!

        !
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• Our method does not help the Block 

distribution 

– Reason: Needs cyclic pattern 

 

• For Block, we use the traditional method 

What about Block? 
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2D Jacobi Example – Transformed Pseudocode 

 

 

What about Block?   

forall (k1,k2) in {0..1, 0..1} { 

   if A[2 + 3k1, 2 + 3k2].locale.id == $ then on $ { 

      buf_north = get(A[2+3k1..4+3k1, 2+3k2-1..4+3k2-1]); 

      buf_south = get(A[2+3k1..4+3k1, 2+3k2+1..4+3k2+1]); 

      buf_east = get(A[2+3k1-1..4+3k1-1, 2+3k2..4+3k2]); 

      buf_west = get(A[2+3k1+1..4+3k1+1, 2+3k2..4+3k2]); 

 

      LB_i = 2+3k1; 

      LB_j = 2+3k2; 

 

      forall(i, j) in {2+3k1..4+3k1, 2+3k2..4+3k2} { 

         Anew[i,j] = (buf_north[i-LB_i, j-LB_j] + buf_south[i-LB_i, j-LB_j] +  

                         buf_east[i-LB_i, j-LB_j] + buf_west[i-LB_i, j-LB_j])/4.0; 

      } 

} 

For each block in 

parallel 

Bring in remote 

portions of array 

footprint locally  

Do the 

computation 

using local buffers 
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• It seems that data distributed using Block naturally 

results in fewer messages for many benchmarks 

• Makes sense because many benchmarks in 

scientific computing access nearest neighbor 

elements 

• Nearest neighbor elements are more likely to reside 

on the same locale 

• Could we still do better and aggregate messages? 

What about Block?  
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2D Jacobi Example 

 

 

What about Block?   

        

        

        

        

        

        

        

        

 

Locale 3 

forall (i,j) in {2..7, 2..7} { 

   Anew[i,j] = (A[i+1, j] + A[i-1, j] + A[i, j+1] + A[i, j-1])/4.0; 

} 

        

        

        

        

        

        

        

        

 

A[i, j] A[i-1, j] A[i+1, j] 

A[i, j-1] 

A[i, j+1] 

i 

j 

1 2 3 4 5 6 7 8 
1 

2 

3 

4 

5 
6 

7 
8 

        

        

        

        

        

        

        

        

 

        

        

        

        

        

        

        

        

 

• 2 remote blocks per locale  2 messages 

• 8 messages with aggregation 

• 24 messages without 

• Messages without aggregation grows as 

problem size grows 
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LTS Golgatha Cluster 

Hardware Specs 

• 10 hardware nodes  

• Infiniband communication layer between 

nodes 

• 2 sockets per node 

• Intel Xeon X5760 per socket 

– 2.93GHz 

– 6 cores (12 hardware threads w/ 2 way 

hyperthreading) 

– 24GB RAM per processor  


